# The Hamiltonian number of graphs with prescribed connectivity

Sermsri Thaithae\*and Narong Punnim<sup>†</sup>
Department of Mathematics, Srinakharinwirot University,
Sukhumvit 23, Bangkok 10110, Thailand
{sermsri,narongp}@swu.ac.th

#### Abstract

A Hamiltonian walk in a connected graph G is a closed walk of minimum length which contains every vertex of G. The Hamiltonian number h(G) of a connected graph G is the length of a Hamiltonian walk in G. Let  $\mathcal{G}(n)$  be the set of all connected graphs of order n,  $\mathcal{G}(n,\kappa=k)$  be the set of all graphs in  $\mathcal{G}(n)$  having connectivity  $\kappa=k$ , and  $h(n,k)=\{h(G):G\in\mathcal{G}(n,\kappa=k)\}$ . We prove in this paper that for any pair of integers n and k with  $1\leq k\leq n-1$ , there exist positive integers  $a:=\min\{h;n,k\}=\min\{h(G):G\in\mathcal{G}(n,\kappa=k)\}$  and  $b:=\max\{h;n,k\}=\max\{h(G):G\in\mathcal{G}(n,\kappa=k)\}$  such that  $h(n,k)=\{x\in\mathbb{Z}:a\leq x\leq b\}$ . The values of  $\min(h;n,k)$  and  $\max(h;n,k)$  are obtained in all situations.

Key Words: Hamiltonian walk, Hamiltonian number, cubic graph.

AMS Subject Classification(2000): 05C12, 05C45

### 1 Introduction

We limit our discussion to graphs that are simple and finite. For the most part, our notation and terminology follows that of Chartrand and Lesniak [4]. A walk W in a graph G is a sequence  $x_0, x_1, x_2, \ldots, x_t$  of vertices of G in which  $x_{i-1}x_i \in E(G)$  for all  $i = 1, 2, \ldots, t$ . If  $x_0 = x_t$ , then W is called a closed walk. A walk in G which contains all vertices of G is called a spanning walk of G and a closed walk in G which contains all vertices is

<sup>\*</sup>Ph. D. student, Srinakharinwirot University.

<sup>&</sup>lt;sup>†</sup>This research was supported by the Thailand Research Fund.

called a *closed spanning walk* of G. For a walk W of G the *length* of W, denoted by |W|, is the number of edges used in W.

Given a connected graph G, it is possible to start at an arbitrary vertex u of G, walk in some sequence along the edges of G and return to the starting vertex u having passed through every vertex in G at least once. In general such a walk might pass through some vertices, and traverse some edges, more than once. We call such a walk a closed spanning walk in G. A Hamiltonian walk in G is a closed spanning walk of minimum length. The length of a Hamiltonian walk in G will be denoted by h(G). Thus if G is a connected graph of order n, then h(G) = n if and only if G is Hamiltonian. Thus h may be considered as a measure of how far a given graph is from being Hamiltonian.

It is well known that there is no satisfactory characterization of Hamiltonian graphs. Goodman and Hedetniemi [8] introduced the concept of Hamiltonian walk and obtained some significant results on this graph parameter. Hamiltonian walks were also studied further by Asano, Nishizeki, and Watanabe [1, 2], Bermond [3], Vacek [9], Chartrand, Thomas, Saenpholphat, and Zhang [5]. In particular, the following results are known (see [5, 8]).

**Theorem A** For every connected graph G of order  $n \geq 2$ ,

$$n \le h(G) \le 2n - 2.$$

Moreover,

- 1. h(G) = 2n 2 if and only if G is a tree, and
- 2. for every pair n, p of integers with  $3 \le n \le p \le 2n 2$ , there exists a connected graph G of order n having h(G) = p.

**Theorem B** Let G be a connected graph and  $B_1, B_2, \ldots, B_k$  be the blocks of G. Then  $h(G) = \sum_{i=1}^k h(B_i)$ .

