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Abstract

A well-known result on matchings of graphs is that the intersection
of all maximal barriers is equal to “set A” in the Gallai-Edmonds de-
composition. In this paper, we give a generalization of this result to the
framework of path-matchings introduced by Cunningham and Geelen.
Further we present a sufficient condition for a graph to have a perfect
path-matching.
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1 Introduction

As a generalization of matchings, Cunningham and Geelen in (2] introduced
the notion of path-matchings and in (2, 3] proved the polynomial-time solv-
ability of the optimal path-matching problem via the ellipsoid method [7] by
a totally dual integral polyhedral description. Then in (3] they presented an
algorithm based on deterministic evaluation of the Tutte-matrix.

Let G = (V, E) be a graph with vertex-set V, edge-set E and T}, T» disjoint
subsets of V, which are called terminal sets. Let R := V' \ (T UT2). A path-
matching M in G is a set of edges such that every component of M is a path
from 73 UR to ToUR with internal vertices in R. Such a path is called a T;-half-
path (i = 1,2) if one end of it is in Tj, the other in R, a (T}, T2)-path if one end
of it is in T}, the other in T3, and matching-edge if it is an edge with two ends
in R. The value of a path-matching M, denoted by val(M), is the number of
edges in M plus the number of matching-edges of M. (That is, each matching-
edge counts twice.) The path-matching number of G, val(G) = max{val(M)|M
is a path-matching of G}. A path-matching M of G is said to be mazimum if
val(M) = val(G). The optimal path-matching problem is to find a maximum
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path-matching or to compute the path-matching number. It is easy to see
that the restriction on path-matchings having no path in R of length more
than 1 does not change val(G). Under this restriction the path-matchings in
G = (V,0,0, E) correspond to the matchings in G.

Tutte {10] and Berge {1] gave a min-max theorem for the maximum cardi-
nality of a matching in a graph.

Theorem 1.1 (Tutte-Berge formula). Let G = (V,E) be a graph. Then
2max{|M| | M matching in G} = |V| + min{|X| — odde(X) | X C V},
where oddg(X) denotes the number of odd components in G — X.

A set X C V is called a barrier if the minimum is attained at X in the
Tutte-Berge formula. Frank and Szegd [5] gave the path-matching number
of a graph in the following theorem as a direct extension of the Berge-Tutte
formula.

Theorem 1.2 ([5]). Let G = (V,T1,T»; E) be a graph. Then
val(G) = |R| + min{|X| — oddc(X) | X is a cut inG}, (1)

where a cut X is a subset of V such that there is no path between Ty \ X and
T2\ X in G— X and odde(X) denotes the number of odd components disjoint
fromTHUT, inG - X.

A cut X in G is called tight by Spille and Szegé [9] if oddg(X) — | X| =
|R|—val(G). Note that, if T} = T> = 0, then a tight cut is just a usual barrier.

The so called Gallai-Edmonds structure theorem [6, 4] describes the struc-
ture of maximum matchings based on a partition {A,C, D} of V: D is the set
of all vertices in G which are not covered by at least one maximum matching
of G, A the set of vertices in V'\ D adjacent to at least one vertex in D, and
C:=V\(AuD).

In [8], a nice characterization of A was given in terms of maximal barriers.

Theorem 1.3 ([8]). A is the intersection of all mazimal barriers in graph G.

Spille and Szegé [9] gave a similar partition {A;,C1, D1} of V and presented
the Gallai-Edmonds-type structure concerning maximum path-matchings of a
graph G = (V,E). However, Spille and Szegé’s decomposition theorem is
considerably more complicated than Gallai-Edmonds structure theorem. It is
natural to ask whether Theorem 1.3 can be extended to the situation of path-
matchings or not. In this article we give a positive answer by expressing 4, in
terms of maximal tight cuts (see Theorem 3.1).

