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Abstract

Let G be a connected graph. For any two vertices u and v, let
d(u,v) denote the distance between u and v in G. The maximum
distance between any pair of vertices is called the diameter of G
and denoted by diam(G). A radio-labeling (or multi-level distance
labeling) with span k for G is a function f that assigns to each vertex
with a label from the set {0,1,2, -+, k} such that the following holds
for any vertices u and v: |f(u) — f(v)| 2 diam(G) - d(u,v) + 1.
The radio number of G is the minimum span over all radio-labelings
of G. The square of G is a graph constructed from G by adding
edges between vertices of distance two apart in G. In this article, we
completely determine the radio number for the square of any path.

1 Introduction

Radio-labeling (cf. [3, 4]) is motivated by the channel assignment problem
- introduced by Hale [9]. Suppose we are given a set of stations or transmit-
ters, the task is to assign to each station (or transmitter) with a channel
(non-negative integer) such that the interference is avoided. The interfer-
ence is closely related to the geographical locations of the stations — the
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closer are the stations the stronger the interference that might occur. To
avoid interference, the separation of the channels assigned to nearby sta-
tions must be large enough. To model this problem, we construct a graph
so that each station is represented by a vertex, and two vertices are adjacent
when their corresponding stations are close. The ultimate goal is to find a
valid labeling such that the span (range) of the channels used is minimized.

Let G be a connected graph. For any two vertices u and v, the distance
between u and v, denoted by dg(u,v) (or d(u,v) when G is understood in
the context), is the length of a shortest (u,v)—path in G. A distance-two
labeling (or A-labeling) with span k is a function, f : V(G) — {0,1,2,---,k},
such that the following are satisfied:

VOEFCIES (S i oub

The A-number of G is the smallest k£ such that G admits a distance-two
labeling with span k. Since introduced by Griggs and Yeh [8] in 1992,
distance-two }z;beling has been studicd extensively (cf. [1, 2, 5 -8, 10, 11,
14, 15, 17, 18)]).

Radio-labeling extends the number of interference level considered in
distance-two labeling from two to the largest possible — the diameter of G.
The diameter of G, denoted by diam(G), is the maximum distance among
all pairs of vertices in G. A radio-labeling (or multi-level distance labeling
(16, 12]) with span & for a graph G is a function, f : V(G) — {0,1,2,---, k},
such that the following holds for any u and v:

|f(u) — f(v)] > diam(G) — d(u,v) + 1.

The radio number of G, denoted by rn(G), is the minimum span of a radio-
labeling for G. Note that if diam(G) = 2, then radio-labeling and M-labeling
become identical.

Besides its motivation by the channel assignment, radio labeling itself
is an interesting graph labeling problem and has been studied by several
authors. The radio numbers for paths and cycles were investigated by
Chartrand et al. [3{, Chartrand, Erwin and Zhang [4], and Zhang %19], and
were completely solved by Liu and Zhu [16]. The radio number for trees
was investigated in [12].

The square of a graph G, denoted by G2, is the graph constructed by
adding to G those edges connecting pairs of vertices that are distance two
apart in G. We call the square of a path (or a cycle, respectively) a square
path (or square cycle, respectively). After the complete solution for the
radio numbers of paths and cycles was obtained as mentioned in the above,
it becomes natural to consider the square paths and square cycles. The
radio number for square cycles has been studied in [13], in which the exact
values were determined for most of the square cycles, while bounds were
given for others.

Comparing to the complicated results on the radio number for square
cycles for which some cases still remain open [13], to our surprise, the radio
number for square paths can be completely determined by a very simple
result. The aim of this article is to prove such a result.
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Figure 1: A square path on 7 vertices, denoted by P7.

Theorem 1 Let P2 be a square path on n vertices and let k = |3]. Then

k242, ifn=1 (mod4)andn>9;
2y ’ = 9
r(Py) = { k2 +1, otherwise.

2 Lower Bound

In this section, we establish the lower bound for Theorem 1. Throughout,
we denote a path with n vertices by Pn, where V(P,) = {v1,v2, -, vn}
and E(P,) = {vvigy : i = 1,2,---,n — 1}. Hence, V(P2) = V(F,) and
E(P2) = E(Py) U {vviy2 : i = 1,2,3,---,n — 2}. The diameter of P2 is
| 2]. Figure 1 shows a square path on 7 vertices.

We denote the distance between two vertices u and v in P2 by d(u,v).
Observe,

Proposition 2 For any u,v € V(P2), we have

d(u,v) = [M] .

