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Abstract: Let G be a simple connected graph containing a perfect match-
ing. G is said to be BM-extendable if every matching M whose induced
subgraph is a bipartite graph extends to a perfect matching of G. In this
paper, for recognizing BM-extendable graphs, we present some conditions
in terms of vertex degrees, including the degree sum conditions, the mini-
mum degree conditions and the Fan-type condition. Furthermore, we show
that all these conditions are best possible in some sense.

Keywords: matching; bipartite matching; bipartite matching extendable;
degree

1 Introduction

Graphs considered in this paper are finite and simple. Let G =
(V(G), E(G)) be agraph. For V' C V(G), we denote by G[V'] the subgraph
induced by V’. For M C E(G), set

V(M) = {ve V(G): thereis an z € V(G) such that vz € M}.

M C E(G) is a matching of G if V(e)NV (f) = @ for every two distinct edges
e, f € M. A matching M of G is perfect if V(M) = V(G). The matching
cxtendability is a significant topic in matching theory [3]. Plummer (5]
first proposed the notion of n-extendability: A graph G is said to be n-
extendable if every matching M with n cdges extends to a perfect matching.
There has been an extensive study on the characterizations of n-extendable
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graphs in the literature [6, 9, 10]. On the other hand, Yuan [11] suggested
a variant of n-extendability: A graph G is said to be induced matching
extendable (IM-extendable in short) if every induced matching M extends to
a perfect matching. From a viewpoint of linking the matchings of bipartite
graphs to the ones of non-bipartite graphs, we investigate another variant
as follows. We say that a matching M is a bipartite matching if G[V (M) is
a bipartite graph. We further say that G is bipartite-matching extendable
(BM-extendable in short) if every bipartite matching M of G extends to a
perfect matching of G. When G itself is bipartite, this concept coincides
with that of n-extendability (for all n). In our previous paper [8], we proved
that the recognition of BM-extendable graphs is hard in a computational
complexity point of view, and characterized the BM-extendability of cubic
graphs, complete r-partite graphs and claw-free graphs; some elementary
properties of BM-extendable graphs were also studied.

Plummer|6] developed the degree-sum and neighborhood union condi-
tions for n-extendability. For instance, he presented the following result:

¢ Let G be a graph on p vertices with p even, and let n be an integer
with 1 < n < &. If d(u) + d(v) > p + 2n — 1 for each pair of nonadjacent
vertices © and v in G, then G is n-extendable.

Xu and Yu [9] established another degree-sum conditions and Fan-type
conditions. As an example:

* If K(G) > 2n + 1 and max{d(u),d(v)} > & + n for each pair of
nonadjacent vertices u and v in G, then G is n-extenda.ble

Similarly, for IM-extendability, researchers obtained a number of results,
e.g.,

e Let G be a graph with 2n vertices. If d(u) + d(v) > 2[42] for each
pair of nonadjacent vertices v and v in G, then G is IM-extcndable ([m.

oIfk > [2?"], then any k-regular graph G is IM-extendable ([4]).

In this paper, we study this type of sufficient conditions for BM-extendable
graphs. In a condition, we shall derive a lower bound b for some degree-type
parameter ¢(G) such that all graphs with ¢(G) > b are BM-extendable.
And we say that the lower bound b (or the condition) is best possible (or
sharp) if there exists a non-BM-extendable graph G such that ¢(G) = b—1.
That is to say, this b is the minimal value to ensure that all graphs G sat-
isfying ¢(G) > b are BM-extendable.

The paper is organized as follows. In Section 2, we present some no-
tations needed in this paper and some preliminary results. In Section 3,
for BM-extendability, we obtain the degree sum conditions and minimum
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degree conditions for general graphs and claw-free graphs and construct
graphs to show that these conditions are best possible. In Section 4, we
give a Fan-type condition.

2 Preliminaries

In this paper, we follow the graph-theoretic terminology and notation
of 1, 3]. We shall write GUH = (V(G) UV (H), E(G) U E(H)), the union
of two graphs G and H, and kG for the union of k disjoint copies of G. The
join G + H is obtained from G U H by adding all possible edges between
G and H. For V' C V(G), denote by G — V' the subgraph obtained from
G by deleting all the vertices in V’ together with their incident edges. For
M C E(G), let G — M denote the spanning subgraph of G with edge set
E(G)\ M. Let K, denote the complete graph with n vertices and K,
denote an empty graph with n vertices. Let K, . denote the complete
bipartite graph that the cardinality of the two maximal independent sets
are n and m respectively. The neighbor set of a vertex u in graph G,
denoted by N(u), is the set of vertices adjacent to u. Let o(G) denote the
number of odd components of graph G, and §(G) the minimum degree of
G. A graph G is called claw-free if it does not contain K 3 as an induced
subgraph.

