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Abstract

This paper extends the concept of paving from finite matroids
to matroids of arbitrary cardinality. Afterwards, a paving matroid
of arbitrary cardinality is characterized in terms of its collection of
closed sets, independent sets and circuits respectively.
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1 Introduction and Preliminaries

There is no single class of structures that one calls infinite matroids.
This paper will adopt the concept of infinite matroids presented in (1]. In
addition, one notices that the area of combinatorics in which matroid theory
has not been fruitfully extended to infinite sets seems to be finite paving
matroid—which is an important class of finite matroids. The purpose of
this paper is to extend paving from finite matroids to matroids of arbitrary

cardinality and characterize the new paving matroids. For this purpose,
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one first establishes the independent axioms for matroids of arbitrary car-
dinality, followed by giving three characterizations of paving matroids of
arbitrary cardinality.

Next it starts by reviewing the definitions and properties of matroids
of arbitrary cardinality from [1]. In what follows, we assume that E is
some arbitrary-possibly infinite-set; for a set {A},maz{A} denotes the
maximum element in {A} and Maxz{A} denotes a maximal element in {A}.

Definition 1 [1] Assume m € Ny and F C P(E) = 2. Then the pair
M := (E, F) is called a matroid of rank m with F as its closed sets, if the
following axioms hold:

(F1) Ee F;

(F2) If Fy, F; € F, then FiNF; € F;

(F3) Assume Fy € F and z,,z2 € E \ Fy. Then one has either {F €
FlFoU{z1} C F} = {F € FIFoU{z2} C F} or F; N F, = F, for certain
Fi,F; € F containing Fo U {z;} or Fy U {z2}, respectively;

(F4) m = maz{n € Ny| there exist Fy, F,....F, e Fwith F C F; C ... C
F.,=E}.

The closure operator o = op : P(E) — F of M is defined by o(A) =

om(A) = Pﬂ F. The rank function p : P(E) — {0,1,...,m} of M is
F

defined by :(éAF) := maz{k € Ny| there exist Fy, F1,...,Fx € F with Fy C

F, C...C F,=0(A)}.

Lemma 1 (1] Let M = (E, F) be a matroid definied as in definition 1
with o) as its closure operator. Then

(1) For any family (F;)ier of closed sets in M, one has F := .ﬂ F,eF.

(2) For VA C FE, one has op(A) = A & A € F. Besides c;i; fits the
following conditions:

ACom(A) =opm(om(A)) forall AC E; for AC B C E, one has
om(A) € om(B);
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for AC E and z,y € E\ om(A), one has y € oy(AU {z}) & z €
om(AU{y}).

In this paper, a matroid M = (E,F) defined as in definition 1 is called
a matroid of arbitrary cardinality. One calls A€ T={ACE|z € A,z ¢
om(A\ {z})} an independent set of M. A subset of E not belonging to Z
is called dependent. A circuit of M is to be a minimal dependent set. M is
called a paving if it has no circuits of size less than p(E) = m.

Definition 2 ([2,pp.385-387 & 3,p.74]) An independence space Mp(E)
is a set E together with a collection Z of subsets of E(called independent
sets) such that
(1) ZT#0;

(i2) f A€ Z and B C A, then B€ I;

(i3) If A,B € T and |A|,|B| < oo with |[A| = |B| + 1, then 3a € A\ B fits
Bu{a} €T;

(i4) If A C E and every finite subset of A is a member of Z, then A € Z.

X C E is dependent if X ¢ Z. A circuit is to be a minimal dependent.
The closure operator o of Mp(E) is defined by z € o(A) if z € A or there
exists a circuit C with x € C € AU {z}. A set X is closed if o(X) = X.

Lemma 2([2,pp.387-389&3,p.75]) A function o : 2 — 2F is the
closure operator of an independence space on E if and only if for X,Y sub-
sets of E, and z,y € E:

(s1) X C o(X);

(s2) Y C X = o(Y) C o(X);

(s3) o(X) = o(a(X));

(s4) y e (X U{z})\o(X) = z € o(X U {y});

(s5) a € 0(X) = a € o(Xy) for some finite subset Xy of X.

