ALTERNATING DOMINATION
IN ARC-COLORED DIGRAPHS

P. DELGADO-ESCALANTE AND H. GALEANA-SANCHEZ

ABSTRACT. An arc-colored digraph D is called alternating whenever
{(u,v), (v,w)} € A(D) implies that the color assigned to (u,v) is
different from the color of (v,w). In arc-colored digraphs a set of
vertices N is said to be a kernel by alternating paths whenever it
is an independent and dominating set by alternating directed paths
(there is no alternating directed path between every pair of its vertices
and for every vertex not in N there exists an alternating path from
it to some vertex in N). With this new concept we generalize the
concept of kernel in digraphs. In this paper we prove the existence of
alternating kernels in possibly infinite arc-colored digraphs with some
coloration properties. We also state a bilateral relation between the
property of every induced subdigraph of an arc-colored digraph D
of having a kernel by alternating paths and the property of every
induced subdigraph of the non colored digraph D of having a kernel,
with this we enounce several sufficient conditions for D to have an
alternating kernel. Previous results on kernels are generalized.

1. INTRODUCTION

1.1. General concepts and notation. Let D be a digraph, V(D) and
A(D) will denote the set of vertices and arcs of D, respectively. If S C
V(D) is a nonempty set then the subdigraph of D induced by the
vertex set S, D[S], is that digraph having vertex set S and whose arc set
consist of all those arcs of D joining vertices of S. Also, if F € A(D) is
a nonempty set then D[F], the subdigraph of D induced by the arc
set F, is the digraph with F as the arc set and whose vertices are the end
points of the arcs in F. An arc 2122 € A(D) is called an asymmetrical
arc (symmetrical) if 2021 € A(D) (2221 € A(D)); the asymmetrical part
of D (the symmetrical part of D) denoted by Asym(D) (Sym(D)) is the
spanning subdigraph of D whose arcs are the asymmetrical (symmetrical)
arcs of D. The arc (2),22) € A(D) is called as a §,S2-arc whenever
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z1 € $1 C V(D) and z; € S; C V(D). Let z € V(D), the set N*(z) =
{z € V(D) such that (z,z) € F(D)} is called the exterior neighborhood
of z, meanwhile the set A*(2) = {(z,2) € A(D) such that z € V(D)}
will be called the arc-exterior neighborhood of z. I C V(D) is an
independent set in D whenever A(D[I]) = 0. If W is a directed path
or cycle in D then {(W) will denote its length. If {z,,2,} C V(W) then
(21, W, z3) will denote the z;25- walk contained in W. If I C V(D) and
z € V(D) then a zI-walk is a zz-walk for some z € I. By C, we will
denote the directed cycle of length n. Let C = (0,1,...,m,0) be a directed
cycle of D, a pseudodiagonal of C is an arc f = (i,j) € A(D) — A(C)
such that i # j, {¢,7} C V(C) and £(i,C, j) < ¢(C) — 1. A pole of the
cycle C is the terminal vertex y of a pseudodiagonal (z,y) of C. Along the
paper all the walks, paths and cycles considered are directed ones.

D will be called a m-colored digraph if its arcs are colored with m colors.
We will denote by color(z,y) the color of the arc (z,y) € A(D) in a m-
coloration of D. F C A(D) is a monochromatic set if all of its elements
are colored alike. Then H C D is a monochromatic subdigraph of a m-
colored digraph if A(H) is a monochromatic set. Let us define the shadow
of D as the digraph obtained from D by deleting the colors of the arcs of
D, this digraph will be denoted by Sp.

For more of this general concepts on digraphs we refer the reader to {5] and

[3].

1.2. Kernels and alternating paths. Let D be a digraph. N C D is
a dominating set (also called an absorbent one by Berge and Duchet in
[6]) whenever from every vertex € V(D) — N there exists an 2N —arc in
D (it is important to mention that many authors differentiate the concept
of absorbent set from dominating set, however they are close related and
it can be showed by taking the reversal digraph, see [19] and [15]). A
kernel in D is an independent and an absorbent set of vertices of D. D
is called a kernel-perfect digraph whenever every induced subdigraph of
D has a kernel, and it is called a kernel-critical-imperfect digraph if every
proper induced subdigraph of D has a kernel but D does not have one. The
following claims will be used in the last section of this paper.