Let G = (V, E) be a graph and T; and T two terminal sets, where |T}| =
|T2| = k. A path-matching M is called perfect in G, if M consists of k disjoint
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(T, T2)-paths and a perfect matching of the vertices of R not in the paths. It
is easy to see that for a graph G, it has a perfect path-matching if and only if
val(G) = |R|+k%. In [5], Frank and Szegd presented a characterization theorem
of graphs with perfect path-matchings which generalizes Tutte’s theorem {10].
In the last section of this paper, we present a sufficient condition for a graph to
have a perfect path-matching as a simple application of Gallai-Edmonds-type
structure theorem for path-matchings.

2 Preliminaries and extreme set

As preliminaries, in this section we extend the concept of “extreme set” on
matchings to path-matchings by Theorem 2.1 and present some useful proper-
ties. We can see that the extended notion of extreme sets will be much more
difficult to handle than the previous.

We first define the deficiency of G with respect to path-matchings as def’(G) :=
|R| — val(G). We can see that its degenerated case of T} = T = @ is
the usual deficiency in matching theory. Then, by Theorem 1.2 def'(G) =
max (odde(X) — | X|). Since the path-matching number is equal to the num-
ber of vertices in R covered by a maximum path-matching M having no path
in R of length more than 1 plus the number of (T},7T2)-paths in M, def’(G)
equals the number of vertices in R uncovered by M minus the number of
(T1,T3)-paths in M.

For any x € V, we write the set of vertices adjacent to = in G by Ng(z).
For § C V, Ng(S) := U Ng(z) \ S, v(S) denotes the set of edges with

exactly one end-vertex in S and G[S] the subgraph of G induced by S. Other
terminology used and undefined in this article is standard and can be found in
textbooks.

Theorem 2.1. Let G = (V, E) be a graph and Ty and T, two terminal sets.
For any set X of vertices in G,

def’ (G — X) < def'(G) + | X|. )

Proof. Let M be a maximum path-matching in G. M is partitioned into two
parts: MNE(G — X) and M N(E(G[X])Uv(X)). It is evident that each part
is a path-matching in G and each matching-edge of M is still matching-edge
of M N E(G - X) or M N(E(G[X])Uvw(X)). Hence

val(M) < val(M N E(G — X)) +val(M n (E(G[X]) U v(X))). 3)
Since MNE(G — X) is also a path-matching in G — X with terminal sets 71 \ X

and Tp\ X,
val(M N E(G - X)) < val(G — X). (4)
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On the other hand, there are at most two edges of M traversing a vertex in
X NR and one edge traversing a vertex in X\ R. (Note that one matching-edge
can be considered as two edges.) We have

val(M N(E(GIX))Uv(X))) < 20X NR|+|X\R]. (5)
Combining inequalities (3), (4) and (5), we obtain
val(M) < val(G-X)+ 2\ X NR|+ | X\ R|.

Thus we have

def'(G) = |R|—wval(M)
> |R|—wval(G-X)-2|XNR|-|X\R|
= |R\X|-vl(G-X)-|XNR|-|X\R|
= def'(G - X)—|X|,
and the proof is complete. (]

X C V is called an eztreme set in graph G if equality holds in (2), that is,
def'(G — X) = def’(G) + | X|. For convenience we use the same name here.
Using the proof of Theorem 2.1, we can obtain the following result.

Proposition 2.2. Let G = (V,E) be a graph and T} and T, two terminal
sets. Let X be an extreme set in G. Then the intersection of any mazimum
path-matching M in G and the edge-set of G— X is a mazimum path-matching
on G — X and any v € X is either covered by a matching-edge of M, or by a
(T1.Tz)-path, or by a T;-half-path of M but v is not the R-end-vertez, and X
induces no edge of M.

Note that the converse of Proposition 2.2 does not hold. For example, let
P5 be a path vivevgvgvs and Ty = {v1}, To = {vs}. We see that Ps has a
unique perfect path-matching, Ps itself. Thus the conclusion of Proposition
2.2 holds for X = {vp,vs}. However, X is not an extreme set in Ps since
def'(Ps — X) = 0 and def’(Ps) = —1.

