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Abstract

Let G be a simple graph. The double vertex graph Uz(G) of G
is the graph whose vertex set consists of all 2-subsets of V(G) such
that two distinct vertices {z,y} and {u, v} are adjacent if and only if
H{z,y} N {u,v}| =1 and if = = u, then y and v are adjacent in G. In
this paper, we consider the exponents and primitivity relationships
between a simple graph and its double vertex graph. A sharp up-
per bound on exponents of double vertex graphs of primitive simple
graphs and the characterization of extremal graph are obtained.
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1 Introduction

Let G be a graph with vertex set V(G) and edge set E(G). A walk of
length ! (or l-walk) is a sequence vyva ... vy of vertices such that there
is a edge in G from v; to vy for i =1,2,...,l. The walk is a path if the
vertices vy,..., v, v+ are distinct. The walk is closed if vy = v1, and
a cycle is a closed walk in which v;,...,v are distinct. A cycle is a odd
cycle (respectively, even cycle) if its length is odd (respectively, even). For
two distinct vertices u and v, the distance from u to v, denoted by d,.,
is the minimum of lengths of walks from u to v. We agree d,,,, = 0 for
any vertex u. The diameter of G, denoted by d(G), is the maximum of the
distances from any vertex u to any vertex v. A graph G is primitive if therce
exists a nonnegative integer ! such that for each pair v;, v; of vertices (not
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necessarily distinct), there exists a walk in G from v; to v; with length [.
The ezponent of G, y(G), is defined to be the minimum value of {.

For a simple graph G, in [1] the authors gave the following definition.
The double vertez graph Us(G) of G is the graph whose vertex set consists
of all 2-subsets of V(G) such that two distinct vertices {z,y} and {u,v}
are adjacent if and only if |{z,y} N {u,v}| =1 and if £ = u, then y and v
are adjacent in G. Clearly, the order and the size of Ux(G) are n(n — 1)/2
and g(n — 2), respectively, where n is the order and q is the size of G. As
examples, we have Us(K2) = K, Us(K3) = K3, and Uz(K1,3) = Cs. See
Figure 1 for an example of a graph and its double vertex graph.

(1,2) (1,3) 1,4)
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Fig. 1 A 4-cycle and its double vertex graph

Recently, there have been some papers concerning this topic, for exam-
ple (1, 2,3, 4,5]. In [2], the authors discussed the connectivity relationships
between a graph and its double vertex graph. In [4}, the authors discussed
the regularity, eulerian, hamiltonian, and bipartite properties of double
vertex graphs. Motivated by the papers (2, 4], we consider the exponents
and primitivity relationships between a simple graph and its double ver-
tex graph. A sharp upper bound on exponents of double vertex graphs
of primitive simple graphs and the characterization of extremal graph are
obtained. Notations and definitions not introduced here can be found in
(1, 6].

2 Basic properties of double vertex graph

In this section, we give some useful properties of double vertex graph.

Lemma 2.1 [2,4] The graph G is connected if and only if its double vertez
graph Us(G) is connected.

Lemma 2.2 Let G be a simple graph, and u,v,w be three distinct vertices
of G. If there is a k-walk in G from u to v, then there is a k-walk in Uy(G)
from (w,u) to (w,v).
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Proof If k=1, then the lemma is clear. We can assume that k£ > 2.

Let P = uvqvz ... Vk-1v be a k-walk in G from u to v, and denote vp = u
and v; = v. We consider the following two cases.

Case 1. w ¢ {v1,v2,...,vk—1}. It is easy to see that the vertices
(w,v;—1) and (w,v;) arc adjacent in Ua(G) for ¢ = 1,2,...,k. Thus the
sequence of vertices

(w, v0) (w, v1)(w, v2) .- - (W, Vk—1)(w, vk)

is a k-walk in U(G) from (w,u) to (w,v).

Case 2. w € {v1,v2,...,vk—1}. Without loss of generality, we assume
w = vj.

Subcase 1. There are two different vertices adjacent to w in P. It is
easy to see that the sequence of vertices

(v, vo) (v, v1) - .. (v5,v5-1)(Vj-1, Vi+1) (U5, Vj41) - - - (V55 V)

is a k-walk in U(G) from (w,u) to (w,v).