A center of P, is defined as a “middle” vertex of P,. An odd path Par41
has only one center vy, while an even path Ppx has two centers v and
vps1. For each vertex u € V(P,), the level of u, denoted by L(u), is the
smallest distance in P, from u to a center of P,. For instance, if n = 2k+1,
then L(v;) = k and L(vk4+1) = 0. Denote the levels of a sequence of vertices
A by L(A). If n =2k +1, then

L(vy,va, -, vok41) = (b, k= 1,---,3,2,1,0,1,2,3,- -,k — 1, k)
If n = 2k, then
L(vy,v, - ve) = (k—1,k-2,---,2,1,0,0,1,2,-- -,k — 2,k — 1).

Define the left- and right-vertices by: If n = 2k + 1, then the left- and
right-vertices, respectively, are

{vly V2,00 7vkavk+l} and {Uk+1,vk+2, Vk4+3,° " 1v2k+l}-
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(Note here the center vx4 is both a left- and right-vertex). If n = 2k, then
the left- and right-vertices, respectively, are

{v1,v2,- -+, vk} and {Vk41, Vk42, Vkt3,:**, Vok}

If two vertices are both right (or left)-vertices, then we say they are on the
same side; otherwise, they are on the opposite sides. Observe

Lemma 3 Ifn =2k + 1, then for any u,v € V(P2), we have:

d(u,v) = [&);'Aﬂ], if u and v are on the opposite sides;
' [IAL;LQM] otherwise.

If n = 2k, then for any u,v € V(P?), we have:

d(u, v) = [[‘—("ué’lﬁ], if w and v are on the opposite sides;
’ [Mﬁ%ﬂl]’ otherwise.

Lemma 4 Let P? be a square path on n vertices and let k = |3]- Then

k2+2, ifn=1 (mod4) aendn >9;
2 ) = 9,
r(Fy) 2 { k% +1, otherwise.

Proof. Let f be a radio-labeling for P2. Re-arrange V(P2) = {z1,z3, -,
To} with 0 = f(z1) < f(z2) < flz3) < ... < f(zn). We first claim that
rn(P2) > k% + 1, by showing f(z,) > k2 + 1.

By definition, f(ziy1) — f(z:)) 2 k+ 1 - d(zip1,zi) for 1 <i<n—1.
Summing up these n — 1 in-equalities, we have

n—1
flan) 2 (n = 1)(k+1) = Y d(=i, zir1).
1

i=

n-—1
Thus, to minimize f(z,) it bounds to maximize the sum ¥ d(z;, Ziq).
i=1

Assume n = 2k. By Lemma 3, we have

= = [ L(mig) + L(z:) + 1
;d(xiaxi-l-l) < ; [ + o) .

Observe from the above in-equality we have:
1) For each 4, the equality for d(z;, :4) < [HE)ELEI+1) polgs only

when z; and z;4, are on the opposite sides, unless one of them is a
center; and
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2) in the last summation term on the right-hand-side each vertex of P2
occurs exactly twice, except z; and z,, for which each occurs only
once.

Note, we have
[(L(zis1) + L(z:) + 1)/2] £ (L(zi41) + L(z:) + 2)/2,

and the equality holds only if L(zi+1) and L(z;) have the same parity.
Combining this with 1), there exist at most n — 2 of the 7’s such that
d(zi, ziv1) = (L(zip1) + L(zi) + 2)/2. Moreover, among all the vertices
only the two centers are of level 0, we conclude that

n—1

n-—1
e L(zig1)+L(za)42 _
z d(l'nxz-i-l) < 21 Lz l)-; ()t

i=1

1
£ 2
=[§L(x,-)]—ﬂﬂ#ﬁﬁ+n—1~§

<21+2+-+ (k= 1) +7n—3 (L(z1) = L(za) = 0)
=(k—1)k+2k—3
=k*+k-3.

Hence,
rn(P?) > (2k - 1)(k+1) - (k> 4+ k—2)=k®+1.
Assume n = 2k + 1. By Lemma 3, we have

n-—1

n—1
Y d(zi,zi) £y [w}]

i=1 i=1
Similar to the case n = 2k, we observe from the above in-equality and get:

1) For each i, the equality for d(zi, Zi+1) < [ﬂ’—""—‘%“’—'ﬂﬂl'l holds only
when z; and z;4; are on the opposite sides, unless one of them is the
center; and

2) in the last summation term on the right-hand-side cach vertex of P?
occurs exactly twice, except 1 and z,, for which each occurs only
once.

