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Abstract

A Hamiltonian walk in a connected graph G is a closed walk of
minimum length which contains every vertex of G. The Hamiltonian
number k(G) of a connected graph G is the length of a Hamiltonian
walk in G. Let G(n) be the set of all connected graphs of order n,
G(n, & = k) be the set of all graphs in G(n) having connectivity « = k,
and h{n,k) = {M{G) : G € G(n,k = k)}. We prove in this paper
that for any pair of integers n and k with 1 < k < n — 1, there exist
positive integers @ := min(k;n, k) = min{h(G) : G € G(n,x = k)}
and b := max(h;n, k) = max{h(G) : G € G(n,x = k)} such that
h(n,k) = {z € Z: a < = < b}. The values of min(h;n,k) and
max(h;n, k) are obtained in all situations.
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1 Introduction

We limit our discussion to graphs that are simple and finite. For the most
part, our notation and terminology follows that of Chartrand and Lesniak
[4]. A walk W in a graph G is a sequence o, Z1,Z2,...,2: of vertices of
G in which z;_12; € E(G) for all i = 1,2,...,t. If xo = z,, then W is
called a closed walk. A walk in G which contains all vertices of G is called
a spanning walk of G and a closed walk in G which contains all vertices is
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called a closed spanning walk of G. For a walk W of G the length of W,
denoted by |W|, is the number of edges used in W,

Given a connected graph G, it is possible to start at an arbitrary vertex
u of G, walk in some sequence along the edges of G and rcturn to the
starting vertex u having passed through every vertex in G at least once. In
general such a walk might pass through some vertices, and traverse some
edges, more than once. We call such a walk a closed spanning walk in G. A
Hamiltonian walk in G is a closed spanning walk of minimum length. The
length of a Hamiltonian walk in G will be denoted by A(G). Thus if G is a
connected graph of order n, then A(G) = n if and only if G is Hamiltonian.
Thus h may be considered as a measure of how far a given graph is from
being Hamiltonian.

It is well known that there is no satisfactory characterization of Hamil-
tonian graphs. Goodman and Hedetniemi [8] introduced the concept of
Hamiltonian walk and obtained some significant results on this graph pa-
rameter. Hamiltonian walks were also studied further by Asano, Nishizeki,
and Watanabe [1, 2], Bermond [3], Vacek [9], Chartrand, Thomas, Saen-
pholphat, and Zhang [5]. In particular, the following results are known (see
[5, 8)).

Theorem A For every connected graph G of order n > 2,
n<h(G) <2n-2.
Moreover,
1. h(G) =2n -2 if and only if G is a tree, and
2. for every pair n,p of integers with 3 < n < p < 2n — 2, there exists a

connected graph G of order n having h(G) = p.

Theorem B Let G be a connected graph and By, Bs, ..., By be the blocks
of G. Then h(G) =YX h(B)).

Theorem C Let G = K, n,,....n, be a complete k-partite graph on ny +
n2 + ...+ ng = n vertices, where ny <ng < ... < np. Then

1. G is Hamiltonian if and only if ny +no + ... +ng—y > ng.

2. Ifny +na+ ... +ng_y < ng, then h(G) = 2ny.

A vertez-cut in a graph G is a set U of vertices of G such that G - U is
disconnected. The vertez-connectivity or simply the connectivity, denoted
by k(G), of a graph G is the minimum cardinality of a vertex-cut of G if G
is not complete, and k(G) = n — 1 if G = K, for some positive integer n.
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Consequently, £(G) < §(G). A graph G is said to be k-connected, k > 1, if
k(G) 2 k.

One of the interesting properties of 2-connected graphs is that every two
vertices of such graphs lie on a common cycle. There is a generalization
of this fact to k-connected graphs by Dirac [7] as we statc in the following
theorem.

Theorem D  Let G be a k-connected graph, k > 2. Then every k vertices
of G lie on a common cycle of G.

Our next result involves the independent sets of vertices and the con-
nectivity of a graph. This result is due to Chvital and Erdés [6].

Theorem E Let G be a graph with at least three vertices. If k(G) > B(G),
then G is Hamiltonian.

2 Main results

Let G(n) be the set of all connected graphs of order n. Then G(n) can be
partitioned according to the connectivity. For integersn and k with1 < k <
n—1, we put G(n,k = k) = {G € G(n) : k(G) = k} and h(n, k) = {h(G) :
G € G(n,x = k)}. Furthermore, we denote by min(h;n, k) := min{h(G) :
G € G(n,k)} and max(h;n, k) := max{h(G) : G € G(n,x = k)}. We prove
in this section that for any pair of integers n,k with 1 < k < n — 1, there
exist positive integers a := min(h;n,k) and b := max(h;n, k) such that
h(n,k) = {z € Z : a < = < b}. Moreover, the values of min(h;n, k) and
max(h;n,k) are obtained in all situations.