Subcase 2. The vertices adjacent to w in P are same, that is, v;_; =
vj+1. If there is wy € V(G)\{vj—1} which is adjacent to w in G, then
sequence of vertices

(v, v0)(vj,v1) - - . (V5, vj—1 ) (W1, Vit1) (V5, V1) - - (U5, Vk)

is a k-walk in U3(G) from (w,u) to (w,v). If there is no vertex which is
adjacent to w in G besides vj_1, then must there be wa € V(G)\{w} which
is adjacent to v;—; in G. In this case, we can replace w with w2 in P and
use case 1.

This completes the proof of the lemma. O

Analogous to Lemma 2.2, we have the following lemma.

Lemma 2.3 Let G be a simple graph, and u,w be two distinct vertices of
G. If there is a k-walk in G from u to u, then there is a k-walk in Uy(G)
from (w,u) to (w,u).

Lemma 2.4 Let G be a simple graph, and u,v,z,y be four distinct vertices
of G. If there is a k-walk from u to z, and a l-walk from v to y in G, then
there is a (k + l)-walk from (u,v) to (z,y) in Uz(G).

Proof From Lemma 2.2, there is a k-walk from (u,v) to (z,v), and a
l-walk from (z,v) to (z,y) in Ua(G). Thus there is a (k + )-walk from
(u,v) to (z,y) in U2(G). O

Lemma 2.5 Let G be a simple graph, and u,v,x be three distinct vertices
of G. If there are two walks in G from v to x with lengths k and l, respec-
tively, then there is a (k + l)-walk from (u,v) to (u,v) in Ua(G).
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Proof From Lemma 2.2, there is a k-walk from (u,v) to (u,z), and a
l-walk from (u,z) to (u,v) in Uz(G). Thus there is a (k + l)-walk from
(u,v) to (u,v) in U2(G). The lemma follows. O

Lemma 2.6 Let G be a simple graph, and C = viva... v be a k-cycle of
G. Then the following properties hold.

(1) There is a k-cycle in Ux(G).

(2) For any vertez v; in C and x € V(G)\{v:} (z may be in C), there
is a k-cycle in Uy(G) containing the vertez (v, z).

Proof If z isn'’t in C, then the sequence of vertices
(z,v1)(z,v2) - - - (2, Vk—1)(Z, vk ) (2, v1)
is a k-cycle in U3(G) containing the vertex (z,v;).
If z is in C, say = = v;, and k # 2, we consider the sequence of vertices

(vi, Vig1) (Vi Vig2) -+« (Ui, V1) (Ui, U )(¥i,01) .+« (i, vim1 ) (Vic 1, Vi1 ) (Vi v5).

It is easy to see that it is a k-cycle in U>(G) containing the vertex (z,v;).

If z is in C, say = = vj, and k = 2, since there is at least one vertex
in {v;,v;} which adjacent to two different vertices in G, without loss of
generality, we assume that there is w € V(G)\{v;} which is adjacent to v;
in G. Then the sequence of vertices

(i, v5) (vi, w){(vi, v5)

is a 2-cycle in Uz(G) containing the vertex (x,v;). Then the lemma holds.
0

3 The exponents and primitivity of double
vertex graphs

In this section, we consider the primitivity relationships between a sim-
ple graph and its double vertex graph.

Theorem 3.1 Let G be a simple graph of order n (n > 4). If G is primi-
tive, then the double vertex graph Us(G) is also primitive, and v(Uz(G)) <
v(G) + d(G).

Proof Let G be a primitive simple graph. Then G is connected, and the
greatest common divisor of the lengths of its cycles is 1. From Lemmas

196



2.1 and 2.6, U3(G) is connected, and the greatest common divisor of the
lengths of its cycles is 1. Thus Up(G) is primitive.

Let (u,v) and (z,y) be any two vertices of the double vertex graph
Uy(G). We prove that there exists a walk in Us(G) from (u,v) to (z,y)
with length v(G) + d(G). By the primitivity of G, for each pair v;,v; of
vertices of G and any integer k > v(G), there exists a k-walk in G from v;
to v;. Consider the following three cases.

Case 1. |{u,v}N{z,y}| = 2. By the primitivity of G, there exists a
walk in G from v to v with length ¥(G) + d(G). Then there exists a walk
in Us(G) from (u,v) to (u,v) with length v(G) + d(G).

Case 2. |{u,v} N {z,y}| = 1. Without loss of generality, we assume
v =z and v # y. Since there exists a walk in G from v to y with length
1(G) + d(G), from Lemma 2.2, there exists a walk in Uz(G) from (u,v) to
(z,y) with length v(G) + d(G).