Theorem 1. D is a kernel-perfect digraph if one of the following conditions
holds:
(1) D has no cycles of odd length

(2) Every directed cycle of odd length in D has at least two symmetric
arcs

(3) Asym(D) is acyclic

(4) Every directed cycle of odd length in D has at least two consecutive
poles

(5) Every directed cycle in D has at least one symmetrical arc
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These claims were proved respectively by Richardson [24], Duchet [11],
Duchet and Meyniel [12], Galeana-Sénchez and Neumann-Lara [13], and by
Berge and Duchet [6]. Related results can be found in [25], (5], [22], [14],
[7], as well as in the survey (8].

Let D be a m-colored digraph. A subdigraph H of D is called alternating
whenever {(u,v), (v,w)} € A(D) implies that the color assigned to (u,v)
is different from the color of (v, w). If H is a path of length one (an arc)
then H is consider to be alternating.

Alternating paths and cycles have been studied by several authors in (4], [1],
[2], [16], [20], [21] and [26]. Applications of this concept appears from topics
of graph theory and algorithms (see [18], [23], [27]), to genetics (see [10])
and social sciences (see [9]). In specific J. Bang-Jensen and G. Gutin survey
in [1] theoretic and algorithmic results about alternating cycles and paths
in edge-colored graphs. They also shown useful connections between the
theory of paths and cycles in digraphs and alternating paths and cycles in
edge-colored graphs. In [17], G. Gutin, B. Sudakov and A. Yeo consider the
problem of the existence of an alternating cycle in 2-arc-colored digraphs as
a generalization of the alternating cycle problem in 2-edge-colored graphs
and the problem of the existence of a dicycle (an even length cycle) in a
digraph (which are, both of them, polynomial time solvable), they actually
proved that the alternating dicycle problem is NP-complete.

In this paper we relate this two concepts, the kernel and the alternating
coloration. The result is a generalization of the first one. In order to present
our mains results, let us first define the following concepts.

I C V(D) is an independent set by alternating paths in D (or simply
an a-independent set) if for every two different vertices in D there is no
alternating path between them in D. A set S C V(D) will be called an
absorbent set by alternating paths in D (or simply an a-absorbent
set) if for every x € V(D) — S there exists a zS-alternating path in D.
According with this definitions we will say that N C V(D) is an alter-
nating kernel of D (a-kernel) if N is an a-independent set in D and an
a-absorbent set in D as well. An m-colored digraph D will be called an
a-kernel-perfect digraph or simply an a-perfect one if every induced sub-
digraph of D has an a-kernel. D will be labeled as an a-kernel-imperfect
or simply an a-imperfect digraph if D has no a-kernel but every proper
induced subdigraph of D does. Now we present some propositions related
with the last definitions:

Proposition 1. Let D be a I-colored digraph (a monochromatic one) and
let Sp be its shadow. N is an a-kernel of D if and only if N is a kernel of
Sp (to prove it only notice that if D is a monochromatic digraph, then the
alternating paths of D are just the arcs of Sp).
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Corollary 1. Let H be a 1-colored digraph. H is an a-kernel-imperfect if
and only if its shadow, Sy, is a kernel-imperfect digraph.

Corollary 2. Let D be a 1-colored digraph. D is an a-kernel-perfect digraph
if and only if its shadow, Sp, is a kernel-perfect digraph.

. Let D be am-colored digraph. S C V(D) will be called an a-semikernel
(or an alternating semikernel) of D if it is an a-independent set and for
every x € V(D) — S, such that there exists an Sz-alternating path T in D,
there exists an zS-alternating path T in D. Notice that if N is an a-kernel
of D then it is an a-semikernel of D, and also observe that the empty set
is an a-semikernel of every possibly infinite digraph.

1.3. Statement of results. This paper has been structured in two sec-
tions. The first one gathers results for infinite arc-colored digraphs and uses
the concept of an alternating-semikernel in order to prove the existence of
alternating kernels in possibly infinite arc-colored digraphs in the following
way: first it is demonstrated for possibly infinite arc-colored digraphs with
a certain coloration property, that they have an a-kernel whenever every of
their induced subdigraph has a non empty a-semikernel; using this result
we prove the existence of an alternating kernel in possibly infinite colored
digraphs, by asking for the monochromaticity of the arc-exterior neighbor-
hood of every vertex and the alternating coloration of every cycle in D.

