# The Laplacian spectral radius of unicyclic graphs with k pendent vertices\*

Xiaoling Zhang, Heping Zhang School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, P. R. China.

E-mail addresses: zhangxling04@lzu.cn, zhanghp@lzu.edu.cn

### **Abstract**

Let  $\mathcal{U}_n(k)$  denote the set of all unicyclic graphs on n vertices with k ( $k \ge 1$ ) pendant vertices. Let  $\lozenge_4^k$  be the graph on n vertices obtained from  $C_4$  by attaching k paths of almost equal lengths at the same vertex. In this paper, we prove that  $\lozenge_4^k$  is the unique graph with the largest Laplacian spectral radius among all the graphs in  $\mathcal{U}_n(k)$ , when  $n \ge k + 4$ .

Key words: Laplacian spectral radius; Unicyclic graph

AMS subject classification: 05C50; 15A18

## 1 Introduction

The graphs in this paper are simple and undirected. Let G = (V, E) be a graph on n vertices. The Laplacian matrix is L(G) = D(G) - A(G), where D(G) is the diagonal matrix of vertex degrees and A(G) is the adjacent matrix of G. The Laplacian characteristic polynomial of G is just det(xI - L(G)), which is denoted by  $\Phi(G, x)$ , or simply  $\Phi(G)$ . From the fact that L(G) is a real symmetric matrix and Geršgorin's theorem [4], it follows that its eigenvalues are nonnegative real numbers, and 0 is the smallest eigenvalue of L(G). Hence its eigenvalues can be denoted by

$$\mu_1(G) \geqslant \mu_2(G) \geqslant \cdots \geqslant \mu_n(G) = 0,$$

<sup>\*</sup>This work is supported by NSFC.

in a non-increasing order. The largest eigenvalue  $\mu_1(G)$  is the *Laplacian* spectral radius of graph G. Similarly, the spectral radius of graph G is the largest eigenvalue of A(G), which is denoted by  $\rho(G)$ .

Up to now, there are many results about Laplacian spectral radius of graphs. Some are about bounds (see [7, 12, 13, 16]), and others are about extremal graphs (see [2, 9, 19, 20, 21]). In this paper, we restrict our consideration to the Laplacian spectral radius of unicyclic graphs on n vertices with k ( $k \ge 1$ ) pendant vertices, and prove that  $\Diamond_k^4$  is the unique graph with the largest Laplacian spectral radius among all these graphs when  $n \ge k+4$ .

### 2 Prelimaries

We first give some lemmas that will be used in the main results.

Let G be a graph and let G' = G + e be the graph obtained from G by inserting a new edge e into G. It follows by the well-known Courant-Weyl inequalities (see, e.g., [1], Theorem 2.1) that the following is true.

Lemma 2.1. 
$$\mu_1(G') \geqslant \mu_1(G) \geqslant \mu_2(G') \geqslant \mu_2(G) \geqslant \cdots \geqslant \mu_n(G') = \mu_n(G) = 0.$$

Let Gu: vH denote the graph formed by identifying the vertex u of G with the vertex v of H (see Fig. 1). If u is a vertex of G, let  $L_u(G)$  denote the principal submatrix of L(G) formed by deleting the row and the column corresponding to vertex u. In the following, we always use  $\Phi(L_u(G))$  to denote the characteristic polynomial of  $L_u(G)$ . The line graph  $L^G$  of a graph G is constructed by taking the edges of G as vertices of  $L^G$ , and joining two vertices in  $L^G$  whenever the corresponding edges in G have a common vertex. The set of neighbors of a vertex  $v_i$  in G is denoted by  $N_G(v_i)$ , or briefly by  $N(v_i)$ .



Fig. 1. Graph Gu: vH.

**Lemma 2.2.** [19] Let  $G = G_1u : vG_2$ . Then

$$\Phi(G) = \Phi(G_1)\Phi(L_v(G_2)) + \Phi(L_u(G_1))\Phi(G_2) - x\Phi(L_u(G_1))\Phi(L_v(G_2)).$$

If h(x) is a polynomial in the variable x, let  $\lambda(h)$  denote the largest real root of equation h(x) = 0.