The following preliminary results are important to our work.

Lemma 1 (Tutte's Theorem) [1}. A graph G has a perfect matching if
and only if o(G ~ S) < |$] for any S C V(G).

Lemma 2 (Ore’s Theorem) [1]. If G is a graph with d(u) + d(v) >
|V(G)| — 1 for each pair of nonadjacent vertices u and v in G, then G has
a hamiltonian path.

Lemma 3 (Fan’s Theorem) [2]. Let G be a 2-conncected graph with
V(@) > 3. If max{d(u),d(v)} > Mﬂl for each pair of nonadjacent
vertices u and v with d(u,v) = 2, then G is hamiltonian.

Lemma 4 [3]. Every connected claw-free graph with an even number
of vertices contains a perfect matching.

Lemma 5. If M is a bipartite matching of a claw-free graph G, then
|N(u) NV (M)| < 4 for each vertex u € V(G) \ V(M).

This is so because if |N(u) N V(M)| = 5, then there would be a claw
formed by vertex u and three adjacent vertices in V(M).

For a subset S of V(G), let my(S) be the number of the edges of the

297



maximum bipartite matching in G[S]. By Lemma 1, we obtain the following
necessary and sufficient condition for BM-extendable graphs.

Theorem 1. A graph G is BM-extendable if and only if
o(G — 8§) < |8| - 2my(S) for any S C V(G).

Proof. Suppose that G is a BM-extendable graph and S is an arbitrary
subset of V(G). Let Ms be a maximum bipartite matching in G[S). Clearly,
G —V(Ms) has a perfect matching. Let ' = S\V(Mg) C V(G -V (Ms)),
by Lemma 1, we have

o(G - S) = o(G — V(Ms) ~ §') < |S'| = |S| — 2ms(S).

Conversely, suppose that o(G — S) < |S| — 2my(S) for any S C V(G).
We will prove that G is BM-extendable. Let M be a bipartite matching in
G and S’ an arbitrary subset of V(G — V(M)). Then S = S'UV(M) is a
subset of V(G), and so |M| < m(S). Thus

o(G = V(M) = §') = oG - 5) < S| - 2ms(S) < |S] - 2|M| = ||

By Lemma 1 again, G — V(M) has a perfect matching. The proof is com-
pleted. O

Corollary 2. A graph G is BM-extendable if and only if for any S C
V(G),

(i) o(G — 8) < |5], and
(ii) o(G — S) = |S| - 2k (0 < k < 1) implies that m,(S) < k

3 Degree Sum and Minimum Degree Condi-
tions

We first introduce the degree sum condition of BM-extendability for
general graphs.

Theorem 3. Let G be a graph on 2n vertices. If d(u)+d(v) > 2[32]-1
for each pair of nonadjacent vertices w and v in G, then G is BM-extendable

Proof. Clearly, the result is true when n = 2, so we suppose n > 3 in
the sequel. Let M be a bipartite matching in G and let G' = G -~ V(M).
It is sufficient to show that G’ has a perfect matching. If |M| = 1, then for
each pair of nonadjacent vertices v and v in G’,

dor () + dor (v) = de(u) + de(v) — 4 > 20— 2 = [V(G)).
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By Lemma 2, G’ has a hamiltonian path, and so has a perfect matching.
If [M| > 2, there are two nonadjacent vertices z and y in V(M). Then

23~ 1 < do(a) + do(w) < 2(2n - M),

implying |M| < |%]. So we have, for any nonadjacent vertices u and v in
!

dor (w) + der (v) > da(w) + da(v) — 4M] > 2[37"] _4M| -1

> -2|M|-1=|V(G)|-1.
By Lemma 2, G’ has a perfect matching. The proof is completed. O

Corollary 4. Let G be a connected graph on 2n vertices. If §(G) >
[32'-1], then G is BM-extendable.