Case 3. |{u,v} N{z,y}| = 0. Assume that dy, = [ and there exists
a path P in G from u to z with length . Note that ! < d(G), and there
exists a walk in G from v to y with length v(G) + d(G) — . Then, from
Lemma 2.4, there exists a walk in Uz(G) from (u,v) to (z,y) with length
v(G) + d(G).

This completes the proof of the theorem. O

4 Sharp upper bound and extremal graph

In (7] B. Liu et al. proved that the exponent set of n x n (n > 4)
symmetric primitive (0, 1) matrices with zero trace (the adjacency matrices
of the primitive simple graphs) is {2,3,...,2n—4}\S, where S is the set of
all odd numbers in {n —2,n—1,...,2n — 5}. They also gave a symmetric
primitive matrix A which is the adjacency matrix of the simple graph Go
in Figure 2 that achieves this bound 2n — 4 as its exponent.

Fig. 2 Graph Gy

Lemma 4.1 [7] Let G be a primitive simple graph of order n (n > 4),
and E = {m | m =v(G)}. Then E = {2,3,...,2n — 4}\S, where S is the
set of all odd numbers in {n—2,n—1,...,2n -5}, and ¥(G) =2n—4 if
and only if G = Gp.

In this section, we give the exponent of the double vertex graph of
Go. Further, a sharp upper bound on exponents of double vertex graphs
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of primitive simple graphs and the characterization of extremal graph are
obtained. We need some notations and technologies on graph theory.

Let G be a graph, and L(G) the set of distinct cycle lengths of G. For
any z,y € V(G)and R = {a1, az,...,a,} C L(G) with ged(aq, az,...,a,) =
1, the relative distance dr(x,y) from z to y is defined to be the length of
the shortest walk from z to y which meets at least one cycle of each length
a;,i=1,2,...,7.

Let {s1,82,...,5,} be a set of relatively prime positive integers. The
Frobenius number, ¢(s1, s2,...,5p), is the least integer such that the equa-
tion T18; + 7252 + ... + Zps, = m has a solution in nonnegative integers
T1,%2,...,Tp for all m > @(s1, 82, ...,5p). It was known to Sylvester some
150 years ago that ¢(a1,a2) = (a1 — 1)(a2 — 1) if ged(a1, a2) = 1.

The ezponent from vertex u to vertex v, denoted by ~y(w, v), is the least
integer k such that there exists a walk of length m from u to v for all m > k.

Lemma 4.2 (8] If G is a primitive graph, then

G)= VY)-
¥(G)=_ max (z,y)
Lemma 4.3 [7| If G is a primitive graph and let z,y € V(G). If there are
two walks from = to y with lengths k1 and kg, respectively, where ky + ky =
1(mod 2), then v(z,y) < max{k1, ko} — 1.

Lemma 4.4 (9] Let G be a primitive graph, R = {ay,as,...,a,} C L(G)
and ng(aI)O'Z) sy ar) = 1. Then 7("1:’ y) < dR(IE, y) + ¢(ala azy. .., ar) fO'I‘
any z,y € V(G).

Now we can give the exponent of Uz(Gp).

Theorem 4.5 Let Go be a primitive simple graph of order n (n > 4) giving
in Figure 2. Then v(Ua(Gp)) = 2n — 5.

Proof Clearly, d(Go) = n — 2, and ¥(Gy) = 2n — 4 from Lemma 4.1.
Let R = {2,3}. Then R C L(U2(Go)), each vertex of Up(Gp) is in a 2-
cycle of Uz(Gy) from Lemma 2.6. Further, for a vertex (u,v) of Us(Gy), if
{u,v}N{n—2,n—1,n} # ¢, then (u,v) is in a 3-cycle of U2(Gp).

Let (u,v) and (z,y) be any two vertices of the double vertex graph
Uz(Go). We now prove that v((u,v),(z,y)) < 2n — 5. Take w = n — 2.
Consider the following three cases.

Case 1. [{u,v} N {z,y}| = 2. We assume that u = z and v = y.
Without loss of generality, we assume v # 1.

If {u,v}N{n—2,n—1,n} # ¢, then it is clear that (u,v) is in a 3-cycle
of Us(Gy), so dr((u,v), (u,v)) = 0, and y((u, ), (¢,v)) < #(2,3) = 2 from
Lemma 4.4.
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If {u,v} N {n —2,n — 1,n} = ¢, then, by Lemma 2.2, there is a dy.-
walk in Uz(Go) from (u,v) to (u,w), so dr((u,v), (u,v)) < 2(n — 4) and
(%, 0), (u,v)) < 2(n - 4) + $(2,3) = 2n — 6.