2 Independent axioms
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This section mainly gives the independent axioms for a matroid of ar-
bitrary cardinality.

Theorem 1 (Independent axioms) A collection Z of subsets of E is
the set of independent sets of a matroid of arbitrary cardinality on FE if and
only if 7 satisfies (i1)-(i4) and (i5): maz{k € Ny| there exists Iy, I;,...,I; €
Z suchthat Iy C Iy C... C I} < oc.

Proof (=) Let T be the set of independent sets of a matroid of
arbitrary cardinality M on E, m be the rank of M and ¢ be the closure
operator of M. By lemma 1, o satisfies (s1)-(s4). By contradiction, one
proves that o satisfies (s5) as follows. Suppose o(Xy)  a € o(X) holds for
some X C F and any finite subset X of X. Then |X| £ 00. Let Xo =0 C
X. One has a ¢ 0(Xo) C o(X). If X\ 6(Xo) =0, then X C o(Xp), and so
by (s2) and (s3), o(X) C o(0(Xo)) = o(Xo), say, o(X) = o(Xo). Thus a €
o(Xo), a contradiction with the supposition. Let z; € X \ 0(Xy) and X; =
{z1} U Xo. Then X; C X,|X;] < 00 and a ¢ o(Xg) C o(X;). Certainly,
0(Xo) C o(X,). Repeated application of this process yields that there
exists X; C E with X; = X;_U{z:},z: € X\o(Xi-1) (i =1,2,...,m,m+
1,...) satisfying 0(Xo) C o(X1) C ... C o(Xyn = {71,22,...,Zm}) C
0(Xm U{Zm+41}) = 0(Xmt1 = {=1,22,.. ., Tm+1}) C ... C o(X) C E and
a¢o(X;)(i=01,...,m+1,...), a contradiction with (F4). Hence o
satisfies (s5). By lemma 2, this implies that Z satisfies (i1)-(i4). Next is to
prove that Z satisfies (i5).

Let Io, In,...,Ix € T with [y C I, C ... C Ix. Then o(lp) C o(l;) C
... C o(Ix) by (s2) and the definition of Z. Furthermore, by (F4), we have
that (i5) holds.

(<=) Let T C 2% satisfy (i1)-(i5). One asserts that for all I € Z,|I| < oo
holds. Otherwise by (i2) and |I] £ oo for some I = {z;,%2,...} € T, it
induces @ C I) = {71} C I = {z1,22} C ... C Iy1 = {Z1,..-, Tk} C
.. C Iy = {z1,72,...}, and so t = |I| £ oo, a contradiction to (i5).
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Since Z satisfies (i1)-(i4), by lemma 1, M,(E) = (E,Z) is an indepen-
dence space. Let o be the closure operator of M,(EF) and F be the set
of closed sets of M,(E). Besides, one asserts T = {A C E|z € A,z ¢
(A \ {z})}. Otherwise for some A € Z and z € A,z € o(A\ {z})
holds. Since z € (A \ {z}), one gets that there exists a circuit C with
z € C C ((A\ {z}) u{z}) = A, a contradiction.

Before proceeding, we proveo(X) = [\ F. Firstly,since (| FC
XCFeF XCFeF

o( N F)Co(F)=F,(forall FeFand X C F) by (s1) and (s2), one
XCFeF

gets () F=o( (| F). Secondly by (s2), o(X) Co( ) F).
XCFeF XCFeF XCFeF
However, (s1) tells X C o(X) and besides, (s3) shows o(X) € F, and
hence (| FCo(X). Sayo(X)= [) F.

XCFeF XCFeF

Next to prove the hold of (F1)-(F4) for (E,F). (F1) holds obviously.

Let F\,F; € F. Since o(F, N F2) C o(F;) (j = 1,2) by (s2), one gets
FNF; C o(FiNE) C o(F1)No(F2) = FNF,. Thus FiNF = o(FLNF).
Say, (F2) holds.

To prove the hold of (F3) and (F4) for F, we need the following results
(I)-(I11).