**Theorem C** Let  $G = K_{n_1, n_2, ..., n_k}$  be a complete k-partite graph on  $n_1 + n_2 + ... + n_k = n$  vertices, where  $n_1 \le n_2 \le ... \le n_k$ . Then

- 1. G is Hamiltonian if and only if  $n_1 + n_2 + \ldots + n_{k-1} \ge n_k$ .
- 2. If  $n_1 + n_2 + \ldots + n_{k-1} < n_k$ , then  $h(G) = 2n_k$ .

A vertex-cut in a graph G is a set U of vertices of G such that G-U is disconnected. The vertex-connectivity or simply the connectivity, denoted by  $\kappa(G)$ , of a graph G is the minimum cardinality of a vertex-cut of G if G is not complete, and  $\kappa(G) = n - 1$  if  $G = K_n$  for some positive integer n.

Consequently,  $\kappa(G) \leq \delta(G)$ . A graph G is said to be k-connected,  $k \geq 1$ , if  $\kappa(G) \geq k$ .

One of the interesting properties of 2-connected graphs is that every two vertices of such graphs lie on a common cycle. There is a generalization of this fact to k-connected graphs by Dirac [7] as we state in the following theorem.

**Theorem D** Let G be a k-connected graph,  $k \geq 2$ . Then every k vertices of G lie on a common cycle of G.

Our next result involves the independent sets of vertices and the connectivity of a graph. This result is due to Chvátal and Erdős [6].

**Theorem E** Let G be a graph with at least three vertices. If  $\kappa(G) \geq \beta(G)$ , then G is Hamiltonian.

#### 2 Main results

Let  $\mathcal{G}(n)$  be the set of all connected graphs of order n. Then  $\mathcal{G}(n)$  can be partitioned according to the connectivity. For integers n and k with  $1 \le k \le n-1$ , we put  $\mathcal{G}(n,\kappa=k)=\{G\in\mathcal{G}(n):\kappa(G)=k\}$  and  $h(n,k)=\{h(G):G\in\mathcal{G}(n,\kappa=k)\}$ . Furthermore, we denote by  $\min(h;n,k):=\min\{h(G):G\in\mathcal{G}(n,k)\}$  and  $\max(h;n,k):=\max\{h(G):G\in\mathcal{G}(n,\kappa=k)\}$ . We prove in this section that for any pair of integers n,k with  $1\le k\le n-1$ , there exist positive integers  $a:=\min(h;n,k)$  and  $b:=\max(h;n,k)$  such that  $h(n,k)=\{x\in\mathbb{Z}:a\le x\le b\}$ . Moreover, the values of  $\min(h;n,k)$  and  $\max(h;n,k)$  are obtained in all situations.

We first consider when k=1 and  $n\geq 3$ . Since a Hamiltonian graph of order  $n\geq 3$  is 2-connected, it follows that  $\min(h;n,1)\geq n+1$ . Let G=(V,E) be a graph with  $V=\{v_1,v_2,\ldots,v_n\}$  and  $E=\{v_nv_i:i=1,2,\ldots,n-1\}$ . Thus G is a star of order n with center at  $v_n,G\in\mathcal{G}(n,\kappa=1)$  and, by Theorem A, h(G)=2n-2. Put  $G_0=G,G_1=G_0+v_1v_2,G_2=G_1+v_2v_3,\ldots,G_{n-3}=G_{n-4}+v_{n-3}v_{n-2}$ . Thus  $G_i\in\mathcal{G}(n,\kappa=1)$ , for each  $i=1,2,\ldots,n-3$ , and, by Theorem B,  $h(G_i)=2n-2-i$ . Therefore,  $h(n,1)=\{x\in\mathbb{Z}:n+1\leq x\leq 2n-2\}$ . Thus we have proved the following theorem.

**Theorem 2.1** Let n be a positive integer with  $n \geq 3$ . Then  $h(n,1) = \{x \in \mathbb{Z} : n+1 \leq x \leq 2n-2\}.$ 

For given integers n and k with  $2 \le k \le n-1$ , a graph G obtained from  $K_{n-1}$  by joining a new vertex v to k vertices of  $K_{n-1}$  satisfies  $G \in \mathcal{G}(n, \kappa = k)$  and h(G) = n. Thus  $\min(h; n, k) = n$ .