Case 2. |{u,v} N {z,y}| = 1. Without loss of generality, we assume
u=zand v #y.

If {u,v,y} N {n—2,n—1,n} # @, then dr((y,v),(v,y)) <n-2. If
dr((»,v), (u, y)) # n—2, it is clear that 7((“)”)» (u,9)) S n—3+6(2, 3) =
n—1< 2n-5. Otherwise, v = 1, and y = n—1 or n, so there are two walks
in Us(Gyp) from (u,v) to (u,y) with lengths n — 2 and n — 1, respectively,
from Lemma 2.2. By Lemma 4.3 y((u,v), (u,y)) <n—2< 2n - 5.

If {u,v,y} N {n —2,n — 1,n} = @, then, by Lemma 2.2, therc is a
dyw-walk in Uz(Go) from (u,v) to (u,w), and a dy,,-walk in Uz(Gop) from
(u,y) to (u,w). Then there is a (dyw + dyw)-walk in Uz(Gy) from (u,v) to
(u7 y)- So dR((uav)’ (ua y)) < de + dyw S 2n - 7’ and ’)’((‘U.,’U), (u9 y)) <
n—T+¢(2,3) =2n-5.

Case 3. [{u,v}N {z,y}| = 0. Without loss of generality, we assume
dix < dyy and dy; < dly-

If {u,v,z,y} N {n—2,n — 1,0} # @&, then, by Lemma 2.4, there is a
(duz + duy)-walk in Uz(Go) from (u,v) to (z,y), and duz + dpy < 2n — 5.
If 2n — 6 < dys + dyy < 2n — 5, then there are two walks in Uz(Gp) from
(u,v) to (z,y) with lengths dyz + dvy and duz +dyy + 1, respectively, and so
¥((w,v), (z,y)) < 2n — 6 from Lemma 4.3. Otherwise, dp((u,v), (z,3)) <
dux + duy < 20— 7, and Y((u,v), (z,¥)) < 20— T+ $(2,3) =2n - 5.

If {u,v,2,y} N {n—2,n— 1,n} = ¢, let P be the shortest walk in Gy
from v to w to y. The length of P is dyw + dwy. It is not difficult to verify
that dyy + dwy + duz < 2n — 8. By Lemma 2.4, there is a walk in U2(Gg)
from (u,v) to (z,y) with length dyy + dwy + duz. Then dr((u,v),(z,v)) <
dyw + dyy + duz < 2n—8, and ¥((,v), (z,9)) < 2n -8+ ¢(2,3) = 2n 6.

On the other hand, the distance in Uz(Gop) from (1,2) to (n — 1,n) is
2n — 5. Then v((1,2),(n — 1,n)) = 2n -~ 5.

This completes the proof of the theorem. O

Theorem 4.6 Let G be a primitive simple graph of ordern (n > 4). Then
Y(U2(G)) € 2n - 5, and y(U2(G)) = 2n — 5 if and only if G = Go.

Proof Let G; denote a primitive simple graph of order n (n > 4) except
Go. From Theorem 4.5, we only need to prove 7(U2(G1)) £ 2n — 6.

If n = 4, then G has a spanning subgraph G- in Figure 3. It is not
difficult to verify that 4(U2(G2)) = 2, and so y(U2(G1)) £ 2 =2n -6 for
n=4.
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Fig. 3

In the remainder of this proof, we let n > 5. From Lemma 4.1, we have
¥(G1) < 2n — 6, that is, for any two vertices u and v of G, and integer
{ > 2n — 6, there is a l-walk in G from u to v. Note that there is at least
one odd cycle in G;. Let C be the shortest odd cycle in Gy with length 7,
and R = {2,7}. Clearly, d(G1) < n -7+ rgl. By Lemma 2.6, we have
that R C L(U2(G1)), and cach vertex of Up(G1) is in a 2-cycle of Us(G,).
Further, for a vertex (u,v) of U2(Gy), if {u,v} N V(C) # ¢, then (u,v) is
in a r-cycle of Ux(Gy).

Let (u,v) and (z,y) be any two vertices of the double vertex graph
U2(G,). We now prove that y((u,v), (z,y)) < 2n — 6. Consider the follow-
ing three cases.

Case 1. [{u,v} N {z,y}| =2

Since there is a l[-walk in G; from v to v for integer | > 2n — 6, it is
clear that vy((u,v), (u,v)) < 2n — 6 from Lemma 2.3.