(I) Lee I € X C E and I € T be a maximal one of Z in X. Then
a(I) = o(X).

Otherwise, by (s2), o(I) C o(X), and so X\o(I) # 0. Let y € X\o(I).
Then y ¢ o(I) = o((JU{y})\{y})- By the selection of I, it follows TU{y} ¢
Z. This means that there exists a € I U {y} with a € o((IU {y}) \ {a}) =
a((I\ {a}) U{y}) = a(c(I\ {e}) U {y}). Hence a # y, ie. a €I € I,
and so a ¢ o(I\ {a}). y ¢ o(I) tells us y & o(I\ {a}). Thus by (s4),
y € a(e(I\ {a}) U {a}) = o((I \ {a}) U {a}) = o(I), a contradiction. Say,
o(X) =o(l).

(IT) Let I1, I; € Z with I; C I>. Then o(I) C o(l2).

Otherwise by (s2), o(I1) = o(I3). Since |I;| < oo (j = 1,2), |1 < |I]
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and (i3), there exists a € I \ I satisfying I, U {a} € Z. Furthermore
o(l) € o(l1 U {a}) C a(lz) = o(l1), say, o(lr) = o(]; U {a}). Besides,
a € I, U {a} € T shows a ¢ o(I1 U {a}\ {a}) = o({1), a contradiction to
a € o(I1 U {a}) = o(l1). That is to say, o(l) C o(l3).

(IIT) Let Fy, Fy € F,Fy C F3 and I; be a maximal one in {I C E|Z >
I € F1}. Then there exists I; € T such that o(I;) = F» and I; C .

By the finiteness of all I € Z, (i3), (I) and (II), the needed is obtained.

Now one comes back to prove the (F3).

Assume Fy € F and z,,z2 € E\ Fy. Then it is not difficult to get
YF e FIRhU{x1} CF} ={F € FIRU{z2} CF} & “o(FRpuU{z1}) =
o(Fo U {x2})". Let {F € FIFo U{x1} C F} # {F € F|Fy U {z2} C F}
and Fj = o(Fo U {z;}) (j = 1,2). Hypothesize Fy # (F1 N F3). In virtue
of (s1)-(s3), Fo C (F1 N F2), one has that for any maximal Iy in {I C
E\I 51 C Fy}, by (F2) and (III), it has an ), € T and I} C F} N F;
as a maximal set in {I C E|Z 5 I C Fy N F,} such that Iy C ;3. Let
a € I12\ Iy. Because o(l12) = o(FiNF;) C o(F;) = F; (j = 1,2),
one has a € g(l12) C F; = a(Fo U {z;}) = o{o(l) U {z,}) and a ¢
(0(lo) = a(Io\ {a})) € o(liz\ {a}. By (s4), z; € o(o(lo) U{a}) (j = 1,2).
Thus o(Fo U {z;}) C o(Fo U {a}) C o(F1 N F2) = F1 N F3, and hence
F; = 1N F, (j = 1,2), a contradiction. Therefore (F3) holds.

Let Fo,F1,...,F, € F satisfy Fp C Iy C ... C F, = E. Then by
(I)-(III), there exists I; € Z as a maximal set of Z in Fj (j = 1,2,...,k)
satisfying Fo =o(lp) CFi=0(l})C...CFr=0(Ix)=E,and Iy C I, C
... C I. In light of (i5), one has k¥ < m = maz{t € Np| there exist I;- €
I(j=0,1,...,t)withIjC I C...CIj} < co. Therefore, by the above
result, (i5) and (II), m = maz{k € No|3Fp, F1,...,Fx such that Fy C F; C
... C Fy, = E}. Say (F4) holds.

Hence (F,F) is a matroid of arbitrary cardinality. It is easy to check
that Z is the set of independent sets of (E, F).
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Corollary 1 Z C 2F is the collection of independent sets of a matroid
of arbitrary cardinality M on E if and only if Z satisfies (i1),(i2),(i4),(i5)
and (i3)": For X C E, if 1, I; € Maz{I C X|I € I}, then |I,| = |I2|.

