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Abstract

An n x n sign pattern A is a spectrally arbitrary pattern if for
any given real monic polynomial f(z) of degree n, there is a real
matrix B € Q(A) having characteristic polynomial f(z). In this pa-
per, we give two new class of n x n spectrally arbitrary sign patterns
which are generalizations of the pattern Wy (k) defined in [T. Britz,
J.J. McDonald, D.D. Olesky, P. van den Driessche, Minimal spec-
trally arbitrary sign patterns, SIAM Journal on Matrix Analysis and
Applications, 26(2004), 257-271].
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1 Introduction

A sign pattern matriz (sign pattern, for short) A is a matrix whose
entries are in the set {+,—,0}. Denote the set of all n x n sign patterns
by Q,. Associated with each sign pattern A = (a;;) € Q,, is a class of real
matrices, called the sign pattern class of A, defined by

Q(A) = {B = (bij) | B e R**®, and signbij = aj for all 7 and ]}

A sign pattern S = (s;;) is a superpattern of a sign pattern A = (a;;) if
8;; = a;; whenever a;; # 0. Each sign pattern is a supcrpattern of itself.
j 3] J
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The inertia of an n x n real matrix B is the ordered triple i(B) =
(i4+(B),i-(B),ie(B)), in which i (B), i_(B) and ip(B) are the numbers
of its eigenvalues (counting multiplicities) with positive, negative and zero
real parts, respectively. The inertia of an n x n sign pattern A is the set
of ordered triples i{(A) = {i(B) | B € Q(A)}.

Let A € Q. and n > 2. Sign pattern A is an inertially arbitrary
pattern (IAP) if (r,s,t) € i(A) for every nonnegative triple (r,s,t) with
r+ s+t = n. If, for any given real monic polynomial f(z) of degree n,
there is a real matrix B € Q(A) having characteristic polynomial f(z),
then A is a spectrally arbitrary sign pattern (SAP). If there is a real matrix
B € Q(A) having characteristic polynomial f(z) = z™ (we say that B is a
nilpotent matrix), then A is potentially nilpotent. In particular each SAP
must necessarily be both inertially arbitrary and potentially nilpotent.

The study of spectrally arbitrary and inertially arbitrary sign patterns
was initiated in [1]. One of the most useful tools in finding spectrally
arbitrary sign patterns is the Nilpotent-Jacobian method which is stated
as Observations 10 and 15 in [1] and is proved using the Implicit Function
Theorem.

Lemma 1.1 ([1]) Let A be a sign pattern of order n, and suppose there
exists some nilpotent matric B € Q(A) with at least n nonzero entries,
say by j,, bigja,s ...y binj,.. Let X be the matriz obtained by replacing these
entries in B by variables x1,x2,...,2, and let
det(z] - X)=2z"+ a1z a4+ Qp_1T + Q.

If the Jacobian J = %&—i::—%’l} is nonzero at (T1,Tn,...,Zn) = (b,
bigjar .-+ Dinj, ), then A is a SAP, and every superpattern of A is spectrally
arbitrary.

As far as we are aware, the papers (2] and [3] give the first inertially
arbitrary and spectrally arbitrary sign patterns for all orders n > 2, re-
spectively. Recent papers [3-8] introduce some sign patterns which are
spectrally arbitrary. In this paper, we give two classes of n x n spectrally
arbitrary sign patterns which are generalizations of the pattern W, (k) de-
fined in [4].

2 Sign pattern AW

n,k,s
In this section, we consider the n x n sign pattern .Asll,}c,s (where 1 <

k< n—-2and k+ 2 < s < n) with positive signs throughout the first
column and in the entries

{Gii+Dli=1,....k}
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negative signs in the entries
{(.7:.7"'1) |_7=k+1,,n—1},{(],s) l.7= 1,...

and zeros elsewhere, that is,

+

+

+

1) .
‘An,k,s

| +

Note that A

n,k,n
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0

0
0
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0

ak}1 and (n>n);

is the sign pattern W, (k) defined in [4]. It was proved

that for each pair n > 3 and 1 < k < n — 2, Wy(k) is a SAP, and any
superpattern of W, (k) is spectrally arbitrary. Here we shall prove that for

15k§n—3andk+2§s§n—l,A(1) is a SAP.