Remark. The lower bounds in the above two results are sharp. To
see this, we construct a family of graphs as follows: when n = 2, let
G = Ko+ Ko; whenn = 3,let G = Cs+Ko; whenn > 4,1let G = K[%] g1+
K|g2j-1,13)+1- Denote by (X,Y) the bipartition of K|z|_1,12]+1 with
|X| = |2] +1 and |Y| = |2] — 1. Clearly, [V(G)| = 2n; 6(G) = [} - 1;
d(u) + d(v ) > 2[32"] —2 for each pair of nonadjacent vertices v and v in G;
d(u)+d(v) = 2{33] -2 for any two vertices u and v in X. However, G is not
BM-extendable. For, according to Theorem 1, we can choose S = V(G)\ X
so that |S] = [32] — 1, mp(S) =[], and o(G - S) = |X| = [5] +1 >
13) — 1 =S| - 2ms(S5), as required.

If we restrict graphs to be k-regular, the following theorem shows that
the lower bound of minimum degree can be slightly improved. We first
prove the following lemma.

Lemma 6. Let G be a k-regular connected graph with n vertices and
niseven. If £ > 5 — 1, then G has a perfect matching.

Proof. Suppose that G is a k-regular connected graph on n vertices
and n is even. When k > Z, by Lemma 2, G has a perfect matching. When
k = % — 1, suppose the result is false. Then, by the fact that o(G — S)
and |S| have the same parity, there must be a subset S of V(G) such that
o(G — 8) > |S| + 2. Denote by Gy, ...,Gi the odd components of G — S.
Then ! > |S| + 2, and so n > 2|S| + 2, implying 1 < |S| < § — 1. Since
k <|V(G;)| + 15| — 1 for each 1 < i < I, we have

n
V(G > k=S| +1=2 = ISl.
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Thus
n> va Ol +18] 2 (nS|+2)(— —1SI) +|S1.

It follows that [S|* - (3 — 1)|S| > 0. So we have |S| = % — 1, and then
! > 3 +1, implying that l=%4+1and |V(G)|=1(1 < it <1). By the
(3 - 1) regularity of G, each vertex of V(G;) (1 <4< % +1) is adjacent
to all the vertices in S. Thus the degree of vertex in .S’ is at least § + 1.
This contradiction completes the proof. O

Theorem 5. Let G be a k-regular graph on 2n vertices. Then G is
BM-extendable if

if n =1 (mod 4),
otherwise.

k>{ }%—_{

Proof. Let G be a k-regular graph on 2n vertices. It is easy to check
that the result holds for n < 3, and so we suppose n > 4. If k > [3"],
by Corollary 4, G is BM-extendable. Thus, we need only consider the case
that n = 1 (mod 4) and k = 3221, Let M be a bipartite matching of G
and put G' = G — V(M). If [M| > k = 2271 we have |V(M)| = 2|M| >
3n—1> 2n = |V(G)|, a contradiction. Thus |M | < k. Furthermore, by the
fact that 2|M| = |[V(M)| < 2n — (k — |M]|), we have M| < 2n -k = ol
If M| < 25%, then §(G') 2 k — 2{M| > n — |M| = ) By Lemma 2,
G’ has a perfect matching. If [M| = "‘H , then |V(G')| =n — 1. By the k-
regularity of G, we can see that G [V(M )] is a complete bipartite graph and
every vertex in V(M) is adjacent to every vertex of G'. So G’ is (k—2|M|)-
regular. Note that k — 2|M| = 252 = Mzill — 1. If G’ is connected, then,
by Lemma 6, G’ has a perfect matching. If G’ is not connected, then by the
regular degree Mﬂ —1 we see that G’ has precisely two components each

of which is a complete graph with M-G—L vertices. Since n =1 (mod 4),

MQ'M = 251 is even. It follows that G’ has a perfect matching. Thus G
is BM extendable, completing the proof. O

Remark. This condition is best possible. To show this, we distinguish
the following four cases to construct graph G.

Case 1. n =0 (mod 4).

Let (X,Y) be the bipartition of a complete bipartite graph Kz, 2 with
X ={uy,..,ug} and Y = {vy,.. »vz} and let e = uzva. Then let

G=(K%,%—e)+(lf .|.1+Kz:. 1) — E,

300



where we set W = V(fg._l) = {w1,...,wz-1} and
’ . n ,_n
E ={u,-wi:ISzSE——l}U{v,'wi:ISzg5—1}.

We can see that G is ([32] — 1)-regular. Let S = X UY UW. Then
o(G-8)=2+1>2-1=5|-2my(S), and so G is not BM-extendable
by Theorem 1.

Case 2. n =1 (mod 4).