Proof (=) By theorem 1, 7 satisfies (i1)-(i5) and every member in
T is finite. Suppose (i3)’ does not hold, i.e. there exist X C E,I,I> €
Maz{I C X|I € I} but |I1| # |I2|]. No harming to assume |I1| < |I2}.
Then by (i3), 3a; € I\ I; satisfies [ U{a1} € Z, a contradiction with the
selection of I;.

(¢<=) One asserts that for all I € Z,|I| < oo holds. Otherwise by (i2)
and |I| £ oo for some I = {z1,22,...} € Z, it induces § C I = {z1} C
I = {21,272} C ... C I;py1 = {Z1,-- s Zm1} C ... C I = {z1,22,...}, 2
contradiction to (i5).

Let I, I € T with |I| < |I2| and X = I U I. Then there must exist
maximal elements I} € Z (j = 1,2) in X satisfying I; C LG =12).
Hence |I;| < || € |I}| = |I}]. Moreover by I C I} and (i2), Ja € [{]\ 1 C
X\ I, = I\ I, satisfying I U {a} € Z. Namely, (i3) holds.

Corollary 2 Let M = (E, F) be a matroid of arbitrary cardinality with
rank m and p,C, Z as its rank function, families of circuits and independent
sets respectively. Then

(1) |I| £ m holds for all I € Z. Let X C E and Ix € T be a maximal
independent set in X. Then p(Ix) = p(X). Especially, p(I) = |I| for any
Iel

(2) For any C € C, it has |C| <m+1and p(C) = |C| - 1.

(3) If C1,C2 € C and z € C1 NC2, then it has C3 € C fitting C3 C
(C1uC)\ {z}.

(4) If A € Z, then for z € E, AU {z} contains at most one circuit.

Proof (1) By definition 1, the proof of theorem 1 and theorem 1, one
gets the needed .

(2) Let Ic be a maximal independent set contained in C. Then one
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has Ic U {a} ¢ T for Va € C \ Ic. By the minimality of dependence of
C, one has IcU {a} = C. Thus by (1), |C] = |Ig|+1 < m + 1 and
p(C) = p(Ic) = |C| - 1.

(3) Let C1,C2 € C,C1 # C2 and z € C; N Cy. Suppose no such Cs
exists. Then (C1 UC2) \ {2} € Z, and so [(CLUC2) \ {z}| = |(C, \ {z}) U
(C2)\{z}| = |C1UC5| —1. Besides, C;NC> C C, shows C;NC; € Z, and so
p(C1NC2) = |C1NCs|. If CLUC; € T, then C, C C,UC, induces C, € T,
a contradiction. Namely, C; UC; ¢ Z. However, (C,UC,)\ {2} C CLUCy,
[(CrUCe)\ {z}| = |C1 UCs| — 1 and (Cy UCs) \ {z} € 7 taken together
implies that (Cy U C3) \ {2} is a maximal independent subset in C;, U C,.

Since C; # Cj induces C; \ Cy # 0. Let e; € C; \ Ca. Then T 3
Ci\{ei} € CyUC:. By (i3) and |C1 \ {e1}| < |(C1 U C3) \ {2}], one
has that C; \ {e1} can be augmented to be a maximal independent set I
in C; UC;,. Because C; € C implies C; \ I # 0. Let e; € C; \ I. Then
e2 ¢ C1\{e1} and I C (C\{e1})U(C2\{e2}) = (C1UC>)\{e, e2} and hence
| < (C1UC2)\{e1, e2}| < [C1UCH| -2 < |C1UC| -1 = [(CLUC2)\ {2},
a contradiction to (i3)’. Hence such Cj is existed.

(4) Suppose A € T satisfies that there exists € E with two distinct
cireuits C1, Cs satisfying Cy UC2 C AU {z}. Then x € C; N Cy, and hence
by the above (3), there exists C3 € C satisfies C3 C (C, UC) \ {z} C A4,
contradiction to A € Z.