**Lemma 2.3.** [20] Let h(x) and g(x) be monic polynomials with real roots. If h(x) < g(x) for all  $x \ge \lambda(g)$ , then  $\lambda(h) > \lambda(g)$ .

In the following lemma, we assume that X, Y are two unit eigenvectors of  $H_1$ ,  $H_2$  corresponding to  $\mu_1(H_1)$ ,  $\mu_1(H_2)$ , respectively.

**Lemma 2.4.** [19] Let  $G_1$  and  $G_2$  be shown as in Fig. 2,  $G_1 = H_1u^*$ :  $uGv: v^*H_2$  and  $G_2 = H_1u^*: vGv: v^*H_2$ . If  $\Phi(L_u(G)) \leq \Phi(L_v(G))$  for all  $x \geq \mu_1(G_1)$ . Then  $\mu_1(G_1) \leq \mu_1(G_2)$ . In particular, inequality is strict if  $H_1$  and  $H_2$  are both bipartite graphs.



Fig. 2. Graphs  $G_1$  and  $G_2$ .

**Lemma 2.5.** [19] Let G be a connected graph of order n and  $X = (x_{v_1}, x_{v_2}, \ldots, x_{v_n})^T$  a unit eigenvector of G corresponding to  $\mu_1(G)$ . If there exist three different vertices  $v_i$ ,  $v_{i+1}$ ,  $v_j$  such that  $x_{v_i} \leq x_{v_{i+1}} \leq x_{v_j}$  and  $v_i$  is adjacent to  $v_{i+1}$ ,  $v_j$  is nonadjacent to  $v_i$ . Then  $\mu_1(G) \leq \mu_1(G - v_iv_{i+1} + v_iv_j)$ . Especially, inequality is strict if  $x_{v_{i+1}} \neq x_{v_j}$ .

**Lemma 2.6.** [8] Let u, v be two vertices of a connected bipartite graph  $G = (V_1, V_2, E)$ . Suppose that  $v_1, v_2, \ldots, v_s$   $(1 \leq s \leq d(v))$  are some vertices of  $N_G(v) \setminus N_G(u)$  different from u. Let X be a unit eigenvector of G correspoding to  $\mu_1(G)$ , and let  $G^*$  be the graph obtained from G by deleting the edges  $vv_i$  and adding the edges  $uv_i$   $(1 \leq i \leq s)$ . If  $|x_u| \geq |x_v|$  and  $G^*$  is also a bipartite graph, then  $\mu_1(G^*) > \mu_1(G)$ .

Let G be a connected graph, and  $uv \in E(G)$ . The graph  $G_{u,v}$  is obtained from G by subdividing the edge uv, i. e., adding a new vertex w and edges uv, uv in G-uv. Hoffman and Smith define an internal path of G as a walk  $v_0v_1\cdots v_s$   $(s\geqslant 1)$  such that the vertices  $v_0,v_1,\ldots,v_s$  are distinct,  $d(v_0)>2$ ,  $d(v_s)>2$ , and  $d(v_i)=2$ , whenever 0< i< s. And s is called the length of the internal path. An internal path is closed if  $v_0=v_s$ . They proved the following result.

**Lemma 2.7.** [3] Let uv be an edge of the connected graph G on n vertices.

- (i) If uv does not belong to an internal path of G, and  $G \neq C_n$ , then  $\rho(G_{u,v}) > \rho(G)$ .
- (ii) If uv belongs to an internal path of G, and  $G \neq W_n$ , where  $W_n$  is shown in Fig. 3, then  $\rho(G_{u,v}) < \rho(G)$ .



Fig. 3.  $W_n$ .

**Lemma 2.8.** [19] Let e = uv be an arbitrary edge of a bipartite graph G = (V, E) (|V| = n),  $G^{uv}(w)$  be the graph obtained from G by contracting the edge e into a new vertex w. Then

- (1) If uv does not belong to an interval path, then  $\mu_1(G^{uv}(w)) < \mu_1(G)$ .
- (2) If uv belongs to an interval path and  $G^{uv}(w)$  is still a bipartite graph, then  $\mu_1(G^{uv}(w)) > \mu_1(G)$ .