**Lemma 2.2** Let G = (V, E) be a connected graph of order n and  $E_1 = \{e_1, e_2, \ldots, e_t\} \subseteq E(G)$ . If  $\langle E_1 \rangle$  contains no cycle, then there exists a spanning tree T of G such that  $E_1 \subseteq E(T)$ .

Proof. We will proceed by induction on t. Suppose that t=1. Let  $T_1$  be a spanning tree of G and  $e_1 \not\in E(T_1)$ . Then  $T_1+e_1$  contains a cycle. Thus there exists  $f \in E(T_1)$  such that  $T_1+e-f$  is a spanning tree of G containing  $e_1$ . Therefore the result holds for t=1. We now suppose that  $t \geq 2$  and the result holds for the graph  $E_1 - \{e_t\}$ . That is, there exists a spanning tree  $T_1$  of G such that  $E_1 - \{e_t\} \subseteq E(T_1)$ . Thus  $T_1 + e_t$  contains a unique cycle G. Since  $(E_1)$  is a subgraph of G and G are described as a spanning tree of G such that G and G are required.

As an application we obtain an upper bound of the Hamiltonian number for a connected graph containing a cycle.

**Lemma 2.3** Let G be a connected graph of order n. If G contains a cycle of order k, then  $h(G) \leq 2n - k$ .

**Proof.** We first note that if G is a connected graph and  $e \in E(G)$  such that G - e is connected, then  $h(G) \leq h(G - e)$ . Let C be a cycle in G of order k and  $e \in E(C)$ . By Lemma 2.2, let T be a spanning tree of G containing E(C - e). Thus T + e consists of n - k + 1 blocks  $B_1, B_2, \ldots B_{n-k+1}$  such that  $B_1$  is a cycle of order k and the rest are blocks of order two. Thus, by Theorem B,  $h(G) \leq h(T + e) = k + 2(n - k) = 2n - k$ .

The following lemma provides a lower bound for the Hamiltonian number of a graph in term of the independence number of the graph.

**Lemma 2.4** Let G be a connected graph of order n. Then  $h(G) \ge 2\beta(G)$ . In particular, if G is Hamiltonian, then  $\beta(G) \le \frac{n}{2}$ .

*Proof.* Let  $W: u_0, u_1, \ldots, u_t = u_0$  be a Hamiltonian walk of G. Let  $S = \{u_{i_1}, u_{i_2}, \ldots, u_{i_r}\}$  be a maximum independent set of G such that  $0 \le i_1 < i_2 < \ldots < i_r \le t$ . Thus  $r = \beta(G)$ . Since S is an independent set of vertices, it follows that for  $j = 1, 2, \ldots, r - 1$ ,  $i_{j+1} - i_j \ge 2$ . Thus  $t \ge 2r$ . This completes the proof.

**Lemma 2.5** Let n and k be positive integers. Then  $h(n, k) = \{n\}$  if and only if  $n \leq 2k$ .

*Proof.* Suppose that  $n \leq 2k$ . Let G be a k-connected graph of order n and I be a maximum independent set of vertices of G. Since G is not (k+1)-connected,  $k \leq \delta(G)$ . Thus for each  $v \in I$ , v has at least k neighbors

in V(G)-I. It follows that G has at least |I|+k vertices and hence  $|I|+k \le n$ . Since  $n \le 2k$ ,  $\beta(G)=|I| \le n-k \le k$ . Thus, by Theorem E, G is Hamiltonian. Conversely, suppose that n>2k. Let G be a graph with  $V(G)=I\cup K$ , where  $I=\{v_1,v_2,\ldots,v_{n-k}\}$  and  $K=\{w_1,w_2,\ldots,w_k\}$ , and  $E(G)=\{w_iw_j:1\le i< j\le k\}\cup\{v_iw_j:i=1,2,\ldots,n-k,j=1,2,\ldots,k\}$ . It is clear that  $G\in \mathcal{G}(n,\kappa=k)$ . Since I is an independent set of vertices of G of cardinality n-k and Lemma 2.4,  $h(G)\ge 2(n-k)=n+(n-2k)>n$ . Therefore  $h(n,k)\ne \{n\}$ .

The result of Lemma 2.5 gives a characterization of  $h(n, k) = \{n\}$  as  $k \ge n/2$ . So we may assume from now on that k < n/2.