3 Characterizations

In this section, a paving matroid of arbitrary cardinality will be char-
acterized in terms of its closed sets, independent sets and circuits.

Theorem 2 Let M = (E,F) be a matroid of arbitrary cardinality
with rank . Then M is a paving if and only if every subset of E with at

most 7 — 2 elements is a closed set.
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Proof (=) Let Z be the family of independent sets of M. Then
|I| < r for all I € T by corollary 2, and besides, any circuit C fits to
|C| = . Let o be the closure operator of M and X C E with |[X|<r—2.
Then X € Z. Suppose X ¢ F. In virtue of (s1), X C o(X) holds. By the
maximality of X € Z in o(X), one has that XU{a} € Zfora € o(X)\ X is
a contradiction, and so o(X) ¢ Z and |o(X)| > r. r < |o(X)| follows that
for any a € o(X)\ X, X c XU{a} C o(X) and | X U{a}| < r—1 hold. By
the maximality of independence of X in ¢(X), X U {a} ¢ Z, and so there
exists a circuit Cx C X U {a}, and hence |Cx| < r — 1, a contradiction.
Say, X = o(X), equivalently, X € F.

(<=) Let o be the closure operator of M. Suppose X C E with |X| <
r — 2 is not an independent set of M. Then Ix C X C o(X) where Ix is
a maximal independent set in X, and besides by corollary 2 and definition
1, o(Ix) = o(X). However, |Ix| < |X| < r — 2 implies Ix € F, and
so o(Ix) = Ix C X C o(X) = o(Ix) = Ix, a contradiction. Therefore
X is an independent set of M. Suppose Y C E with |Y| =7 — 1 is not
an independent set of M. Considering the above discussion, one has that
Y is a circuit of M. By corollary 2 and definition 1, o(Y) = o(Jy) and
Y = Iy U{a}, where Iy is a maximal independent set in Y and a € Y'\ Iy.
On the other hand, |Iy| < |Y| = r — 1 induces Iy = o(lIy). Furthermore,
a ¢ Iy shows a ¢ (o(Iy) = o(Y)) 2 Y, a contradiction. That is to say, the
size of any circuits of M is at least r. Hence M is a paving.

Theorem 3 T C 2F is the collection of independent sets of a paving
matroid of arbitrary cardinality on E if and only if there is a positive integer
r such that Z satisfies (i3) and the following (PI1)-(PI3). For X C E
(PI) |X|<r—-1= X eI
(PI2) There is at least X with |X| = r satisfying X € T.
PR)r+1<|X|=>X¢T.

Proof (=) Let Z be the collection of independent sets of a paving
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matroid M = (E,F) with rank 7 and p as its rank function. Theorem 1
shows that Z satisfies (i3). By the definition of paving, one has that for any
circuit C of M, |r = p(E)| < |C|. Hence for X C E satisfying | X| <r -1,
X € 7 holds. Namely, (PI1) is correct. Since p(E) = r tells us that there is
at least a maximal element B C F in 7 satisfying p(B) = p(E), and hence
by corollary 2, |B| = p(B), i.e. (PI2) holds. In addition, if Z > X C E
with 7 + 1 < |X|, then by corollary 2, 7 = p(E) < p(X) = |X| =7 +1, a
contradiction, i.e. (PI3) holds.

(<=) By (PI1), one gets @ € Z, and so (i1) holds. (i2) holds because
of (PI1), (PI2) and (PI3). In addition, (PI3) means |X| < r < oo for all
X € I. Thus it is straightforward to obtain the hold of (i4) and (i5). By
theorem 1, 7 is the collection of independent sets of a matroid of arbitrary
cardinality M with 7 as its rank. (PI1) and (PI3) together implies that for
a circuit C of M, r < |C|. Namely, M is a paving.