Let B € Q(AY),

[ a1 1

as 0

ar 0

ak+1 0

B . .
ag—1

| an 0

n,k,s

) have the following form

0 -2
)

0 -2

-1 0 0
-1
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where a@; > 0 for £ = 1,2,...,n. Denote the characteristic polynomial of B
by pp(z). By cofactor expansion along the first column of |z — B,

pa(x) = (z - a1)a" (e + 1) — @z Yz + 1) - - — apa"* (2 + 1)

—app1 2" F 2z 1) Fapg2z F 3@ 1) =+ (—1)5 5 a2 (24 1)

H(-1)%az" @+ 1)+ + (=) anaa (@ + 1) + (<1)"anl f(2)
k 5-2

= xn"'(l—al)mn_l—Z(ai+ai+1)zn_i_l+ Z (-1 *(a;—aip1)z" "}
i=1 i=k+1

+(_1)s-—k-las_lxn—s + [(_l)sasxn—s + i(_l)i(ai _ ai+1)1n—i_l]f(x),

i=s

where f(z) is the following determinant of order s — 1 with & (—1)’s in
diagonal and k 2’s in the last column:

-1 2
xr
.o=1 2
flz) = RN | 0
o
z 1

By cofactor expansion along the last column,
f@) = (=1)* + (-1)°(2=" % + 2057 4 .- 4 22°73 4 22°72),

So pp(z)

=z"+(1—a))z Z(a' +a,.,.]):v""‘1 + Z )t—k ;- ai+1)xn—i~1
i=k+1

n—1
+(—1)8—k_las_1$"_s+(—1)s+k 2" s+Z( l)'+’°(a,—a.+1)a:" —i-1
i=s
s—2

+2[a P s+Z( 1)s+1(at_a'+l)xn 1—1] Z z

i=s i=s—k—~1
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n—1

=z"+(1- a;):z:"'1 Z(a,+a,+1—2as)m""‘l+2( 1)} (a,—a,+1)m”"“"

i=1 i=k+1
s—2
23— 3 T,
i=s j=s—k—1
When ¢; = a2 = ... = a, = 1, B is nilpotent. Denote pp(x) = z" +

a1z ' +agz™ 2+ - + ap_17 + . Then
(1) whenn —s+2<k+1,

4

=1- a,
ag = —a; — a2 + 2a;,
s+i_3 . .
a; = —Qi—1 —a; + 42(—1)-"’(1,- + (-1)*2a54i-2,i =3,...,m —5+2,
o
) o; = —a;—1 —a; +4 Z("‘l)’_aa_j + (—1)n—s2a~m
j=s
i=n-s+3,. k+1(1fn—s+27ék+l),
-1
a;(—1)*"Yaioy —a;) +2 Z 7=%q; + 2 Z (-1)7"%a;,
j=s+i—k-2 j=s+i—-k-1
i=k+2,...,n—s+k+1,
L a;(-1)*Ya;-y —ai)yi=n—s+k+2,...,n

(2) whenn—s+22>2k+2,

( a1=1—a1,

ag = —a) — as + 2as,
$4-i—3

a; = —Qi-1 —0; +4 Z (—l)j'saj + (—1)i2as+,-_2,

j=s
i=38,... k+1(ifk>2),

s+i—-3 ) 84i~2 )
{ ai=(-1"*ai —a)+2 Y. (-1 e 42 Y (-1)%;,
j=s4+i—k—2 j=s+i—k~-1

i=k+2,...,n—84+2,
n-1 n
a; = (=1)*Ya;_; —a;) +2 Z (-1)7"%a; +2 Z (=1)7~*a;,

j=s+i—k—2 j=sti—k—1
=n—-s+3,...,n—-s+k+1(if k> 2),
a; = (-1)"*Yai-1 —ai)i=n—s+k+2,...,n