In the final section we state a bilateral relation between the alternating
kernel-perfection of an arc-colored digraph and the property of its shadow,
Sp, of being a kernel-perfect digraph. To prove it we first prove cer-
tain properties of alternating kernel-perfect and kernel-imperfect colored
digraphs: the existence of an a-kernel imperfect induced subdigraph in
every non a-kernel perfect arc-colored digraph, the strong connectivity of
a-kernel imperfect arc-colored digraphs, the absence of a non empty al-
ternating semikernel and also the monochromaticity of a-kernel imperfect
arc-colored digraphs such that arc-exterior neighborhood of every vertex is
a monochromatic set. This last result allow us to present several corollaries
asserting about the a-kernel-perfection of an arc-colored digraph.

2. MAIN RESULTS
2.1. a-semikernels.

Lemma 1. Let D be a m-colored digraph and &, the set of a-semikernels
of D ordered by the inclusion. Then the hypothesis of Zorn’s Lemma holds.

Proof, Let € be a chain in G and let us consider
u=|J{s|see}.

We must prove that il is an a-semikernel of D:
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1:

i1 is an a-independent set in D:

Suppose, by the contrary, that there exist u,v € U such that there is
an uv-alternating path in D. u € S; for some S; € € and v € 5, for
some S3 € €, then §; C S5 or S2 C S; (as 51, S, € €), without loss of
generality let us suppose the first case, so u,v € S», a contradiction (S2
is an a-independent set as a consequence of being an a-semikernel).

M satisfies the second property of an a-semikernel:

Let z € V(D) — U and suppose that there exists an {lz-alternating path
in D, T. Then, because the definition of i[, there exists u € S for some
S € € such that T is an uz-alternating path in D. Since S is an a-
semikernel, there exists a zs-alternating path in D for some s € S, let
us call such path 7/. We conclude that 7" is a zil-alternating path in
D,asseSCH).

O

Lemma 2. Let D be a m-colored digraph such that for every z € V(D)
it holds that A*(2) is a monochromatic set. Let S be a non empty a-
semikernel of D, consider B = {v € V(D) — S | there is no vS-alternating
path in D} and take H = D(B). If Sy is an a-semikernel of H, then SUSH
is an a-semikernel of D.

Proof. Due to the definition of an a-semikernel let us prove the following
facts:

1:

If SU Sy is not an a-independent set in D then there exists a spsn-
alternating path in D, with {s¢,sn} C Sg:
Suppose SUSy is not an a-independent set in D, so there exist vertices
so and s, in S U Sy such that there exists a sosn-alternating path in
D. Now, S is an a-independent set in D then {sg,s,} € S. In the
other hand, there is no SyS-alternating path in D because Sy C B
and because the definition of B. Besides, there is no SSg-alternating
path in D (by the contrary, as S is an a-semikernel, there exists a
Sy S-alternating path in D, a contradiction). Then {so,s.} C SH.
S U Sy is an a-independent set of D:
By contradiction, let us suppose that S U Sy is not an a-independent
set of D. Then it follows from the previous point that there exists T' =
(80,81, 82, - n) C D, a spsp-alternating path in D, with {so,s.} C
Sy. Consider A=V (D)—(BUS):
Claim 1: {j|1<j<n-1ys; € A} #6:
By the contrary, as V(D) = AU BU S, we have that for every j
such that 1 < j < n— 1 it holds that s; € SU B. If there exists
some j such that 1 < j < n—1and s; € S, then (so,7T’,8;) is a
Sy S-alternating path in D, in contradiction with the definition of
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B, so we have that for every j such that 1 < j < n—1, it holds that
sj € B. Then T C H which means that T is a SySy-alternating

path in H, a contradiction (because Sy is an a-independent set in
H). So Claim 1 holds.