A graph G=(V,E) is called a *split graph* if there exists a partition  $V=I\cup K$  such that the subgraphs  $\langle I\rangle$  and  $\langle K\rangle$  of G induced by I and K are empty and complete graphs, respectively. Note that if G=(V,E) is a split graph, then the corresponding partition  $V=I\cup K$  may not be unique. It is unique if we choose the corresponding partition  $V=I\cup K$  with minimum cardinality |K|. Thus for a split graph G=(V,E), we understand that the corresponding partition  $V=I\cup K$  is chosen in such a way that K has minimum cardinality. We will denote such a graph by  $S(I\cup K,E)$ . Further, a split graph  $G=S(I\cup K,E)$  is called a *complete split graph* if for every vertex  $v\in I$ , v is adjacent to every vertex in K. Thus if G is a complete split graph of order n, then there exists a unique pair of integers k and n-k such that |K|=k and |I|=n-k. In this particular case, we write G=CS(n-k,k). Thus  $K_n=CS(1,n-1)$ , for all  $n\geq 2$ . It is easy to see that  $\kappa(CS(n-k,k))=k$ .

A split graph  $G = S(I \cup K, E)$  with |I| = |K| has a Hamiltonian cycle if and only if the bipartite graph  $G' = G - E(\langle K \rangle)$  has a Hamiltonian cycle. It is not difficult to show that a split graph  $G = S(I \cup K, E)$  with |I| < |K| contains a Hamiltonian cycle if and only if the graph  $\langle I \cup N_G(I) \rangle$  contains a Hamiltonian cycle. Further, G contains no Hamiltonian cycle if |I| > |K|.

The complete split graph G = CS(n - k, k),  $k \ge 2$ , satisfies the conditions that  $\kappa(G) = k$  and  $\beta(G) = n - k$ . The following result can be considered as a direct consequence of Lemma 2.5 and Theorem C.

**Corollary 2.6** Let G = CS(n-k,k) be a complete split graph of order n and  $k \geq 1$ . Then G has a Hamiltonian cycle if and only if  $n \leq 2k$ . Moreover, if n > 2k, then h(G) = 2(n-k).

We are now ready to prove the following main results.

**Theorem 2.7** Let n and k be integers such that  $k \geq 2$  and n > 2k. Then  $\min(h; n, k) = n$  and  $\max(h; n, k) = 2(n - k)$ . Moreover, for any positive integer i such that  $0 \leq i \leq n - 2k$ , there exists  $G_i \in \mathcal{G}(n, \kappa = k)$  with  $h(G_i) = 2(n - k) - i$ .

Proof. We have already mentioned earlier that  $\min(h; n, k) = n$  for all pairs of integers n, k such that  $k \geq 2$  and  $n \geq 2k$ . It is clear that  $CS(n-k, k) \in \mathcal{G}(n, \kappa = k)$ . Since h(CS(n-k, k)) = 2(n-k),  $\max(h; n, k) \geq 2(n-k)$ . On the other hand, let  $G \in \mathcal{G}(n, \kappa = k)$ . If  $\beta(G) \leq k$ , then, by Theorem E, h(G) = n < n + (n-2k) = 2(n-k). Now suppose that  $\beta(G) > k$ . Let  $X = \{v_1, v_2, \ldots, v_k\}$  be a set of k independent vertices of k. By Theorem D, there exists a cycle k in k independent vertices of k is an independent set, k has order at least k. By Lemma 2.3, k is an independent set, k. Thus  $\max(h; n, k) = 2(n-k)$ .