Proposition 2.3. Let G = (V, E) be a graph and T\ and Ty two terminal sets.
Let X be an extreme set and M a mazimum path-matching in G. Then each
matching-edge tn the intersection of M and the edge-set of G — X is also a
matching-edge in M.

Proof. If there exists a matching-edge in MNE(G — X) which is not matching-
edge in M, then strict inequality in (3) holds. Thus X can not be an extreme
set in G, a contradiction. This completes the proof. ]

Proposition 2.4. Let G = (V, E) be a graph and T} and T two terminal sets.

228



A tight cut in G is an extreme set.
Proof. Let X be a tight cut in G. Then by definition we have oddg(X) =
def’(G) +|X| and def'(G — X) > oddg-x(0) = 0ddg(X). Thus def' (G- X) >

def'(G)+|X|. On the other hand, by Theorem 2.1 def'(G—X) < def’ (G)+|X|.
Hence the equality holds and X is extreme set. (]
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Figure 1. Cut X, Oddg(X), Bveng(X), Wi(X), Wa(X).

Spille and Szegd gave the Optimality Criteria of a maximum path-matching
and a generalization of the Gallai-Edmonds structure theorem in [9]. Recall
that a graph G is factor-critical if G —v has a perfect matching for every vertex
vin G. A matching of @ is called near-perfect if it does not cover precisely one
vertex. Let Oddg(X) (Fvenc (X)) denote the union of odd (even) components
of G — X which are disjoint from Ty UT,. For ¢ = 1,2, W;(X) is the union of
components in G — X joint T;. (See Figure 1 [5, 9].)

Theorem 2.5 (Optimality Criteria [9]). Let G = (V, E) be a graph and T
and Ty two terminal sets. Let M be a path-matching in G such that any path
in M of length more than one has at least one end in Ty UTs, and X a cut in
G. Then M is mazimum and X is tight if and only if (O1)-(OT)hold.

(O1) M induces a perfect matching on Eveng(X),

(02) fori = 1,2, M induces T;-half-paths and matching-edges on Wi(X)
covering all the vertices of Wi(X)\ Ti,

(03) for any component K in Oddg(X), either M induces a matching and
an even path on K covering all vertices of K or M induces a near-perfect
matching on K,

(04) for any vertezx v € X, v is either covered by a matching-edge of M, or
by a (Ty, Ta)-path of M, or by a T;-half-path of M but v is not the R-end-vertez
(i=1,2),

(05) X induces no edge of M,

(06) for any R-end-vertez v of a Ti-half-path of M, v € Oddg(X) U
Wi(X), (i = 1,2),
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(O7) for any v € R not covered by M, v € Oddg(X).

Theorem 2.8 (Structure Theorem for Path-Matchings [9]). Let G = (V, E) be
a graph and T and T, two terminal sets. Define the decomposition A;,C,, D,
of V by

Fy := {v € T} UR : 3 mazimum path-matching not covering v},

H, = {v € R : 3 mazimum path-matching such that v is R-end-vertez of
T -half-path},

D, := F, UH,,

Ay:={ueV\D, :uveE for someve D1} U(T1\ D),

Ci =V \ (D1 U Ay).

Then A; is a light cut,
Dy =W1(A1)UO0ddg(41),  Ci = Eveng(A;1)UW2(41),
and every component in Oddg(A;) is factor-critical.

Now we show that the restriction on maximum path-matchings having no
path in R of length more than one in Theorem 2.6 does not change the Gallai-
Edmonds-type decomposition. Since D; can determine the decomposition in
a given graph we only need to verify that this restriction does not change
D Let F:={veT U R : 3 maximum path-matching with this restriction
not covering v} and Hl = {v € R : 3 maximum path-matching w1th this
restriction such that v is R-end-vertex of T}-half-path}. Clearly F' UH, 1 € Dy
For any vertex v € D, there is a maximum path-matching M such that v is
missed or v is R-end-vertex of Ty-half-path in M. Then we can get another
maximum path-matching M’ having no path in R of length more than one
by replacing all paths in R with the respective maximum matchings on these
paths from M. Since either v is still missed M’ or v is R-end-vertex of T}-half-
path in M’, v € F; U H,. Thus D, = Fj U H;.