Now, let
i= min {jlseA)
Notice that i is well defined (Claim 1). From the definition of A we
have that there exists a s;S-alternating path in D, let P = (s; =
T0,T15--sTm) C D such path. Now, color(s;_1,s;) # color(s;,siy1)
as T is an alternating path; besides (s;,s;+1) € F*(s;) and such set is
a monochromatic one by hypothesis, then color(s;, si+1) = color(s; =
70,71); and so (s, T, s;) U (s, P,7,) is a Sy S-alternating path in D
(it is certainly a path because of the choice of i and because P C A),
contradicting the definition of B. We conclude that S U Sy is an a-
independent set in D.
3: Let x € V(D) — (SU Sy). If there exists Q = (zo,x1,22,...,Zx =

z) C D, a (S U Sy)z-alternating path in D, then there exists some
a:(S U S)-alternating path in D:
If z ¢ B then it follows from the definition of B that there exists some
zS-alternating path in D and the affirmation holds. Then let us suppose
that z € B:

Claim 3.1: zp € Sy: if it is not the case then 29 € S, then Q is a
Sz-alternating path in D and so there is a zS-alternating path in
D (because S is an a-semikernel of D) in contradiction with the
assumption (z € B).
Claim 3.2: For every i, 0 < i < k, it holds that z; € SU Sy (SU Sy
is an a-independent set due to the point 2).
Claim 3.3: For every i, 1 <i < k — 1, we have that z; ¢ A: By the
contrary, there exists
t= 1<mm {i | z: € A},
and then there exists R, a z;s-alternating path in D, with s € S
(because of the definition of B and A). In other hand, as Q is an al-
ternating path we have that color(z¢-1,x:) # color(z¢, z¢+1). Con-
sidering that (z:,%:+1) € F*(x:) and that such set is a monochro-
matic one we haver that (z9,Q,z;) U (2, R, s) is a Sy S-alternating
path in D (it is a path because the choice of t and because R C A),
in contradiction with point 2. So Claim 3.3 holds.

We conclude that Q C H (consequence of the previous point and be-
cause A = V(D) — (BUS) and the point 2) and the affirmation holds
as Sy is an a-semikernel in H.
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It follows from point 2 and 3 that S U Sy is an a-semikernel of D. O

Lemma 3. Let D be a possibly infinite m-colored digraph such that for
every z € V(D) it holds that A*(z) is a monochromatic set. If every
induced subdigraph of D has a non empty a-semikernel, then D has an
a-kernel.

Proof. Take (&, C), the set of a-semikernels of D ordered with the inclusion
as the relation. It follows from Lemma 1 and Zorn’s Lemma that (&, C)
has a maximal element S*. We will prove that S* is an alternating kernel
of D:

By contradiction, suppose that S* is not an a-kernel of D. So due to
the definition of an a-kernel (recall that S*, as an a-semikernel, is an a-
independent set) we have that there exists € V(D) — §* such that there
is no zS*-alternating path in D. Now consider the set

B = {v € (V(D) — §*) | there is no vS*-alternating path in D}

and let H = D[B]. Now take Sy, a non empty a-semikernel of H (it exists
because of the hypothesis). In consequence of the Lemma 2 we have that
S* U Sy is an a-semikernel of D, in contradiction with the choice of S*.
Then the Lemma holds. O

Corollary 3. [22] Let D be a possibly infinite digraph. If every induced
subdigraph of D has a non empty semikernel then D has a kernel.

Proof. Let D¢ be the monochromatic digraph obtained from coloring D
with one only color. Then the hypothesis of the Lemma holds and as a
consequence D¢ has an a-kernel which is also a kernel of its shadow D, as
the Proposition 1 asserts. O

Theorem 2. Let D be a possibly infinite m-colored digraph such that:
a) For every z € V(D) A*(z) is monochromatic,

b) Every cycle in D is alternating, and

¢) There are no infinite exterior paths in D.

Then D has an alternating kernel.

Proof. Take U C V(D). Due to Lemma 2.1 we only must to prove that
H = D[U] has a non empty a-semikernel. Suppose, by the contrary, that
H has not a non empty a-semikernel. The following affirmations will allow
us to get a contradiction:
1: Consider {u,v} C V(D). Then every uv-alternating walk in D contains
as a subsequence an uv-alternating path in D:
Let W be an uv-alternating walk in D. By induction over £(W), the
length of W. If {(W) = 1 then W is an uv-alternating path. Assume
that the affirmation holds for every uv-alternating walk with length
¢ <nandlet W = (u= 2,21, 221 2n = v) C D be an uv-alternating
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walk with length n. If z; # 2; for every i # j then W is an uv-alternating
path in D. Suppose then that there exist ¢ and j, i # j, such that
2; = z;. Without loss of generality let us suppose that ¢ < j. Now, W
is an alternating walk, so color(2;—,, z;) # color(z;, zi+1). Even more, as
{(zi, 2zi41), (25 = 2i,2j41)} © F*(zi = z;), which is a monochromatic
set by hypothesis, then color(z;_1,2;) # color(z; = z,2;41). Notice
that W' = (u = 20, W, ;) U (2: = 2;,W,2, = v) CW C D is an
uv-alternating walk with length 4(W’) < (W), and it follows from
the inductive hypothesis that W’ contains as a subsequence an uw-
alternating path. We conclude the proof by noticing that T ¢ W/ c W.
Every closed walk in D is alternating:

Let W be a closed walk in D. We will proceed by induction over ¢(W). If
£(W) = 2 then W is a cycle and it is an alternating one by hypothesis.
Suppose that the affirmation holds for every walk with length £ < n
and let W = (u = 29,21,22,...,2n, = u) C D be a closed walk in D
with length n. If 2; # 2; for every ¢ # j, then W is a cycle and it is an
alternating one by hypothesis again. Let us assume then that there exist
tand j, ¢ # j, such that z; = z;, without loss of generality suppose i < j.
Consider W1 = (z;, W, z;) C W and Wy = (20, W, z:) U(2;, W, 2,) C W.
Both of them, W), and W,, are walks with length strictly less that
¢(W), so it follows from the induction hypothesis that W; and W»
are alternating walks and then W, UW; = W is also alternating (as
At(z;) = Ft(z;) is a monochromatic set).

For every u € U it holds that A*(u) # §:

Assume by contradiction that there exists u € U such that A+(u) = 0.
Clearly {u} is an a-semikernel of H, a contradiction.

There exists a sequence of vertices

S = (wi)ien,
defined as follows: for every 4 there exists an u;u;,;-alternating path
Ti = (ui = T4, T4, o0y Th, = uig1) C D,

and there is no u;,,u;-alternating path in D (as a consequence of the
previous point and the fact that {u;} is not an a-semikernel).

: For every i such that i > 0, and for every j & {i — 1,i + 1}, it holds

that ;NT; =0:
Proceeding by contradiction, suppose that there exist i and j as the
statement and such that there exists w € T; N T;. Without loss of
generality assume that i < j. Then the walk
i-1
W= (w71.,iaui+1) U( U Tk) U (uj,TE",’CU)
k=i+1
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is alternating because of (2). So, in particular, W’ = (u;, W,u;_1) is an
uju;_1-alternating walk and in consequence, by (1), we have that W’
has an uju;_1-alternating path, in contradiction with point (3).
6: S is not an infinite sequence of different vertices:

Suppose it is. Now, if for every ¢ # j it holds that T; and Tj are
internally disjoint, then |J7; contains an infinite exterior path in D, a
contradiction. In other case, there exist ¢ and j, 7 # j, such that T; and
T; intersect each other in something more than end points. If follows
from the previous point that j € {¢ — 1,7+ 1}. Then consider, for each
t, the vertex z; € V(T;+1) as the last vertex in T34, which is also in T;.
Finally notice that the walk

(Jl(ws = 2b, Tiy 2:) U (@3, Tir, wie2)]

contains again an infinite exterior path in D, a contradiction.

7: From the previous point we can conclude the existence of two different
natural numbers m and » such that m < r and u,,=u,.

8: Take the closed walk

and consider
G = D[W].
By using (2) we know that G is an alternating digraph.
9: So
W' = (um+1, W, tm)
is an alternating walk in D and because of point (1) we conclude that
W' contains an %m.s1um-alternating path in D, a contradiction (recall
that u,, € S).

O
2.2. a-perfect and a-imperfect digraphs.

Lemma 4. Let D be a finite m-colored digraph. If D is not an a-perfect
digraph then D contains an a-imperfect induced subdigraph.

Proof. Tt follows directly from the facts that D is finite and digraphs with
at most one vertex are a-kernel-perfect digraphs. a

Lemma 5. Let D be a m-colored finite digraph and such that for every
z € V(D) it holds that A*(z) is a monochromatic set. If D is an a-kernel-
imperfect digraph then D does not have a non empty a-semikernel.