**Lemma 2.9.** [17]  $\mu_1(G) \leq 2 + \rho(L^G)$ , the equality holds if and only if G is a bipartite graph.

**Lemma 2.10.** [5] Let G be a connected bipartite graph and H a subgraph of G. Then  $\mu_1(H) \leq \mu_1(G)$ , and equality holds if and only if G = H.

**Lemma 2.11.** [8] Let G be a connected graph on n vertices and v be a vertex of G. Let  $G_{k,l}$  be the graph defined as in Fig. 4. If  $l \ge k \ge 1$ , then  $\mu_1(G_{k-1,l+1}) \le \mu_1(G_{k,l})$ ,

with equality if and only if there exists a unit eigenvector of  $G_{k,l}$  corresponding to  $\mu_1(G_{k,l})$  taking the value 0 on vertex v. Especially, inequality is strict if G is a bipartite graph.



Fig. 4. Graphs  $G_{k,l}$  and  $G_{k-1,l+1}$ .

**Lemma 2.12.** [6, 15] Let G be a connected graph on n vertices with at least one edge, then  $\mu_1(G) \ge \Delta(G) + 1$ , where  $\Delta(G)$  is the maximum degree of the graph G, with equality if and only if  $\Delta(G) = n - 1$ .

**Lemma 2.13.** [18] Let G be a graph on vertices labelled  $1, 2, \ldots, n$ , and suppose that vertices 1 and 2 of G are not adjacent. Form  $\hat{G}$  from G by adding the edge between vertices 1 and 2. Then the Laplacian spectral integral variation occurs in one place if and only if in G, vertices 1 and 2 have the same set of neighbours. In the case that Laplacian spectral integral variation occurs in one place, the eigenvalue of G that increased by 2 is given by the degree of vertex 1 (equivalently, the degree of vertex 2).

# 3 Main results

A unicyclic graph is a connected graph in which the number of edges equals the number of vertices. We may use the following notation to represent an unicyclic graph:  $G = U(C_l; T_1, T_2, \ldots, T_l)$ ; where  $C_l$  is the unique cycle in G with  $V(C_l) = \{v_1, v_2, \ldots, v_l\}$  such that  $v_i$  is adjacent to  $v_{i+1}$  ( mod l) for  $1 \leq i \leq l$ . For each i, let  $T_i$  be the component of  $G - \{V(C_l) - v_i\}$  containing  $v_i$  (see Fig. 5). If  $|V(T_i)| = 1$ , we say  $T_i$  is a trivial tree. Let  $\mathcal{U}_n(k)$  denote the set of all unicyclic graphs with n vertices and k ( $k \geq 2$ ) pendant vertices. Let  $\lozenge_4^k$  be the graph on n vertices obtained from  $C_4$  by attaching k paths of almost equal lengths at the same vertex. If U is any vertex set of G, we usually use G - U to denote the graph obtained from G by deleting all the vertices in U and their incident edges.



Fig. 5. Graph  $U(C_l; T_1, T_2, ..., T_l)$ .

Let  $\mathcal{U}_n(k)$  denote the set of all unicyclic graphs on  $n \ (n \ge k+4)$  vertices with  $k \ (k \ge 1)$  pendant vertices. Let

$$\mathcal{U}_o^k = \{G = U(C_l; T_1, \dots, T_l) \in \mathcal{U}_n(k) | l \text{ is odd}\};$$
  
 $\mathcal{U}_e^k = \{G = U(C_l; T_1, \dots, T_l) \in \mathcal{U}_n(k) | l \text{ is even}\}.$ 

**Lemma 3.1.** For any graph  $G \in \mathcal{U}_e^k$ , we have

 $\mu_1(G) \leqslant \mu_1(\lozenge_4^k),$  and equality holds if and only if  $G \cong \lozenge_4^k$ .