We first consider when k = 1 and n > 3. Since a Hamiltonian graph
of order n > 3 is 2-connected, it follows that min(h;n,1) > n + 1. Let
G = (V,E) be a graph with V = {v1,v2,...,vn} and E = {vpv; 1 i =
1,2,...,n—1}. Thus G is a star of order n with center at v,, G € G(n,x =
1) and, by Theorem A, h(G) = 2n—2. Put Go = G,G; = Go +v1v2, Gy =
G1 + vovs,...,Gn 3 = Gn_4 + n_3vn—2. Thus G; € G(n,k = 1), for each
i=1,2,...,n— 3, and, by Theorem B, h(G;) = 2n — 2 — i. Therefore,
h(n,1) ={x € Z:n+1 < z < 2n—2}. Thus we have proved the following
theorem.

Theorem 2.1 Let n be a positive integer with n > 3. Then h(n,1) =
{r€Z:n+1<2z<2n-2}.

For given integers n and k with 2 < k£ < n — 1, a graph G obtained
from K,_, by joining a new vertex v to k vertices of K, satisfies G €
G(n,k = k) and h(G) = n. Thus min(h;n, k) = n.

239



Lemma 2.2 Let G = (V,E) be a connected graph of order n and E, =
{e1,e2,...,et} C E(G). If (E:) contains no cycle, then there erists a
spanning tree T of G such that E; C E(T).

Proof. We will proceed by induction on ¢. Suppose that ¢ = 1. Let T}
be a spanning tree of G and e; & E(T1). Then T + e; contains a cycle.
Thus there exists f € E(T1) such that 7} + e — f is a spanning tree of
G containing e;. Therefore the result holds for ¢ = 1. We now suppose
that ¢ > 2 and the result holds for the graph E; — {e;}. That is, there
cxists a spanning tree T} of G such that E, — {e;} C E(T}). Thus T} + e,
contains a unique cycle C. Since (E;) is a subgraph of T} + e, and (E))
does not contains a cycle, C contains an edge f in which f & E;. Therefore
T =Ty + e, — f is a spanning tree of G such that Ey C E(T) as required.
[
As an application we obtain an upper bound of the Hamiltonian number

for a connected graph containing a cycle.

Lemma 2.3 Let G be a connected graph of order n. If G contains a
cycle of order k, then h(G) < 2n—k.

Proof. We first note that if G is a connected graph and e € E(G) such that
G — e is connected, then h(G) < (G — e). Let C be a cycle in G of order
k and e € E(C). By Lemma 2.2, let T be a spanning tree of G containing
E(C —e). Thus T + e consists of n — k + 1 blocks By, B, ... B,y such
that B; is a cycle of order k and the rest are blocks of order two. Thus, by
Theorem B, h(G) S h(T +e) =k +2(n—k) =2n -k,
n
The following lemma provides a lower bound for the Hamiltonian num-
ber of a graph in term of the independence number of the graph.

Lemma 2.4 Let G be a connected graph of order n. Then h(G) >
2B(G). In particular, if G is Hamiltonian, then B(G) < 3

Proof. Let W : ug,uy,...,u; = ug be a Hamiltonian walk of G. Let
S = {ui,,uip,...,u; } be a maximum independent set of G such that 0 <
i < iz <...< i, £t Thus r = B(G). Since S is an independent set of
vertices, it follows that for j = 1,2,...,7 — 1, ¢;44 —3; > 2. Thus ¢ > 2r.
This completes the proof.

[

Lemma 2.5 Letn and k be positive integers. Then h(n,k) = {n} if and
only if n < 2k.

Proof. Suppose that n < 2k. Let G be a k-connected graph of order n and
I be a maximum independent set of vertices of G. Since G is not (k + 1)-
connected, £ < 6(G). Thus for each v € I, v has at least k neighbors

240



in V(G) — I. 1t follows that G has at least |I| + k vertices and hence
[7]+& < n. Since n < 2k, B(G) = |I| £ n—k < k. Thus, by Theorem E, G
is Hamiltonian. Conversely, suppose that n > 2k. Let G be a graph with
V(G) = IUK, where I = {v1,v2,...,Vn-k} and K = {w;,we,...,wi}, and
EG) = {wi'wj 11<i<ji<L k}U{v,-w,- 1=1,2,...,n—k,5=1,2,...,k}.
It is clear that G € G(n, k = k). Since [ is an independent sct of vertices of
G of cardinality n — k and Lemma 2.4, h(G) 2 2(n—k) =n+ (n—2k) > n.
Therefore h(n, k) # {n}.