Proposition 2.7. Let G = (V, E) be a graph and T and Ty two terminal sets.
An extreme set in G conlains no verter in Dj.

Proof. Let X be an extreme set in G. For any z € X we have that z is
covered by any maximum path-matching and z is not the R-end-vertex of an
T:-half-path by Proposition 2.2. These imply that z € F; and = ¢ H,. Hence
xz & Dy. a

To establish the main result of this paper we need an important property
of maximal tight cuts which was obtained by Frank and Szegé in [5].

Theorem 2.8 ([5]). Let G = (V,E) be a graph and T\ and T two terminal
sets. Let X be a maximal tight cut in G. Then every component of G — X
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disjoint from Ty U T, is factor-critical.

For a tight cut X of G, let Dy(X) := Oddg(X) U Wy (X). The following
theorem shows that A; is the tight cut X such that the set D;(X) is minimal.

Theorem 2.9. Let G = (V,E) be a graph and Ty and T two terminal sets.
For every tight cut X in G, D, = Dy(4;) € D1(X).

Proof. Let = be any vertex in D, then by definition there is a maximum
path-matching M such that = is R-end-vertex of some T}-half-path in M or z
is missed by M. If the former happens, by Theorem 2.5 (06) z € Oddg(X)U
Wi(X) = D1(X). If z is missed and z € R, then z € Oddg(X) C D1(X) by
Theorem 2.5 (O7). Otherwise, we have z € T1 € X UW)(X). Since X is tight
cut, z ¢ X by Propositions 2.4 and 2.7. Hence z € Wi(X) C D1(X). Thus
the proof is complete. o

3 An expression for A; UW;(4;)

Now we describe the main result as follows.

Theorem 3.1. Let G = (V, E) be o graph and T\ and T, two terminal sets.
Then
AUWA)= ) (XUWX)\ Wa(41)
imal

maxi|
tight cut X

Proof. First we show that ,;UW(41) € () (XUW1(X))\W2(A,). Since

maximal
tight cut X
Ay UW,(4,) is disjoint from Wa(A,), it suffices to show that 4; U Wi(4;) C
X UW;(X) for every maximal tight cut X in G. Suppose, to the contrary, there
exists a vertex z € A; UW;(A,;) such that z ¢ X UW(X). By the maximality
of X, there is no even component in G— X, so we have z € W2(X)U0Oddg(X).
There are two cases to be distinguished.

Case 1: z € A;.

Since z € Wa(X) U Oddg(X), = € T1. Hence, by the definition of 4y, z is
adjacent to some y € D;. Then y ¢ X by Propositions 2.4 and 2.7.

If z € Wa(X), then y € Wo(X). But y € D; C Wi (X) U Odde(X) by
Theorem 2.9, a contradiction.

Now suppose z € Oddg(X). Let K be the component in Oddg(X) contain-
ing z. Then y lies in K and by Theorem 2.8 we know that K is factor-critical.
Since y € D;, there exists a maximum path-matching M in G such that y is
missed by M or y is R-end-vertex of some T;-half-path. If the former happens,
by Theorem 2.5 (O3) M induces a near-perfect matching on K. Furthermore,
by Proposition 2.3 every edge in the near-perfect matching is matching-edge in
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M. Then replacing the near-perfect matching with another near-perfect match-
ing missing x on K, we get a new maximum path-matching in G which misses
z. Hence x € D, which contradicts € A;. So suppose that y is R-end-vertex
of some T3-half-path in M.

Claim 1. There is only one edge in M traversing K.

Suppose there exist two edges wu' and vv’ in M such that u, v are vertices
in K and u',v’ are not (v’ # v'). By Theorem 2.5 (03) we know that M
induces an even path P (a single vertex is considered as a trivial even path.)
and a matching M. covering all vertices on K. By Propositions 2.4 and 2.3
every edge in My is a matching-edge in M, so u and v are not incident with
any edge in M. Then u, v are the end-vertices of P. Thus no vertex in KX is
R-end-vertex of some T}-half-path in M, a contradiction. The claim is proved.