We now show that
_ Aoy, 02,...,05)

~ O(ay,az,.--,an)

£ 0.
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Consider the following four cases.
Casel. s=k+2andn—-s+2<k+1.

| 0
-1 -1 2
-1 -1 4 -2
o 4 -4 2
D44
.o E (_l)n—-k—12
. ‘., (_l)n-k«-l4 (_l)n—kz
J= Lo D ()R
-1 14 :
-13 -4: "
1 -34
-13 " :
1 '._ (_l)n—k—l4
'.. (_l)n—k—13 (_1)n—k2
(_l)n—k—l (_l)n—k
Case2. s=k+2andn—-s+2>k+2.
-1 0
-1 -1 2
-1 -1 4 -2
D4 2
-1 -1 4 : 4
-1 3 -4
J = 1 -3 4 '._ (_l)n—k—12
-1 3 (_l)n—-k—l4 (_l)n—k2
1 . .
(_l)n—k—l4
(__l)n—k~13 (_l)n-k2
(_l)n—k-l (_l)n—k
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Case3. s>k+3andn—-s+2<k+1.

-1 0
-1 -1 2
-1 -1 4 -2
. T 4
2 -4
-2 4
J= -1
-11
1
-1 -

Cased4d. s>k+3andn—-s+2>k+2.

-1 0
-1 -1 2
-1 1 4 -2
K P-4 2
-1 4
-11 2 —4
1 -2 4
“11 2
J= 1
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(_1)n+9—12
Lo (Emtelg ()nte2

., (_1)n+s-14

.l (_1)n+a—12
)i (e

(D2

el (_1)n+.9—l4 (_1)n+s2

(__1)n+s-l 2 (_1)n+32

(_1)n+k-1
(_1)n+k—1 (_1)n+k

12

(_1)n+9—1 2 (_1)n+s2

(__l)n-He—l
(_1)n+k—l (_1)n+k




For each one of the above four cases, adding the negative ith row to the
(i+1)throwof J, fori = 1,2,...,n - 2,n — 1, respectively, the obtained
determinant is upper triangular in which all diagonal entries are 1 and —1.
Thus J # 0.

By Lemma 1.1, we have the following theorem.

Theorem 2.1 For1<k<n-3andk+2<s<n-1, As'}c,s is a SAP,
(1)

n,k,s

3 Sign pattern A®

n,k,s

and every superpattern of A is spectrally arbitrary.

In this section, we consider the n x n sign pattern 'Af}c,s (where 1 <

k<n-2and k+2 < s <n—k+ 1) with positive signs throughout the
first column and in the entries

{Gi+1)]i=1,...,k}
negative signs in the entries
{Gs+i-1)|i=1,...,k},{(4,i+1)|j=k+1,...,n—1}, and (n,n);

and zeros elsewhere, that is,

4+ 4+ 0 .- .. 0 - o --- 0 <« <. 0

+ 0 + o= :

+ 0 0 + 0 0 - 0 0

+ 0 0 0 0 0 0
@ _
n,k,s ~

0

D 0 -

|+ 0 0 -]
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We shall prove that for 1< k<n-2and k+2<s<n—k+1, Af}c's is
a SAP.
Let B € Q(.A(z) ) have the following form

n,k,s
[ a; 1 0 -« +ec 0 =2 0 e+ 0 «ev woe 0]
a2 0 1 ' =2 :
a.k(.) '0. 10 0'—é0---(.)
aks1 O 0O -1 0 -+ «« 0 O .- 0
. . -1 .
B =
0
: : 0 -1
G 0 e e e e 0 -1 |
wherea; >0 fori=1,2,...,n.
Lets—-1<m<s+k—-2and
-1 2
z
2
Dy (z) = -1 :
1
z 11,

where there are k (—1)’s in the diagonal, the entry 2 in the first row is in the
(s —1)th column, and the entry 2 in the last column is in the (m — s+ 2)th
row. By cofactor expansion along the last column, we have that