Case 2. |{u,v} N {z,y}| =1.

Without loss of generality, we assume u = = and v # y. Since there is a
l-walk in G; from v to y for integer ! > 2n—6, we have that v((u, v), (u,y)) <
2n — 6 from Lemma 2.2.

Case 3. |[{u,v} N {z,y}|=0.

Subcase 1. [{u,v,z,y} N V(C)| =0.

Let P and @ be the shortest paths in G; from u to z, and v to y,
respectively. Then the lengths of P and Q are d,; and d,,, respectively.

(1). Either P or @ contains the vertex of C. Clearly, dyz <n—r+ ';1,
and dyy < n -1+ 5F.

If max{duz,dvy} =n—71+ ";1, without loss of generality, let d,, =
max{dyz, dvy}. In this case, dyy <n—r—24 %1, and there are two paths
in G from u to z with lengths d,,; and d,, + 1, respectively. Thus there
are two walks in Uy(Gy) from (u,v) to (z,y) with lengths dy; + doy and
dyz +dyy+1, respectively, and so y((u,v), (x,y)) < duz+dyy < 2n—1r-3 <
2n — 6 from Lemma 4.3.
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If max{duz,dvy} =n—7+ "2‘ — 1, without loss of generality, let dy,; =
max{dyz,dvy}. If|V(P)nV(C)| = "1+1 then |V(G))\(V(P)UV(C))| =
l,and dyy <n—r -1+ 5= " Note that there are two paths in G; from
u to z with lengths dy, and dw, + 1, respectively. Thus 'y((u v),(z,y)) £
dux +dy <2n—r—-3<2n-6.If IV(P) NV(C)| = 552, then V(G;) =

V(P)uV(C), and d,,, < n—r—3+55=. Note that there are two paths in G,
from u to = with lengths d,,; and duz+3 respectively. So v((u,v), (z,y)) <
duz +duy +2 < n-r+'"2;1-1+n-r—3+%+2= 2n—r—3<2n-6
from Lemma 4.3.

If max{dyz,dvy} < n—7r+ 5 -2, then v((u, ), (z,9)) £ duz +dvy +
$(2,7) < 2(n —r+f'——2)+r—1—2n 6 from Lemma 4.4.

(2). Neither P nor Q contains the vertex of C. Let I = min{d,,. | w €
V(C) and z € V(P)LV(Q)}. It is not difficult to verify that dus +dyy <
2n—(r+1-1)—-1) =2 = 2n—2r — 2l — 2. Thus 7((u,v),(z,y)) <
duz + duy + 20+ ¢(2,7) < 2n— 7 —3 < 2n — 6 from Lemma 4.4.

Subcase 2. |{u,v,z,y} NV (C)| = 1.

Without loss of generality, let y € V(C). Let w; € V(C) such that
dyw, = min{dy, | w € V(C)}, and P be the shortest path from u to z.
Clearly dyz <n—7+ 5=, and dyy, <N —T.

(1). dyz -—n—r+” 1

In this case, dyy, < n—7—2, and dyy < n~r—2+I31. Note that there
" are two walks in G; from u to x with lengths d,,; and dux +1, respectlvely
Thus 7((2,9),(2,9)) € duz +doy SR—T+F +n-r-2+55 =
2n —r — 3 < 2n — 6 from Lemma 4.3.

(2). dywy =n—7.

In this case, dyz < n—7—2. Note that there are two walks in G from v
to y with lengths dyw, +duw,y and dyw, +7—duw,y, respectively, and dy,, and
7—dy,y have different parity. So y((u,v), (z,¥)) < duz+dvw, +7—du,;y—1 <
duz 4+ dyw, +7—1<2(n—7r—1)+7r—1=2n—7—-3 < 2n— 6 from Lemma
4.3.

3). dyw, =n—7-1.

In this case, dyz <n—-r—-1+55= "1 . Ifdyz = n—r—1+ 55—, then there
are two walks in G, from u to z wnt;h lengths dyz and dyz + 1 respectlvely
So v({w,v), (2, 9)) < duyz +dow, +duy Sn—r—1+5 "‘1 +n r— 1-{-"'1 <
Mm—r—3<2n—6 from Lemma 4.3. If dyz <n—r— 2+ L then there are
two walks in G from v to y with lengths dyw, +duw,y and de, +7—du,y,
respectively. So y{(u,v), (:1: ¥)) € dyz +dow, +7 — duyy —1 < duz + dyw, +
r—1<n-r-2+ +n-r—-14r-1=2n- 2 < 2n — 6 from
Lemma 4.3.