**Proof:** Let  $G = U(C_l; T_1, T_2, ..., T_l) \in \mathcal{U}_e^k$  and  $X = (x_1, x_2, ..., x_n)^T$  be a unit eigenvector of G corresponding to  $\mu_1(G)$ , where  $x_i$  corresponds to the vertex  $v_i$   $(1 \le i \le n)$ .

Choose  $G \in \mathcal{U}_e^k$  such that the Laplacian spectral radius of G is as large as possible. We first show some facts.

Fact 1. G has a unique nontrivial attached tree.

**Proof.** Suppose not, we may assume that  $|V(T_i)| \neq 1$  and  $|V(T_j)| \neq 1$ , where  $i \neq j$ . Denote  $N(v_i) \setminus V(C_l) = \{u_1, \ldots, u_s\}, \ N(v_j) \setminus V(C_l) = \{w_1, \ldots, w_t\}.$ 

If  $|x_i| \geqslant |x_j|$ , let  $G^* = G - v_j w_1 - \cdots - v_j w_t + v_i w_1 + \cdots + v_i w_t$ .

If  $|x_i| \leq |x_j|$ , let  $G^* = G - v_i u_1 - \dots - v_i u_s + v_j u_1 + \dots + v_j u_s$ .

Then, in either case,  $G^* \in \mathcal{U}_e^k$ . By Lemma 2.6, we have  $\mu_1(G) < \mu_1(G^*)$ , which is a contradiction.

Suppose that  $v_1$  is the root of the nontrivial attached tree.

Fact 2. For any vertex  $v \in V(T_1) \setminus \{v_1\}, d_G(v) \leq 2$ .

**Proof.** On the contrary, there exists a vertex  $v_r$  of  $T_1 - v_1$  such that  $d_G(v_r) > 2$ . Since  $T_1$  is a tree, there is a unique path P connecting vertices  $v_1$  and  $v_r$ . Denote  $P = v_1 v_m \cdots v_{r-1} v_r$ . Let  $G^* = G^{v_{r-1}v_r}(w) + v_s u$ , where  $v_s$  is a pendant vertex of  $T_1 - v_1$  and u is a new vertex different from the vertices of  $G^{v_{r-1}v_r}(w)$ . Then  $G^* \in \mathcal{U}_e^k$ . By Lemma 2.8, we have

 $\mu_1(G) < \mu_1(G^{v_{r-1}v_r}(w))$ . Since  $G^{v_{r-1}v_r}(w)$  is a proper subgraph of  $G^*$ , by Lemma 2.10, we get  $\mu_1(G^{v_{r-1}v_r}(w)) < \mu_1(G^*)$ . So  $\mu_1(G) < \mu_1(G^*)$ , which is a contradiction.

Fact 3. l = 4.

**Proof.** On the contrary,  $l \ge 6$ . Let  $G^*$  be the graph obtained from G by contracting the edges  $v_1v_2$  and  $v_2v_3$ . Suppose that u is a pendent vertex of G, and v, w are two new vertices different from the vertices of  $G^*$ . Let  $G^{**} = G^* + uv + vw$ . Then  $G^{**} \in \mathcal{U}_e^k$ . By Lemma 2.7 and Lemma 2.10, we have  $\rho(L^G) < \rho(L^{G^*}) < \rho(L^{G^{**}})$ . Since  $G, G^*, G^{**}$  are all bipartite graphs, by Lemma 2.9,  $\mu_1(G) < \mu_1(G^*) < \mu_1(G^{**})$ , which is a contradiction.

**Fact 4.** The k paths attached to  $v_1$  have almost equal lengths.

**Proof.** It is obvious by Lemma 2.11.

Up to now, we have proved the result.

**Lemma 3.2.** Let  $G_1$  and  $G_2$  be shown as in Fig. 6. Then  $\mu_1(G_1) < \mu_1(G_2)$ .



Fig. 6. Graphs  $G_1$  and  $G_2$ .