=

The result of Lemma 2.5 gives a characterization of h(n,k) = {n} as
k > n/2. So we may assume from now on that k < n/2.

A graph G = (V,E) is called a split graph if there exists a partition
V = I UK such that the subgraphs (I} and (K) of G induced by I and
K are empty and complete graphs, respectively. Note that if G = (V, E)
is a split graph, then the corresponding partition V = I U K may not be
unique. It is unique if we choose the corresponding partition V = TU K
with minimum cardinality |K|. Thus for a split graph G = (V, E), we
understand that the corresponding partition V = I U K is chosen in such
a way that K has minimum cardinality. We will denote such a graph by
S(I U K, E). Further, a split graph G = S(I U K, E) is called a complete
split graph if for every vertex v € I, v is adjacent to every vertex in K.
Thus if G is a complete split graph of order n, then there exists a unique
pair of integers k and n — k such that |K| = k and |I| = n — k. In this
particular case, we write G = CS(n — k, k). Thus K,, = CS(1,n — 1), for
all n > 2. It is easy to see that K(CS(n —k,k)) = k.

A split graph G = S(JUK, E) with {I| = |K| has a Hamiltonian cycle if
and only if the bipartite graph G’ = G — E((K)) has a Hamiltonian cycle.
It is not difficult to show that a split graph G = S(JU K, E) with |I| < |K]|
contains a Hamiltonian cycle if and only if the graph (IUNg(I)) contains a
Hamiltonian cycle. Further, G contains no Hamiltonian cycle if |I{ > |K]|.

The complete split graph G = CS(n — k, k), k > 2, satisfies the con-
ditions that x(G) = k and B(G) = n — k. The following result can be
considered as a direct consequence of Lemma 2.5 and Theorem C.

Corollary 2.6 Let G = CS(n— k,k) be a complete split graph of order
n and k > 1. Then G has a Hamiltonian cycle if and only if n < 2k.
Moreover, if n > 2k, then h(G) = 2(n — k).

We are now ready to prove the following main results.

Theorem 2.7 Let n and k be integers such that k > 2 and n > 2k.
Then min(h;n,k) = n and max(h;n,k) = 2(n — k). Moreover, for any
positive integer i such that 0 < i < n — 2k, there exists G; € G(n,k = k)
with h(G;) =2(n — k) — 1.
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Proof. We have already mentioned earlicr that min(h; n, k) = n for all pairs
of integers n, k such that £ > 2 and n > 2k. It is clear that CS(n — k, k) €
G(n,k = k). Since h(CS(n — k,k)) = 2(n — k), max(h;n, k) > 2(n — k).
On the other hand, let G € G(n,x = k). If B(G) < k, then, by Theorem
E, i(G) = n < n+ (n — 2k) = 2(n — k). Now suppose that 8(G) > k.
Let X = {v1,v2,...,v} be a set of k independent vertices of G. By
Theorem D, there exists a cycle C in G containing vy, vs,...,vt. Since X
is an independent set, C' has order at least 2k. By Lemma 2.3, h(G) <
2n - 2k = 2(n - k). Thus max(h;n, k) = 2(n — k).

Let G = CS(n — k,k) such that V(G) = TUK, I = {v},ve,...,vn_k}
and K = {wy,ws,...,wr}. Put G = Gy,G1 = Gy + vkvpq1,Ge = G +
Vk+1Vk42, - - -, G2k = Gn-2k-1+Vn—k—1Vn—k. Thus §(G;) = n—k—[i/2],
foralli=0,1,2,...,n — 2k. Also, G; contains a cycle of order 2k + i, for
alli=1,2,...,n — 2k. Thus, by Lemmas 2.3 and 2.4, we have that for all
i=0,1,2,...,n—2k, 2(n—k—[i/2]) < h(G;) < 2n—2k—i. Further, G,,_o
contains a cycle of order 2k +n — 2k = n. Thus h(G,,_ax) = n. Since 2(n —
k—[i/2]) = 2(n—k)—iifiisevenand 2(n—k—[i/2]) = 2(n—k)—i—1ifiis
odd, it follows that h(G;) = 2(n — k) — ¢, for all even integers ¢ with 0 < i <
n—2k. We now consider for odd integer i. Let W : ug, uy,...,u—1,u; = ug
be a Hamiltonian walk of G;. Then there exist u;,, ui;,...,u;,_, such that
0<éi<ig<...<ip_p <tand {uil,uiz,. . ,ui"._,‘} = {vl,vg, cee ,v,,_k}.
Since {v1,v2,...,Vk=1,Vk4i+1;--+,VUn-k} is an independent set of n—k—i—
1 vertices and vk, Vg41,. . . , Ukt is a path of order ¢ +1 of Gy, it follows that
|W| > 2(n—k-i-1)+i+1+1 = 2(n—k)—i. Thercfore h(G;) = 2(n—k)—1i
as required. Thus we have h(n, k) = {x € Z* : n <z < 2(n - k)}.