(4). dyg <n—r+ 552 —1,and dyw, <R —1 - 2.

In this case, 'y((u v), (x ¥)) € duz + dow, +7 —duwyy — 1 < duz + dow, +
r~1<n-r+5 —l4n—r—-2+4+r-1= 2n — 42 < 2n — 6 from
Lemma 4.3.
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Subcase 3. [{u,v,z,y} NV (C)| =2.

(1). {z,y} = {u,v,z,y} N V(C).
Without loss of generality, let duz > dyy. It is clear that dye <n—7 +

r_.

Let dur =n —1+ 5. Thendyy, < n—r -1+ 5, and there are
two walks in G; from u to = with lengths d,; and d,; + 1, respectively.
Ifdy =n—r—1+ 5=, then 7 > 5, and v((u,v), (z,¥)) < duz + doy <

n—r+ 5= r‘l +n—r—1+'2;l =2n—7r—2<2n -7 from Lemma 4.3. If
d,,y < n—r—2+ 51, then v((u,v),(2,y)) < duz +doy <R —7+ =t
-2+ 5= " =2n—-r-3<2n—-6 fromLemma43

Let dyz = n —-r—1+ 5L If [V(P)NV(C)| = Z32 + 1, then there are
two paths in Gy from u to z with lengths d,, and dum + 1, respectwely
So Y((%,v),(2,y)) < duz +dyy Sn—T—-1+2 +n—r—1+725t
2n—r -3 < 2n — 6 from Lemma 4.3. If [V(P)NV(C)| = 554, and r =
then dy, < n—r—1+75! = n—3, and there are two paths in G'1 from v to y
with lengths dy; + dyy and dyg + dxy +1, respectlvely So v({u, v), (z,¥))
duz +dyy <n—r -1+ 5 +n—r 1+ =20 ~r-3=2n-6 from
Lemma 4.3. If [V(P)NV(C)| = — ,and r > 5, noting that there are two
paths in G; from u to z with lengths dux and d,; + 3, respectively, then
Y((u,v), (2,y)) Sdus +dpy +2<n—r -1+ TT‘I+n—'r—1+%1+2 =
2n—-r—-1<2n-6 from Lemma.43

Let dyz < n—r—-2+45= 1l then dyy < n—r—2+’"'l, and y((%,v), (z,y)) <
dus + dyy + $(2,7) <n—r—2+r Lip—p— 2+"2' +r-1=2n-6
from Lemma 4.4.

2). {u,v} = {u,v,z,y} NV (C)
Analogously to (1), we can prove y({(u,v), (z,y)) < 2n — 6.
3). {u,v}nV(C)| =1, and [{z,y} N V(C)| = L.

Without loss of generality, let {v,y} = {u,v,z,y} N V(C). Then dy; <
n—7r+ 251, and there are two walks in Uz(G1) from (u,v) to (z,y) with
lengths dyz + dyy and du; + 7 — dyy, respectively. So y((u,v),(z,y)) <
Ay +1—dyy—1 gn—r+-’"—;—l+r—2 < 2n — 6 from Lemma 4.3.

Subcase 4. [{u,v,z,y} N V(C)| =3.

Without loss of generality, let v & {u,v,z,y} N V(C). Clearly, dyr <
n—7+ 51, and there arc two walks in Uz(G,) from (u,v) to (z,y) with
lengths dyz + dyy and dus + 7 — dyy, respectively. So v((u,v), (z,y)) <
duz +7—dyy~1<n— r+’" +r—2=n+ 25 from Lemma 4.3. If
n =5, then r = 3, 'n+'"'5 —4—2n 6. If n > 6, then r < n -1, and

n+ ’;5 < 2n-6.

Subcase 5. |{u,v,z,y} N V(C)| = 4.

Clearly, dus + dyy < 232 + 52 = r — 1. Without loss of generality,
we assume that d,, < d,,. Since there are two walks in G; from v to y
with lengths d,, and r —d,,, respectively, we have that there are two walks
in U3(G1) from (u,v) to (z,y) with lengths dysz + dyy and dyy + 7 — duy,
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respectively. Then, from Lemma 4.3, v((u,v), (z,¥y)) L duz +7 —dyy —1 <
r—1<2n-6.
This completes the proof of the theorem. O
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