Dy-1(z) = (-1)* +(-1)*22"72,

and
Dm(z) = Dm_1(z) + (-1)™"122°72 for m >s—1.
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Setting Ds_a(z) = (—1)¥, then

_f (=1)k 4 (-1)m—12z5-2, if m — s is odd,
Dp(z) = { (—1)*, if m — s is even.

So, by cofactor expansion along the first column of |zI — B|,

k
pp(@) =zl - Bl = (@ —a1)e" (z +1) - (x +1))_ a1

i=2
s—1 s+k—2
+(z+1) Z (=1)*az" 1 4 (2 + 1) Z (-1)a;z™ 1D (z)
i=k+1 i=s
n—1
He+) Y (-1 + (=1 e Depicale)
i=s+k-1
Case 1. k is cven.
k n—1
pp(z)=z"+ :1:"—1—(1: + 1) zaixn—é—l +(z + I)Z(_l)i—kaixn—i—l
i=1 i=k+1
51
+H(=1)" e + 2z +1) ) apppz™ 3
j=0

Denote pp(z) = 2" + 12" ' + a2z™ 2 + -+ + ap_12 + a@n. Then

o =1-—a,

a; = —a;—1 —ai +2a54;-2, fori=24,...,k,

o; = —ai—1 — @i +2044;-3, fori=3,5...,k+1,
a; = (=1)"*Ya;_y —a;), fori=k+2,...,n.

When a; =a; =... = a, =1, B is nilpotent. And
-1 0
-1 -1 2
-1 -1 2
-1 -1 2
-1 -1 2
J = oo, 2
-1 -1 2
-1 1
1 -1
-1
(_l)n—l
(==t (-y»
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Adding the negative ith row to the (¢ + 1)th row, for i = 1,2,...,n -1,
respectively, the obtained determinant is a upper triangular determinant
in which all diagonal entries are 1 and —1. Thus J # 0.

Case 2. k is odd.

k n—1
PB(l') =" + P S (.’L’ + 1)Zaixn—i—l+ (:l' + I)Z(_l)i—kaixn—i—l
i=1 i=k41
kol gy
H(=1)"Ean + 2z +1) Y Gopga™ ¥
j=0

n-1
+2(z+ 1) Z (_1)s+iaixn+s—i—3+ (_1)n+s2anl,s—2
i=s+k—-1

Denote pg(z) = " + ayz™ ! + a2z™ 2+ 4+ an_1Z + apn. Then

@] = 1-— ai,

Q; = —@j1 — @; + 2654i-2, fori=2,4,...,k+1,

a; = —@i—y — a; + 2054-3, fori=3,5,...,k,

o = (=1)7%a;_y — a;) + (—1)"12(as4i-3 — @sri=2),
fori=k+2,...,n—s+2,

a; = (=1)*Ya;uy —a;), fori=n—-s+3,...,n

When a; =a3 = ... =a, =1, B is nilpotent. And J =
-1 0
-1 -1 2
-1 -1 2
-1 -1 2
) 2
| )
-11 2 -2
1 -1 -2 2
-11 2
14 '.' (_l)n-s+12

(_l)n—s+l 2 (_1)1;—52

(_1 ) n—1
VA Y i
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Adding the negative ith row to the (i + 1)th row, for ¢ = 1,2,...,n —
1, respectively, the obtained determinant is upper triangular in which all
diagonal entries are nonzero. Thus J # 0.

By Lemma 1.1, we have the following theorem.

Theorem 3.1 For 1<k<n-2andk+2<s<n-k+1, Ag}c,s isa
SAP, and any superpattern of AP

nk,s S Spectrally arbitrary.
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