Let 3 be the first vertex on the Ti-half-path after entering K. Since K is
factor-critical, there are perfect matchings M, and M, of K —y’ and K — z
respectively. Then M, UM, induces a component, an even path P, ; between
¥’ and z. Hence M* := M,UE(P, ;) consists of a matching of K and the even
path P, ., covering all vertices of K. Replacing the edges of M in K by M*,
we get a new maximum path-matching in G such that z ends a Tj-half-path.
So x € Dy, which contradicts = € A,.

Case 2: £ € Wi(4,).

If z € Wi(A1) N Wa(X), then by Theorems 2.6 and 2.9 we have z €
Wi(A1) € D € Wi(X) U Oddg(X). This contradicts x € Wa(X).

Otherwise, z € W (A;) N Oddg(X).

Let K be the component in Odde(X) containing z. Clearly, Ng(K) is a
subset of X.

By Case 1, we have 4; N Oddg(X) =0, and K C V \ A;. Furthermore
K € Wy(A,;) since z € K N W1(A;). The claim is proved.

Claim 2 together with K N'T; = @ imply that Ne(K) contains at least one
vertex in Wy(A4;), i.e. Ng(K) intersects W;(4,).

Claim 3. X nW;(A;)=0.

Since X is tight, we know that X is an extreme set in G by Proposition
2.4, and X contains no vertex in Dy = Wj(A;) U Oddg(A;) by Theorem 2.6
and Proposition 2.7. So Claim 3 follows.

Thus, Claim 3 together with the fact that Ne:(K) C X imply that Ng(K)n
Wi1(A1) = 0. That is a contradiction.

In the following we will show that [} (X U W;(X)) C A, UW;(4;)U

maximal
tight cut X
Wa(A,). It suffices to show that, for any vertex = € Oddg(A;) U Eveng(A4;),
z & [ (X; UWy(X;)) for some maximal tight cuts X;,--- , X, in G.
i=1

Case 1: x € Oddg(A,).

Let X be a maximal tight cut containing A,. By Propositions 2.4 and 2.7,
XNDy =49. Since Oddg(A;) C D, (Theorem 2.6), X NOddg(A;) = 0. Hence
z € Oddg(A;) C Oddg(X). Furthermore z ¢ X U W, (X).
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Case 2: x € Eveng(4,).
Let K be the component in Eveng(A;) containing x and let Y3,--- ,Y;, be
all maximal barriers of K. By Theorems 2.5 (O1) and 2.6 K contains a perfect

n
matching. By Theorem 1.3 we have (] Y; = 0. Note that A, UY;,i=1,---,n,

i=1
are tight cuts in G. (Since K has a perfect matching, we have |Y;| = oddk (Y3),
and def’(G) = oddg(4; UY;) — |4; UY;|.) Let Xj,---, X, be maximal tight
cuts of G containing Y; U A4;,- -+, Y, U A4 respectively.
Claim 4. X;nK =Y;,i=1,---,n.
Let X;N K :=Y!. Then Y; C Y/. Clearly X;\Y/ is a cut in G, and

0dde(Xi \ YY) = 1X: \ Y/| < def'(G). (6)

On the other hand, since K can be considered as a graph with empty terminal

sets, we have
oddr(Y/) - |¥{| < 0. (M

Adding (6) and (7), we obtain
def'(G) = odde(X:\Y{) +oddx (Y) — | X: \ Y{| - Y|
= oddg(X;) - |Xil.
Since X; is a tight cut in G, we infer that equality must hold throughout.
Thus Y/ is a barrier in G containing Y;. Hence Y/ =Y, since Y; is a maximal
barrier. n
Claim 4 implies that = & () X;. Since A; C Xi, Wi (X;) € Wi(41),i =
L
1,---,n. Hence z is not in ar;y one of W3(X,),W1(X2),--- ,Wi(X,) by z €
Eveng(A;). So z ¢ N (X;UWi(X;)). The proof is complete. o
=1

4

o~
N4

Figure 2. Graph G = (V, E) with two terminal sets Ty and T5.