Let G = CS(n - k, k) such that  $V(G) = I \cup K$ ,  $I = \{v_1, v_2, \dots, v_{n-k}\}$ and  $K = \{w_1, w_2, \dots, w_k\}$ . Put  $G = G_0, G_1 = G_0 + v_k v_{k+1}, G_2 = G_1 + v_k v_{k+1}, G$  $v_{k+1}v_{k+2},\ldots,G_{n-2k}=G_{n-2k-1}+v_{n-k-1}v_{n-k}$ . Thus  $\beta(G_i)=n-k-\lceil i/2\rceil$ , for all i = 0, 1, 2, ..., n - 2k. Also,  $G_i$  contains a cycle of order 2k + i, for all i = 1, 2, ..., n - 2k. Thus, by Lemmas 2.3 and 2.4, we have that for all  $i = 0, 1, 2, \dots, n-2k, 2(n-k-\lceil i/2 \rceil) \le h(G_i) \le 2n-2k-i$ . Further,  $G_{n-2k}$ contains a cycle of order 2k+n-2k=n. Thus  $h(G_{n-2k})=n$ . Since 2(n-1)k - [i/2] = 2(n-k) - i if i is even and 2(n-k-[i/2]) = 2(n-k)-i-1 if i is odd, it follows that  $h(G_i) = 2(n-k)-i$ , for all even integers i with  $0 \le i < i$ n-2k. We now consider for odd integer i. Let  $W: u_0, u_1, \ldots, u_{t-1}, u_t = u_0$ be a Hamiltonian walk of  $G_i$ . Then there exist  $u_{i_1}, u_{i_2}, \ldots, u_{i_{n-k}}$  such that  $0 \le i_1 < i_2 < \ldots < i_{n-k} \le t$  and  $\{u_{i_1}, u_{i_2}, \ldots, u_{i_{n-k}}\} = \{v_1, v_2, \ldots, v_{n-k}\}.$ Since  $\{v_1, v_2, \dots, v_{k-1}, v_{k+i+1}, \dots, v_{n-k}\}$  is an independent set of n-k-i1 vertices and  $v_k, v_{k+1}, \dots, v_{k+i}$  is a path of order i+1 of  $G_i$ , it follows that  $|W| \ge 2(n-k-i-1)+i+1+1=2(n-k)-i$ . Therefore  $h(G_i)=2(n-k)-i$ as required. Thus we have  $h(n,k) = \{x \in \mathbb{Z}^+ : n \le x \le 2(n-k)\}.$ 

We have seen that for integers  $n \geq 3$  and  $k \geq 1$  such that n > 2k, the graph CS(n-k,k) satisfies the following properties:

- 1. CS(n-k,k) is not Hamiltonian and h(CS(n-k,k)) = 2(n-k),
- 2.  $CS(n-k,k) \in \mathcal{G}(n,\kappa=k)$ ,
- 3. if  $G \in \mathcal{G}(n, \kappa = k)$ , then  $h(G) \le h(CS(n-k, k)) = 2(n-k)$ ,
- 4. CS(n-k,k) is a graph of size  $\binom{k}{2} + k(n-k)$ .

If k=1, then a characterization of graph G of order n with h(G)=2(n-1) can be obtained by result of Theorem A. Let  $n\geq 3$  and  $k\geq 2$  be integers with n>2k. If  $G\in \mathcal{G}(n,\kappa=k)$  and h(G)=2(n-k), then we have the following facts.

1. Since h(G) = 2(n-k) = n + (n-2k) > n, it follows that G is not Hamiltonian. Thus, by Theorem E,  $\beta(G) \ge k + 1$ .

2. If  $\{v_1, v_2, \ldots, v_k\}$  is an independent set of k vertices of G, then, by Theorem D, G contains a cycle of order at least 2k. Since h(G) = 2(n-k) and by Lemma 2.3, it follows that G contains a cycle of order at most 2k. Thus G contains a cycle of order 2k.

The following theorem is a characterization of k-connected graph of order n having Hamiltonian number 2(n-k).

**Theorem 2.8** Let  $n \geq 3$  and  $k \geq 2$  be integers with n > 2k. If  $G \in \mathcal{G}(n, \kappa = k)$  and h(G) = 2(n - k), then  $m(G) \leq m(CS(n - k, k))$ . Further, if  $G \in \mathcal{G}(n, \kappa = k)$ , then h(G) = 2(n - k) and m(G) = m(CS(n - k, k)) if and only if  $G \cong CS(n - k, k)$ .