**Proof:** Let  $H_1 = G - \{u_1, v_1\}$ ,  $H_2 = G - \{u_2, v_2, w_2\}$ ,  $H = G - \{u_1, v_1, w_1, s_1\} = G - \{u_2, v_2, w_2, s_2\}$ . By Lemma 2.2, we have

$$\Phi(C_3) = x(x-3)^2; 
\Phi(C_4) = x(x-2)^2(x-4); 
\Phi(L_u(C_3)) = (x-1)(x-3); 
\Phi(L_v(C_4)) = (x-2)(x^2-4x+2); 
\Phi(L_v(H_1)) = (x-1)^l(x^2-3x+1)^{t+1};$$

$$\begin{split} \Phi(L_v(H_2)) &= (x-1)^{l+1}(x^2-3x+1)^t; \\ \Phi(G_1) &= \Phi(H_1)\Phi(L_u(C_3)) + \Phi(L_u(H_1))(\Phi(C_3) - x\Phi(L_u(C_3))); \\ \Phi(G_2) &= \Phi(H_2)\Phi(L_v(C_4)) + \Phi(L_v(H_2))(\Phi(C_4) - x\Phi(L_v(C_4))); \\ \Phi(H_1) &= \Phi(H)B_2 + (P_3 - xB_2)B_2^tB_1^t; \\ &= \Phi(H)(x^2-3x+1) - x(x-2)(x-1)^t(x^2-3x+1)^t; \\ \Phi(H_2) &= \Phi(H)B_1 + (P_2 - xB_1)B_2^tB_1^t; \\ &= \Phi(H)(x-1) - x(x-1)^t(x^2-3x+1)^t. \\ \Phi(G_1) - \Phi(G_2) &= \Phi(H_1)\Phi(L_u(C_3)) - \Phi(H_2)\Phi(L_v(C_4)) \\ &+ \Phi(L_u(H_1))(\Phi(C_3) - x\Phi(L_u(C_3))) \\ &- \Phi(L_v(H_2))(\Phi(C_4) - x\Phi(L_v(C_4))) \\ &= \Phi(H)(x-1)(x-3)(x^2-3x+1) \\ &- x(x-2)(x-3)(x-1)^{l+1}(x^2-3x+1)^t \\ &+ (x-1)^l(x^2-3x+1)^{t+1}(-2x)(x-3) \\ &- \Phi(H)(x-1)(x-2)(x^2-4x+2) \\ &+ x(x-2)(x^2-4x+2)(x-1)^l(x^2-3x+1)^t \\ &- (x-1)^{l+1}(x^2-3x+1)^t(-2x)(x-2)(x-3) \\ &= \Phi(H)(x-1)[(x-3)(x^2-3x+1)^t(-2x)(x-2)(x-3) \\ &= \Phi(H)(x-1)[(x-3)(x^2-3x+1)^t(x^2-3x+1)^t \\ &- (x^2-4x+2)] - 2x(x-3)(x-1)^l(x^2-3x+1)^t \\ &= (x^2-3x+1) - (x-1)(x-2) \\ &= \Phi(H)(x-1) - x(x-2)(x-1)^l(x^2-3x+1)^t \\ &= \Phi(H)(x-1) + x(x-4)(x-1)^l(x^2-3x+1)^t. \end{split}$$

Since H and  $C_4$  are both proper subgraphs of bipartite graph  $G_2$ , by Lemma 2.10, we get  $\mu_1(G_2) > \mu_1(H)$ ,  $\mu_1(G_2) > \mu_1(C_4) = 4$ . As we know  $\lambda(G_2) = \mu_1(G_2)$ , we get  $\Phi(G_1) - \Phi(G_2) > 0$ , for all  $x \ge \lambda(G_2)$ . By Lemma 2.3, we get  $\lambda(G_1) < \lambda(G_2)$ , i.e.,  $\mu_1(G_1) < \mu_1(G_2)$ .