Proof. Suppose that D has a non empty a-semikernel S. If for every v €
V(D) — S there exists a vS-alternating path in D, then S is an a-kernel in
D, a contradiction, so
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B = {v € V(D) — S | there is no vS-alternating path in D}

is a non empty set and it holds H = D[B)] has an a-kernel Ny (as D is an a-
imperfect digraph) which is also an a-semikernel of H. Now, because of the
Lemma 2 we know that Ny US is an a-independent set, even more, S is an
a-absorbent set in the subdigraph induced by V(D) — B, meanwhile Ny is
an a-absorbent set in H. So Ny US is an a-kernel of D, a contradiction. O

Lemma 6. If D is an a-kernel-imperfect m-colored digraph then D is a
strong digraph.

Proof. Suppose that D is not a strong digraph then there exists a partition
of V(G) in two sets, let us say {V1, V2}, such that there exists no V; Ve-arc
in D. Considering that D is an a-imperfect digraph then we know about
the existence of an a-kernel N of D[V}]. The two following affirmations
will prove that N is a non empty a-semikernel of D, in contradiction with
Lemma 5:

N is an a-independent set in D: if there exists a N N-alternating path in
D then such path in not contained in V; (as N is an a-independent set in
D[V1]) and so the mentioned path has a V; Vs-arc, a contradiction.

If there exists a Nz-alternating path T in D, with x € V(D) — N, then
T C D[V1] (as we suppose that there is no ViVz-arc in D), so z € W;
and then there exists a zN-alternating path, because N is an a-kernel in
D[w). a

Lemma 7. Let H be an arc-colored a-imperfect digraph. If H is such that
Jor every z € V(D) it holds that A*(z) is a monochromatic set, then H is
a monochromatic digraph.

Proof. For each z € V(H) consider H, = H — {z}. As H is an a-imperfect
digraph and it contains H, as an induced subdigraph, then H, has an a-
kernel IV;. In particular this imply that for every v € Nj(z) (NA(2) # 0
as H is an a-imperfect digraph) there exists a vN,-alternating path in H
(notice that v ¢ N,, in other case N, absorbs z in H by the alternating
path (z,v) € A(D), in contradiction with the absence of a-kernels in H).

1: For each 2z € H consider the following sets:
Zy ={z = 2o},
Z; = {z; € V(D) | (zi-1, z:) € A(D)},
AY(Z;) = {(zi,2i41) € A(D) | z: € Z; and z4, € V(D)}

(for i # j, Z; and Z; can intersect each other).
2: There exists a natural number n such that

At < ) A%z

t=0
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Let (x,y) € A(H) and 2z € H. As H is a strong digraph (due to
the Lemma 6) then there exists a zoz-path, let us say T = (z =
Lo, T1, X2, .., Tk = T) € H. So (z,y) € AT(Z)).

3: For every p such that 0 < p < n, the following digraph is a monochro-
matic one:

4
J = D[| J A*(2)):
t=0
By induction over p. If p=0 then A(J) = A*(Z;) = A*(z) which
is a monochromatic set by hypothesis, and so the affirmation holds.
Suppose the veracity of the statement for p = ¢ < n — 1, that is, the
following digraph is a monochromatic one:

q

U A+(Zt)]»

t=0

let us say its color is red. Now let p = g+1, then we must first recall that
for each 241 € Zy4 it holds that A*(zg+1) is a monochromatic set by
hypothesis, let us label its color with . Now, for each zy41 € Zg41 there
exists z, € Zg such that (24, 2g+1) € A(H) (because of the definition of
Z,). Besides, for each 2441 € Zg41 there exists a Zq+1 Nz, -alternating
path T in H, this because N, is a kernel of H — {2,} (notice that
A}, (zq+1)=A§=q (2g+1))- We can prove that z = color(zy, 2g+1) (if this
equality does not hold then (zq, 2¢+1) UT is a 2, N, -alternating path in
H, in contradiction with the a-imperfection of H), even more, we know
that color(zq, zg+1) = red (induction hypothesis), so for every 2441 €
Z,41 every arc in A% (z441) is red. In conclusion: J is a monochromatic
digraph.

It follows from the previous point that H is a monochromatic digraph. 0O

Theorem 3. Let D be a digraph. Its shadow, Sp, is a kernel-perfect di-
graph if and only if for every m-coloration of D and such that for every
z € V(D) it holds that A*(2) is a monochromatic set, we have that D is
an a-kernel-perfect digraph.