Note, we have
[(L(zig1) + L(2:))/2] < (L(zis1) + L(z:) +1)/2,

and the equality holds only if L(z;4+1) and L(xz;) have different parities.
Combining this with 1), there are two possible cases to consider.
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There exist at most n — 2 of the i’s such that d(z;,zi+1) =
(L(zi+1) + L(z;) + 1)/2. Then as L(zy) + L(z.) > 1, we have

n—

(M

1 n—1
d(zi,Tip1) < 3 ﬂml;ﬂam_
1

i= i=

f:lL(xt)) _ L!zlz-lz-b!zn! + n_;_l_ _

[

1
2
i=

il
B

<2142+ 4k + 251 -1
=(k+1Dk+k-1
=k%+2k-1.

Hence,
rn(P2) > 2k(k+1) = (K +2k = 1) = & + 1.

The equality d(zi,zi+1) = (L(zis1) + L(z:) + 1)/2 holds for

all i = 1,2,---,n — 1. Then neither z; nor z, is the center, and L(z,) =
L(z,) = k (mod 2). These imply that L(z1) + L(z,) is at least 2 if k is
odd, and at least 4 if k is even. A similar calculation to Case 1, starting

n—1 n-1

with Y d(zi, 2i41) = Y, HELEOFL wi)) Jead to rn(P2) > k2 + 1 if
i=1 i=1

k is odd; and rn(P32) > k? + 2 if k is even.

Now, assume n = 1 (mod 4) and n > 9, that is, k is even, k > 4.
Assume to the contrary that f(z,) = k% + 1. Then only Case 1 is possible.
So all the following must hold:

1) {z1, 2} = {vk+1, vk} or {Z1,Z0} = {Vkt1, V42 }-
2) f(ziy1) = f(zi) + k+ 1 —d(ziqy,z:) for all i.

3) For any ¢ > 1, the two vertices z; and z;4; belong to opposite sides
unless one of them is the center.

4) There exists some 1 <t < n — 1 such that L(z;) = L(z¢+1) (mod 2),
while L(z;) # L(x;41) (mod 2) for all other ¢ # t.

By 1) and by symmetry, we may assume z; = vg41. Note, vk is the only
center of P22k+1. Since n = 2k + 1 for some even k, k > 4, there are k/2

vertices of even levels and /2 vertices of odd levels on each side, excluding
the center. Since z, is either vxy2 or vi and both of them are level 1, by
2) and 3), the only ¢ in 4) must be k + 1. For otherwise, there will be at
least two t's with L{x;) = L(z¢41) (mod 2). Hence, we have

5) L(xl)v L(Ig), L($5?, Tt L(xk+l)a L($k+2)’ L($k+4), Tt L(x2k) are
| even, while the levels of other vertices are all odd.
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Claim. {vj,vok+1} = {Tkt1, Tre2}:

Proof) Suppose vy € {Tk+1,Zk+2}. As L(v1) = k, by 5), we have v; =z,
for some a where z,_; and .41 are vertices on the right side and both
L(z4-1) and L(zq+1) are odd. Let L(za—1) = y and L(zq41) = 2. By 2),

f(xa) = f(Ta-1) =k +1—-(k+y+1)/2
and

f(@at1) — f(za) =k+1-=(k+2z+1)/2.
This implies

f(Zat1) — f(Xa1) =k +1-(y +2)/2,

contradicting that f(Ta41) — f(Za—1) 2 k+1— |y — 2|/2 (as z,y are odd
so 2,y # 0). Therefore, v; € {Tk+1,ZTk+2}. Similarly, one can show that

Vok41 € {Th+1, Tha2} 1

By the Claim, we may assume that v; = Zx41 and vary1 = Zgy2 (the
proof for the other case is symmetric). By 5), L(zr+3) = b for some odd b.
By 3) and 2), we have f(vog4+1) — f(v1) =1 and

f(zre3) = flvak1) =k + 1= (b+k+1)/2.

So,
f(@k43) — f(n) = (k—b+3)/2.

By definition and Lemma 3,
flzrys) = fv) 2 k+1—-(k-b+1)/2

Hence, we have b = 1 = L(zg4+3). This implies that zx43 = vx. Simi-
larly, we can get T = Ug42. By 1), it must be k = 2, contradicting the
assumption k > 4. Therefore, rn(P3,..,) = k? + 2.

3 Upper Bound and Optimal Radio-Labelings

By Lemma 4, to establish Theorem 1, it suffices to give radio-labelings
achieving the desired spans. To this end, we will use the following lemma.