*Proof.* Let  $G \in \mathcal{G}(n, \kappa = k)$  and h(G) = 2(n - k). By above observation there exists a cycle C of G of order 2k containing  $\{v_1, v_2, \ldots, v_k\}$  and G does not contain a cycle of order more than 2k. Without loss of generality, we may assume that  $C: v_1, w_1, v_2, w_2, \ldots, v_k, w_k, v_1$ . Let X = V(G)V(C). Then |X| = n - 2k. Since h(G) = 2(n - k),  $\langle X \rangle$  contains no cycle. Let K be a component of  $\langle X \rangle$ . Then  $|N_G(V(K)) \cap V(C)| \leq k$  since otherwise G must contain a cycle of order at least 2k + 1. Suppose that K has order at least 2. If there exist two vertices of K have a common neighbor in C, then h(G) < 2(n-k). Thus the average degree of all vertices of K is less than k. This is a contradiction. Thus  $\langle X \rangle$  is an empty graph and for each  $v \in X$  and d(v) = k. Let  $v_{k+1} \in X$  such that  $\{v_1, v_2, \dots, v_k, v_{k+1}\}$  forms an independent set of G. Thus  $v_{k+1}$  is adjacent to  $w_1, w_2, \ldots, w_k$ . Further, for each  $v \in X$ , v is adjacent to either  $v_1, v_2, \ldots, v_k$  or  $w_1, w_2, \ldots, w_k$ , otherwise, G must contain a cycle of order at least 2k+1. Suppose that there exists  $v \in X$  such that v is adjacent to  $v_1, v_2, \ldots, v_k$ . Then  $\langle X \cup \{v, v_{k+1}\} \rangle$  contains a cycle of order 2k+2. Thus for each  $v \in X$ ,  $N_G(v) = \{w_1, w_2, ..., w_k\}$ . Therefore,  $\{v_1, v_2, ..., v_k\} \cup X$ is an independent set of G of cardinality n-k which implies that G is a subgraph of CS(n-k,k). Thus, m(G)=m(CS(n-k,k)) if and only if  $G \cong CS(n-k,k)$ .

By Theorem 2.8, we have that the complete split graph CS(n-k,k) is the only k-connected graph of order n with Hamiltonian number 2(n-k) and of maximum size. We close this paper by asking the following problems.

**Problem 1** Let n, k and i be integers with  $k \ge 1, n > 2k$  and  $1 \le i \le n-2k$ . Find the maximum size of a connected graph G of order n with  $\kappa(G) = k$  and h(G) = 2(n-k) - i.

**Problem 2** Let n and  $\ell$  be integers with  $2 \le \ell \le n$ . Find the maximum size of a connected graph G of order n with  $h(G) = 2n - \ell$ .

# 3 Acknowledgment

The authors are grateful to the referee whose valuable suggestions resulted in an improved paper.

## References

- T. Asano, T. Nishizeki, and T. Watanabe, An upper bound on the length of a Hamiltonian walk of a maximal planar graph, J. Graph Theory 4 (1980) 315-336.
- [2] T. Asano, T. Nishizeki, and T. Watanabe, An approximation algorithm for the Hamiltonian walk problems on maximal planar graphs, Discrete Appl. Math. 5 (1983) 211-222.
- [3] J. C. Bermond, On Hamiltonian walks, Congr. Numer. 15 (1976) 41-51.
- [4] G. Chartrand and L. Lesniak, "GRAPHS & DIGRAPHS", 4<sup>th</sup> Edition, Chapman & Hall/CRC, A CRC Press Company, 2004.
- [5] G. Chartrand, T. Thomas, V. Saenpholphat, and P. Zhang, A new look at Hamiltonian walks, Bull. Inst. Combin. Appl. 42 (2004) 37-52.
- [6] V. Chvátal and P. Erdős, A note on Hamiltonian circuits, Discrete Math. 2 (1972), 111-113.
- [7] G. A. Dirac, In abstrakten Graphen vorhande vollst\u00f3ndige 4-Graphen und ihre unterteilungen, Math. Nachr. 22 (1960) 61-85.
- [8] S. E. Goodman and S. T. Hedetniemi, On Hamiltonian walks in graphs, *Congr. Numer.* (1973) 335-342.
- [9] P. Vacek, On open Hamiltonian walks in graphs, Arch Math. (Brno) 27A (1991) 105-111.