Proof. In order to prove the sufficiency let us suppose that for every m-
coloration of D we have that D is an a-perfect digraph, whenever it holds
that for every z € V(D) the set A*(2) is monochromatic. Now, take a
monochromatic coloration € of D, clearly € satisfies the hypothesis of the
Theorem (because for every z € V(D) the set A*(z) is a monochromatic
one), so D with this coloration is an a-perfect digraph, which means that
every induced subdigraph H of D has an a-kernel. Then, due to the Corol-
lary 2 we can conclude that Sp is a kernel perfect digraph.
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We will prove the necessity by contradiction. Let D be an m-colored di-
graph such that its shadow, Sp, is a kernel-perfect digraph. Take an m-
coloration of A(D) with the property of the set A*(2) to be monochromatic
for every z € V(D), and suppose that D is not an a-perfect digraph. It
follows from Lemma 4 the existence of a colored a-imperfect induced subdi-
graph H of D, and we know because of the Lemma 5 that such subdigraph
does not have a non empty a-semikernel. Now, from Lemma 7 we know
about the monochromaticity of H, so its shadow, Sy (which is also a proper
induced subdigraph of Sp) is a kernel-imperfect digraph (consequence of
Corollary 1), a contradiction. O

Theorem 4. Let D be a m-colored digraph such that for every z € V(D)
it holds that A*(2) is a monochromatic set. D is an a-kernel-perfect di-
graph if and only if the shadow of every strong and monochromatic induced
subdigraph of D is a kernel perfect digraph.

Proof. (necessity) Assume there exists H, a strong and monochromatic in-
duced subdigraph of D and such that Sy, its shadow, is not a kernel-perfect
digraph, then there exists F, a kernel-imperfect induced subdigraph of Sy.
Notice that F = Sp,, with Fy an induced subdigraph of H (and D). So
it follows from Corollary 1 that Fp is an a-kernel-imperfect digraph, in
consequence D is not an a-kernel-perfect digraph.

(sufficiency) By contradiction. Suppose D is not an a-kernel perfect di-
graph. Lemma 4 asserts there exists H, an a-kernel-imperfect induced
subdigraph of D. We know H is a strong and monochromatic digraph
(Lemmas 7 and 6), so it follows from Corollary 1 that Sy, the shadow of a
strong and monochromatic induced subdigraph of D, is a kernel-imperfect
digraph, a contradiction. 0

Corollary 4. Let D be a m-colored digraph and consider Sp, its shadow.
If Sp has no cycles of odd length, then D is an a-kernel perfect digraph.

Corollary 5. Let D be a m-colored digraph and consider Sp, its shadow.
If every directed cycle of odd length in Sp has at least two symmetric arcs,
then D is an a-kernel perfect digraph.

Corollary 6. Let D be a m-colored digraph and consider Sp, its shadow.
If Asym (Sp) is acyclic, then D is an a-kernel perfect digraph.

Corollary 7. Let D be a m-colored digraph and consider Sp, its shadow.
If every directed cycle of odd length in Sp has at least two consecutive poles,
then D is an a-kernel perfect digraph.

Corollary 8. Let D be a m-colored and complete digraph and consider Sp,
its shadow. If every directed cycle in Sp has at least one symmetrical are,
then D is an a-kernel perfect digraph.
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Proof. The sufficient condition of each of this Corollaries imply Sp is a
kernel-perfect digraph (see Theorem 1), and then every induced subdigraph
of Sp is a kernel-perfect digraph (if H, is an induced subdigraph of Hj,
which is an induced subdigraph of D, then H, is and induced subdigraph
of D). So the shadow of every induced subdigraph of D is a kernel-perfect
digraph, in particular this happens for the shadow of every strong and
monochromatic induced subdigraph of D. We conclude D is an a-kernel-
perfect arc-colored digraph as a consequence of Theorem 4. O

Remark 1. In Theorem 2 if we ask only for the monochromaticity of A*(2)
for every z € V(D) then the result will fail.

Proof. Consider the following digraph D: V(D) = {vp,v1,v2,z} and A(D) =
{(vo,v1), (v1,v2), (v2,v0)}U{(z,v;) with 0 < ¢ < 2} and such that the cycle
(vo,v1,v2,90) C D is a monochromatic one, let us say colored red, and the
arcs from z are all colored blue. 0
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