Lemma 5 Let P2 be a square path on n vertices with k = |n/2|. Let
{z1,22,--,2n} be a permutation of V(P2) such that for any1 < i <n-2,

min{dp, (zi, Ti+1), AP, (Ti+1, Tit2)} Sk +1,

and if k is even and the equality in the above holds, then dp,(zi, zi+1) and
dp, (Tiy1,Tiza) have different parities. Let f be a function, f : V(P2) —
{0,1,2,---} wnth f(z1) =0, and f(ziy1) — f(z:) =k +1-— d(mi,xi+b for
all1<i<n—1. Then f is a radio-labeling for PZ.
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Proof. Recall, diam(P2) = k. Let f be a function satisfying the assump-
tion. It suffices to prove that f(z;) — f(x:) > k + 1 — d(x;,z;) for any
j2i+2 Fori=1,2,.---,n—1, set

fi = f(@i1) = f(z3).
For any j > i + 2, it follows that
f(x5) = flzs) = fi+ fisr + - + fi-1.

Suppose j = i + 2. Assume d(z;,Ti+1) = d(Ti+1,Ziv2). (The proof
for d(ziy1,Tiy2) = d(zi, zi41) is similar.) Then, d(z;41,Zi42) < &22 Let
T; = Vg, Ti+1 = Up, and z;42 = v.. It suffices to consider the following
cases:

eb<a<cor c<a<b Since d(z;,zit1) > d(Tit1,Zit2), We ob-

tain d(z;, zi+1) = d(Tig1, Tiv2) < %ﬂ and d(z;, z;42) = 1. Hence,

f(ziv2) = flzi) = fi+ fina
= k+1-d(zizip1) +k+1~-d{zir1,2ip2)
> 2%+2-2 (%)
k+1 - d(xi,is2).

s a<b<c or c<b<a This implies

d(zi, Tiv2) 2 d(Ti, Tig1) + d(Zig1, Tig2) — 1

Similar to the above, easy calculation shows that f(z;4+2) — f(z:) >
k+1-d(zi, ziya).

ea<c<bor b<c<a.
Assume & is odd or min{dp, (z;, zi+1), dp, (Zi+1, Zi+2)} < k, then we
have d(ziy1, Tir2) < (k + 1J/2 and

d(zi, Tig2) > d(zi, Tiv1) — d(Tig1, Tiga).

Hence, f(zit2) — f(z:) 2 k + 1 = d(zi, Ziy2).

If k is even and min{dp,(zi, zi+1), dp, (Zi+1,Tiv2)} = k + 1, then
by our assumption, it must be that dp,(zi+1,Zi+2) = k£ + 1 and
dp, (z;,zis1) is even. Hence, we have

d(Ti, Tiya) = d(Ti, Tig1) — ATig1, Tig2) + 1.
This implies

f(@iv2) — flz:) 2k + 2 - 2d(ziy1, Tiv2) — d(Ti, Tig2) +1

2k + 2 — 2 (&42) — d(zi, ziy2) + 1
k+1-d(zi,zi2).

v
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Let j = i+3. First, we assume that the sum of some pair of the distances
d(Zi, Tit1)s ATit1, Tiv2), d(Tip2, Tirs) is at most &k + 2. Then

f(ziza) = f(z:) = 38k+3—d(@i,zis1) — d(Tig1, Tiv2) — d(Tiv2, Tiys)

> k+1 > k+1- d(z;, Tita)-

Next, we assume that the sum of every pair of the distances d(z;, Ti+1 ),
d(z;i+1, Tiv2) and d(ziy2, Ti43) is greater than k+2. Then, by our hypothe-
ses it follows that

k+2 k+2
d(zi, Titr1), A(Tiv2, Tits) > 5 and d(ziy1,Zit2) < —5 (%)

Let ; = Va, Tit1 = U, Tip2 = Ve, Li+3 = vg. Since diam(P2) = k, by (*)
and our assumption that the sum of any pair of the distances, d(zi, Tit1),
d(is1, Tive), d(Tiv2,Tits), is great than k + 2, it must be that a < ¢ <
b<d (or d<b<c<a). Then

d(zi, Tiga) 2 d(2i, Tiv1) + ATiv, Tiva) — A(Tir1, Tiva) — 1.
By (*), we have
F(ziga) — f(z:)

3k + 3 — d(zi, Tit1) — d(Tiy1, Tisr2) — ATiv2, Tits)
3k+2-—- 2d($i+1, $i+2) - d(:l:i, :z:,-+3)
k+1- d(:c,-,m,».,.g).

VIV Il

Let j > i+ 4. Since min{d(zi, Ti+1), A(Tiz1, Tig2)} < 532:2, and f; >
k+1—d(z;, zi41) for any i, we have max{f;, fiv1} 2 g forany 1 <i<n—-2.
Hence,

f@)) = f@) 2 fi+ fimr+ firet firz >k +1>k+1- d(z;, zj).

|

To show the existence of a radio-labeling achieving the desired bound,
we consider cases separately. For each radio-labeling f given in the follow-
ing, we shall first define a permutation (line-up) of the vertices V(P?) =
{x1,Z2,-+,Zn}, then define f by f(z1) =0and fori=1,2---,n - L

f(a:,-+1) = f(z;)+k+1- d(:l:i,:l:i+1).