Let G = (K[%H‘N - M+ ((KL%J+1 - E(C))u K[%J_l), where M’
is a perfect matching in Kya1,12) and C is a hamiltonian cycle in K|z 41.
We can see that G is (| 3] — 1)-regular. Since, let S = V(K(a1 31— M),
o(G - 8) =2 >0 =|S| - 2my(S), G is not BM-extendable by Theorem 1.

In case 3 that n = 2 {mod 4), let
G =Kyt1,3+41 + ((Kg — E(C))UKy_),

where C is a hamiltonian cycle in K'z. In case 4 that n = 3 (mod 4), let
G = Kiy31,131+2K 3. Clearly, in both cases, G is ([32] — 1)-regular, and
G is not BM-extendable by a similar argument as above.

If we restrict graph G to be claw-free, the lower bounds for degree sum
and minimum degrec can be improved greatly when |V (G)] is large.

Theorem 6. Let G be a claw-free graph on 2n vertices. If d(u)+d(v) >
2n + 3 for each pair of nonadjacent vertices u and v in G, then G is BM-
extendable.

Proof. Let G be a claw-free graph on 2n vertices and M a bipartite
matching of G. Put G’ = G — V(M). If we can prove that G’ is connected,
then by Lemma 4 G’ has a perfect matching. Suppose to the contrary
that ¢’ is disconnected. Let G; and G2 be two components of G’, and let
u € V(G) and v € V(G2). By Lemma 5, we have

2 + 3 < dg(u) + dg(v) < |V(G1)|+ 3+ |V(Ge)| +3 < 2n — |[V(M)| +6,
implying |M| = 1. Then, for any nonadjacent vertices x and y in G’,
der(z) + der (y) = do(z) + de(y) —422n -1 = |V(G)| + 1.

By Lemma 2, G’ has a hamiltonian path, and thus G’ is connected. This
contradiction completes the proof. O

Theorem 7. Let G be a claw-free graph on 2n vertices and §(G) >
2[%] + 1. Then G is BM-extendable.
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Proof. If §(G) > n + 2, then for any nonadjacent vertices « and v in
G, d(u) 4+ d(v) > 2n + 4 and by Theorem 6 G is BM-extendable. Thus, we
need only consider that n is even and §(G) = n + 1 in the sequel. We can
see that the result is truec when n = 2, so we suppose n > 4. Let M be a
bipartite matching of G and put G’ = G — V(M). Denote by Gy, ..., G, the
components of G’. If | = 1, then G’ has a perfect matching by Lemma 4.
If [M] =1, then §(G") 2 §(G) —2 =n -1 = G 4nd s0 by Lemma 2
G’ also has a perfect matching. Now, we suppose that { > 2 and [M| > 2.
Since, by Lemma 5, n 4+ 1 = §(G) < |[V(Gi)| +3 (1 < i < 1), we have
[V(Gi)| 2 n -2, and so

i
2= V(G + V(M) 2 Un - 2) +2|M|. (1)

=1

If I > 3, then n < 2, a contradiction. Thus ! = 2, and then by (1), |M| =2
and |V(Gy)| = |V(G;)] = n — 2. Since n is even, G; and G, are even
components and again by Lemma 4, G’ has a perfect matching. Therefore,
G is BM-extendable and the proof is completed. O

Remark. The above two results are best possible. Indeed, let G =
Cs+ (Kn—2U Kp_2) when n is odd; G = Cy + (Kpn—1 U K,,—3) when n is
even. We can see that G is claw-free with |V(G)| = 2n and §(G) = 2[2].
For each pair of nonadjacent vertices u and v in G, d(u) + d(v) > 2n + 2,
and there are two nonadjacent vertices whose degree sum equals 27 + 2.
But G is not BM-extendable for the reason that G — V(M) has no perfect
matching, where M is a perfect matching of the Cy.

If we restrict a claw-frec graph to be k-regular, the lower bound of
minimum degree can also be improved (see [8]).

4 Fan-type Condition

We present another condition in terms of degree of two nonadjacent
vertices for BM-extendable graphs. The connectivity of a graph G, denoted
by x(G), is the minimum k that G has a vertex set V' with |[V’| = k and
G — V' is disconnected.

Theorem 8. Let G be a graph on 2n vertices. If £(G) > 2| 2] +1 and
max{d(u),d(v)} > [32] for any nonadjacent vertices u and v in G, then G
is BM-extendable.