If Ty = To = 0, then W) (X), W1(A4,) and W,(A,) are empty. By Theorem
3.1 we can get Theorem 1.3. Notice that (| (X U Wi(X)) may contain

maximal
tight cut X'

233



some vertices in W5(A,;). For example, consider graph G = (V,T},T3; E) in
Figure 2. It has two maximal tight cuts X; = {1,3} and X, = {6}, and
Wi(X,) =0, Wi(X2) = {1,2,3,4,5}. It is easy to see that the intersection of
Wa(41) = {2,3,4,5,6} and (X; UW;i(X1)) N (X2 UWi(X2)) is {3}.

4 A sufficient condition for graphs to have a
perfect path-matching

Wang and Hao in [11] obtained a sufficient condition for perfect matchings
on extreme set as follow.

Theorem 4.1. Let G be a simple graph containing an independent set of size
i (> 2). If all independent sets of size i in G are extreme sets, then G has a
perfect matching.

In this section, we present a generalization to path-matchings as a simple
application of Gallai-Edmonds-type structure theorem. The following equiva-
lent conditions for graphs with perfect path-matchings is needed.

Theorem 4.2. Let G = (V,E) be a graph and Ty and T two terminal sets
with |T1| = |T3| = k. Then the following are egquivalent:

(i) G has a perfect path-matching;

(ii) def'(G) = —k;

(iiiy D; = 0.

Proof. (i)=>(iii). Trivial.

(iii)=>(ii). Since Dy = 0, Oddg(A;) = @ and A, = T} by Theorem 2.6.
Thus def’ (G) = oddg(4;) — |41| = —k.

(ii)=>(i). This is immediate by definitions of perfect path-matching and
deficiency. (m]

Theorem 4.3. Let G = (V,E) be a graph and T} and T, terminal sets such
that |Ty| = |T2| = k and T} is an exztreme set and R contains en independent
set of size i. If every independent set X of size ¢ in R is an extreme sel, then
G has a perfect path-matching.

Proof. Suppose that G has no perfect path-matching. Then D; # 0 and
def' (G) > —k + 1 by Theorem 4.2. By definitions we have that T} C A; U D,.
Since T is an extreme set, T} N Dy = @ by Proposition 2.7. Hence T3 C A;
and D1 = OddG(Al).

Case 1: oddg(A;) 2 <.

Let Gy, - -, G; be components in Oddg(A;) and choose a vertex v; from
Gjforall j=1,---,i Then we get an independent set X = {v;,---,v;} and
X C R. So by assumption X is an extreme set. But XN.D; = § by Proposition
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2.7, which is a contradiction.

Case 2: 1 £ oddg(4;) <i-1.

Let X be an independent set in R of size i. By Proposition 2.7 X contains
no vertex in D; and so X C A; UC;. Now suppose |X N A;| = s, and then
| X NnCy)=1i—s. Since Ty} C A, we have

|A1] 2 s+ k. (8)

On the other hand, since A; is a tight cut in G (Theorem 2.6), —k + 1 <
def’(G) = oddg(A1) — |41] so

|A1] < oddg(A1) + k-1 9)

Combining inequalities (8) and (9), we obtain oddg(A4;) > s+1. Since oddg(4;) <
i—1,wegets<i-—2

If XN Ay =0, then X C C;. Replacing any vertex in X with one in Dy,
since there is no edge between C) and D; by Theorem 2.6, the resulting set is
an independent set in R of size i, which leads to a similar contradiction with
Case 1.

Hence 1 < s < i—2. Let G, --,G5 be components in Oddg(A;) and
choose one vertex v; from each component Gj, j = 1,---,s. Replacing the
vertices of X in A; with v;,- - ,vs, then we get a new independent set X’ of
size ¢ in R which contains at least one vertex in D;. But by assumption X' is
an extreme set, which is a contradiction by Proposition 2.7. Thus our proof is
complete. a
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