Case 1: m(P},,) < k* +1, if k is odd.| We give a radio-labeling with

span k2+1. The line-up (permutation) of V(P2 +1) = {z1,22,73, -, Tok+1}
is given by the arrows in Table 1. That is, z3 = v, T2 = var,
Zoky1 = Uk4+1. The value above each arrow shows the distance between
the two consecutive vertices in P,.

By Lemma 5, f is a radio-labeling for P2. As k is odd, observe from
Table 1, there are two possible distances in P, between consecutive
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k k42 k k42 k k+2
Up — Vo — Vg — U2k — +*+ —> Vg3 — U1

k+1 k k+2 k k+2 k k+2 k
D Vgp42 = VU2 — Vg —> Vg — U6 — ~°* — U2k41 — Vk41-

Table 1: Vertex ordering of a labeling for P2 ., for odd k.

aaaaaasaaaaaan

21 29 14 36 7 43 0 (50) 25 18 32 11 39 4 46
Figure 2: An optimal radio labeling for PZ%, with span 50.

vertices, namely, 1‘—‘2L‘ and k—‘zfﬂ, with the number of occurences k + 1 and

k — 1, respectively. It follows by direct calculation that

2k
fl@aren) = 2h(k +1) = D _d(zi, zi01) = K + 1.

i=1

As an example, Figure 2 shows an optimal radio-labeling (with minimum
span) for P%.

Case 2: rn(PZ) < k®>+1, if k is odd. | Let G = P}, for some odd k.

Let H be the subgraph of G induced by the vertices {vy,vs,---,var}. Then
H = P2, diam(H) = diam(G) = k, and dg(u,v) = dg(u,v) for every
u,v € V(H). Let f be a radio-labeling for G. Then f restricted to H is a
radio-labeling for H. By Case 1, rn(P3,) < rn(Pg.,,) < k?+1.

lCase 3: rn(PZ) < k*+1, if k is even. | Similar to Case 1, we line-up

the vertices according to Table 2.

By Lemma 5, f is a radio-labeling for P2. Indeed, observe from Table
2, as k is even, there are three possible distances between any consecutive

vertices in P2, namely, -’5, % and k& — 2, with the number of occurences

k —2, k and 1, respectively. By some calculation, the span of f is k2 + 1.
As an example, Figure 3 gives an optimal radio-labeling for P%.

We now consider the case n = 2k + 1 for even k. If k = 2, the labeling
(3,5,0,2,4) is a radio-labeling for P?. Hence, we assume k > 4.
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k-1 k+1 k+2 k+1 k-1 k+1 k+1
Vg — Vog—1 —F Vg—2 —> Vg — Vp—1 — V2k—2 — V-3 —> U1

2k—4 k+1 k-1 k+1 k-1 k+1 k-1
— Vo3 — Ugp—q —> U2k—~5 — Vk—6 —> -+ — U2 — Vk41.

Table 2: Vertex ordering of a labeling for sz» for some even k.

KTWVYWW\\

3326207130@3023 17

Figure 3: An optimal radio labeling for P%, with span 37.

Case 4: If k is even and k > 4, then rn(P%,,) < k*+2.| Similarly,
we arrange the vertices according to Table 3.

k+1 2k k41 k—1 k41 k-1 k+1
Vg — Vgl —> U1 — Ug42 —F V3 — Vgq " —F Up—1 — U2k

2k-2 K+l k-1 k+1 k-1 k-1 k+1 k-2
— U — Vg3 — Ug — Ugg5 — ~°° — Vg2 — V2k—1 ™ Vk+1

Table 3: Vertex ordering of a labeling for P%,,, for even k.

By Lemma 5, f is a radio-labeling for P}, ,. Observe from Table 3,
there are five possible distances between a.ny consecutive vertices z; and
;41 in P2, namely, k, k—1, £52, ££2 and £, with the number of occurences
1,1,1,k and k-3, respectwely By some calculation, one can show that the
span of fis k2 +2. As an example, Figure 4 gives an optimal radio-labeling
for P%. This completes the proof of Theorem 1.

Acknowledgment. The authors would like to thank an anonymous ref-
eree for immediate report and careful reading of the manuscript. Special
thanks go to Maria Nogin for valuable comments.
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Figure 4: An optimal radio labeling for P%, with span 38.
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