Proof. Let G be a graph satisfying the hypotheses of the theorem. It
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is obvious that the result holds for n < 3, and thus we may suppose n > 4
in the sequel. Let M be a bipartite matching of G, and G' = G — V(M).

Claim. For any nonadjacent vertices « and v in G,

max{dc;f(u),dgr(v)} > w

In fact, if |M| = 1, then

max{de (u), der (v)} 2 max{de(u),dc(v)} =2 > | %21 —22 _W(zG 2,

If |M| > 2, let z and y be two nonadjacent vertices in V (M), we have
3n
[51s max{dg(z),de(y)} < 2n — |M]|,

and so |M| < 2n — [3] = |%]. Thus, for any nonadjacent vertices u and
vof &,

max{do(u), der (v)} 2 max{de(u), da(v)} - 21M| > [ 2] ~ 2M]

4

In the following, we will show that G’ has a perfect matching by this
claim.

If 1 < |M| < |3] -1, then &(G’) > «(G) — 2|M| = 3, and so by
Lemma 3 there is a perfect matching in G’. If |M| = %], then we have
[V(G")| = 2n — 2|M| = 2[%]; for any nonadjacent vertices v and v of G,

max{der(u),dor @)} 2 L )= (21 @)

And since x(G) > 2|3] + 1, G' is connected. If G’ is 2-connected, by
Lemma 3 again, G’ has a perfect matching. Otherwise, let up be a cut
vertex of G’ and denote by Gy, ..., Gi the components of G’ — ug. We shall
prove I = 2. Suppose to the contrary that ! > 3, and thus there are three
vertices u;,us and uz with u; € V(G;),1 < ¢ < 3, among which at least
two vertices, say u; and up, have degree at least [2] by (2). Then the
number of vertices of the component G; containing u; (i = 1,2), is at least
[%], and thus

V(@) > V(G +V(G2)l +1 2 2[%1 +1=[V(G)+1,
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a contradiction. Hence, G’ has just two components G; and G,. By (2) we
may assume that

(51 V(@I <251 -2 and [V(Ga)| = V(G- IV(G)] -1 % [5]-1

Furthermore, G must be a complete graph. Otherwise, let  and v be two
nonadjacent vertices of G5. Then

max{dg, (u),dg, (v)} 2 max{de(u), d'(v)} -1 > fg] =12 |V(Gy)],

a contradiction. Thus for any vertex v € V(Gy), der(v) < [2] ~ 1, and so
by (2), for any vertex u € V(G1), dgr(u) > [%]. Moreover,

o, (u) 2 dor(uw) — 12 5] -1> LG

This implies 6(G;) > LK(—zcﬁH, and then by Lemma 2 G, is hamiltonian.
Since G’ has even number of vertices, we see that only onc of G; and G5 is
an odd component. So, the cut vertex ug can be matched to a vertex v of
the odd component. By the fact that G — v has an even hamiltonian path
if v € V(G1) and G2 — v is a complete graph with even number of vertices
if v € V(G2), we assert that G’ — {ug,v} has a perfect matching M’. So,
M'U {ugv} is a perfect matching in G’. The proof is completed. O

Remark. In the above result, neither of the two lower bounds can
be reduced. To see this, we first consider graph G = K 13]+1,134+1 +
(Ka131-3 U K1), where n > 3. We can see x(G) = 2| 2] + 2; for any two
nonadjacent vertices u and v of G, max{d(u),d(v)} > [3] - 1; for any
two nonadjacent vertices in V(K2 J1+1,13J+1); the lower bound [37"] -1
can be obtained. Let S = V(K{z)+1,13)+1)- Then o(G - S) = 2 >
|| —2my(S)), and so by Theorem 1 G is not BM-extendable. The following
graph G show that in this condition the lower bound of x(G) can not be
reduced. Let G = K\|a} 2| + (K2rg1-1U K1). Clearly, £(G) = 2|2) and
max{d(u), d(v)} > [32] for any two nonadjacent vertices u and v of G. By
a similar discussion as before, G is not BM-cxtendable.

For further study on degree-type conditions, we may consider to com-
bine with other parameters such as connectivity and independent number
to ensure the BM-extendability of graphs. Noting that the degree-sum and
Fan-type conditions are of independent sets of two vertices, we may con-
sider the case of independent sets of m (m > 3) vertices. Moreover, we may
study all these conditions on other graph classes besides claw-free graphs,
such as series-parallel graphs.
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