a

We have seen that for integers n > 3 and k > 1 such that n > 2k, the
graph CS(n — k, k) satisfies the following properties:

1. CS(n — k, k) is not Hamiltonian and ~(CS(n — k, k)) = 2(n — k),
2. CS(n—k,k) e G(n,k =k),

3. if G € G(n,k = k), then h(G) < R(CS(n — k,k)) = 2(n - k),

4. CS(n — k, k) is a graph of size (§) + k(n — k).

If k = 1, then a characterization of graph G of order n with h(G) =
2(n — 1) can be obtained by result of Theorem A. Let n > 3 and & > 2 be
integers with n > 2k. If G € G(n,x = k) and h(G) = 2(n — k), then we
have the following facts.

1. Since A(G) = 2(n — k) = n + (n — 2k) > n, it follows that G is not
Hamiltonian. Thus, by Theorem E, 8(G) > k + 1.
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2. If {v1,v2,...,v;} is an independent set of k vertices of G, then, by
Theorem D, G contains a cycle of order at least 2k. Since h(G) =
2(n—k) and by Lemma 2.3, it follows that G contains a cycle of order
at most 2k. Thus G contains a cycle of order 2k.

The following theorem is a characterization of k-connected graph of order
n having Hamiltonian number 2{n — k).

Theorem 2.8 Letn > 3 and k > 2 be integers with n > 2k. If G €
G(n,k = k) and h(G) = 2(n — k), then m(G) < m(CS(n — k,k)). Further,
if G € G(n,k = k), then h(G) = 2(n — k) and m(G) = m(CS(n — k,k)) if
and only if G = CS(n — k,k).

Proof. Let G € G(n,x = k) and h(G) = 2(n — k). By above observation
there exists a cycle C of G of order 2k containing {v;,vs,...,vc} and G
does not contain a cycle of order more than 2k. Without loss of generality,
we may assume that C : vy, wy,v2,w2,..., U, wk, 1. Let X = V(G) —
V(C). Then |X| = n — 2k. Since h(G) = 2(n — k), (X) contains no
cycle. Let K be a component of (X). Then |Ng(V(K)) N V(C)| < k since
otherwise G must contain a cycle of order at least 2k + 1. Suppose that
K has order at least 2. If there exist two vertices of K have a common
neighbor in C, then h(G) < 2(n — k). Thus the average degree of all
vertices of K is less than k. This is a contradiction. Thus (X) is an
empty graph and for each v € X and d(v) = k. Let vg4) € X such
that {vi,vs,...,Vk,vk41} forms an independent set of G. Thus viy; is
adjacent to wy,ws, ..., wr. Further, for cach v € X, v is adjacent to either
v1,v2,...,Vk OF Wi, Ws, ..., Wk, otherwise, G must contain a cycle of order
at least 2k + 1. Suppose that there exists v € X such that v is adjacent to
v1,v2,...,V. Then (X U{v,vr+1}) contains a cycle of order 2k + 2. Thus
for each v € X, Ng(v) = {wy,ws,...,wx}. Therefore, {vi,vs,..., v} UX
is an independent sct of G of cardinality » — & which implies that G is a
subgraph of CS(n — k, k). Thus, m(G) = m(CS(n — k,k)) if and only if
G=CS(n—k,k).
]
By Theorem 2.8, we have that the complete split graph CS(n — k, k) is
the only k-connected graph of order n with Hamiltonian number 2(n — k)
and of maximum size. We closc this paper by asking the following problems.

Problem 1 Let n, k and i be integers withk > 1,n > 2kand 1 < i < n—2k.
Find the maximum size of a connected graph G of order n with x(G) = k
and h(G) = 2(n — k) — 1.

Problem 2 Let n and ¢ be integers with 2 < £ < n. Find the maximum
size of a connected graph G of order n with h(G) = 2n —¢€.
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