Theorem 4 Let D be a collection of non-empty subsets of E. Then
D is the set of circuits of a paving matroid of arbitrary cardinality on FE if
and only if there is a positive integer k£ and a subset D’ of D such that
(PC1) every member of D’ has k elements, and if two distinct members D,
and D, of D' have k — 1 common elements, then every k-element subset of
D1UD;yisin D',

(PC2) D—TD’ consists of all of the (k+ 1)-element subsets of E that contain
no member of D'

Proof (=) Let M be a paving matroid of arbitrary cardinality on E
with rank r, D = {C C E|C is a circuit of M} and ¥ = r. Then by the
definition of paving and corollary 2, one knows r < |C| < r + 1 for any
CeD. SettingD' ={Ce€D||C]l=r}and D" ={C €D||C|=r+1}.
Evidently D" =D - D’.

If Dy, D; € D' with [D;ND;| = k—1, then there is a; € E\I; satisfying

Dj; = I;U{a;}, where I; is a maximal independent set in D; (j = 1,2), and
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|D1U D3| = |Dy|+|D2| = |DiNDa| =k+1. Let Y € D;UD,,|Y| =k and
Y ¢ D'. Then Y is an independent set of M. For any € (D, UD;)\Y,
one has Y U {z} is a dependent set of M, otherwise it induces that the
rank of M is at least |Y U{z}| =|Y|+1=k+1> r, a contradiction. In
light of the independence of Y and corollary 2, one obtains that Y U {z}
contains only one circuit. But Y € Dy U D,,|Y| = k and [D; U Dy| =
k+1=|Y|+1=|Y uU{z}| taken together follows x = (D; UD;)\Y, and
further Dy, Do C Y U{z} = D, U D>, contradiction with the unique circuit
contained in Y U {z}. Hence (PC1) holds.

Let X C E,|X| = r+ 1 and X contain none of members of D’. Then
X is dependent in M because the rank of M is r and Z ¢ D’ for Z C X.
By the definitions of circuits and D’, one has that Z C X is independent
in M. Hence X is a circuit of M, i.e. X € D”.

(=) Let I={IC E|X ¢ Dforall X C I}. Then it is easily to know
the hold of (i1) and (i2) for Z. Besides, by (PC2), for all X C E with
k +1 < |X|, one gets that 3Y € D — D' fits Y C X or 3D € D satisfies
DC X.Say X ¢ Z,i.e., I €T has|I| < k. Using this result, we prove that
(i4) and (i5) hold. Let I C E and |I| < k. If for VA C I, A € T is correct,
then by the definition of Z, I € Z, say, (i4) holds. Let Io, I,...,I; € T with
Io c I, C ... C I. By the above result, we have |I;| < k (1 < j <t), and
so t < k, further, maz{t € Ny| there exists Iy, I,...,I; € T such that Iy C
L C...CI}} £k < o0, say, (s5) holds.

By corollary 1, we only need to check the hold of (i3)'.

Let X C E, I, I, € Maz{I|I € Z,I C X} and || # |I2|. No harm-
ing to suppose |I;| < |I2|. Fora € I\ I1,1; U {a} ¢ T holds according
to the maximality of I; € 7 in X and [ U {a} C X. Hence there exists
D C D satisfying D C L U{a}. D € D-D7, thenk+1<|D| L
|I1 U{a}| = |I1] + 1 < |I2], a contradiction with |I; € Z| < k. If D € T,
then k = |D| < |I;| +1 < |I2| £ k. This implies |I5| = |I; U{a}| = |D|, and
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so D = I U{a} is a circuit and I U {a} € D', and hence |I;| = k — 1. Fur-
thermore, |I3| = k. If I3\ (I;U{a}) = 0, then it must demand I, = I, U{a},
a contradiction with the maximality of I; in X. If there is b € I\ (IU{a}),
by the same discuss as the above, I U {b} € D’. Then by (PC1), any k-
element subset of I U {a} U {b} is in D'. Repeated this augmentation, by
(PC1) and |2\ I1| < |I2| = k < oo, we have for any k-element subset of
L U(I;\ ) is in D, especially for (IoN L)) U (I \ ;) C LU (I2\ L),
we obtain (L NL)U(LL\ L) € D' say, b = (I NL)U(L\L) €D, a
contradiction with I, € Z. Therefore |I;| = |I;|. Namely (i3)’ holds.
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