**Lemma 3.3.** For any graph  $G \in \mathcal{U}_o^k$ , we have  $\mu_1(G) < \mu_1(\lozenge_4^k)$ .

**Proof:** Let  $G = U(C_l; T_1, T_2, \dots, T_l) \in \mathcal{U}_0^k$ . We can prove the result by induction on l.

If l=3, let  $G^*$  be the graph obtained from G by attaching  $T_2$  and  $T_3$  to vertex  $v_1$ . Then by Lemma 2.4, we have  $\mu_1(G) \leqslant \mu_1(G^*)$ . Denote by  $T_1^*$  the unique attached tree of  $G^*$ . Let  $G'=G^*-v_2v_3$ . Then Lemma 2.13, we get  $\mu_1(G^*)=\mu_1(G')$ . Since  $n\geqslant k+4$ , there must exist a vertex  $v_j\in V(T_1^*)$  such that  $d_{G^*}(v_1,v_j)=2$ . Let  $G''=G'+v_2v_j$ . Then  $G''\in \mathcal{U}_e^k$ .

If  $G^* \cong G_1$ , then  $G'' \cong G_2$ , where  $G_1$ ,  $G_2$  are shown as in Fig. 6. Then by Lemma 3.2, we have  $\mu_1(G'') < \mu_1(G'')$ . Otherwise,  $G^* \ncong G_1$ . By Lemma 2.1, we have  $\mu_1(G') \leqslant \mu_1(G'')$  and the unique cycle  $C_q$  of G'' is of length 4. Then by Lemma 3.1, we get  $\mu_1(G'') < \mu_1(\diamondsuit_4^k)$ . So  $\mu_1(G) < \mu_1(\diamondsuit_4^k)$ .

Suppose the result is true for each graph belonging to  $\mathcal{U}_o^k$  with a cycle of length smaller than l. In the following, we always assume that  $l \geq 5$ . Case 1. There exists some  $1 \leq i \leq l$  such that  $d_G(v_i) = d_G(v_{i+1(mod\ l)}) = 2$ 

Let  $G^{**} = G^{v_i v_{i+1}}(w) + vu$ , where u is a pendant vertex of  $G^{v_i v_{i+1}}(w)$  and v is a new vertex different from the vertices of  $G^{v_i v_{i+1}}(w)$ . Then  $G^{**} \in \mathcal{U}_e^k$  and by Lemma 2.7, we have  $\rho(L^G) < \rho(L^{G^{v_{i+1} v_i}(w)})$ . By Lemma 2.9, we have  $\mu_1(G) < 2 + \rho(L^G)$  and  $\mu_1(G^{v_{i+1} v_i}(w)) = 2 + \rho(L^{G^{v_{i+1} v_i}(w)})$ . So  $\mu_1(G) < \mu_1(G^{v_{i+1} v_i}(w))$ . Since  $G^{v_{i+1} v_i}(w)$  is a proper subgraph of  $G^{**}$ , by Lemma 2.10, we get  $\mu_1(G^{v_{i+1} v_i}(w)) < \mu_1(G^{**})$ . Since  $G^{**} \in \mathcal{U}_e^k$ , by Lemma 3.1, we get  $\mu_1(G^{**}) \le \mu_1(\diamondsuit_4^k)$ . So  $\mu_1(G) < \mu_1(\diamondsuit_4^k)$ .

### Case 2. Otherwise.

Since l is odd, there must exist some  $1 \leq j \leq l$  such that  $d_G(v_j) \geq 3$ ,  $d_G(v_{j+1 \pmod{l}}) \geq 3$ . For convenience, we may assume that j = 1.

If l=5 and two vertices of  $v_3, v_4, v_5$  are with degree 2, say  $d_G(v_3)=d_G(v_5)=2$ . Then  $d_G(v_4)\geqslant 3$ . Denote  $N_G(v_1)=\{u_1,\ldots,u_s\}$ . Let  $G_1=G-v_1u_1-\cdots-v_1u_s+v_2u_1+\cdots+v_2u_s$ . Then by Lemma 2.4,  $\mu_1(G)<\mu_1(G_1)$ . Since  $d_{G_1}(v_1)=d_{G_1}(v_5)=2$ , we can deal with  $G_1$  in a similar way to case 1, and prove the result.

If l=5 and only one vertex of  $v_3, v_4, v_5$  are with degree 2, say  $d_G(v_5)=2$ . Then  $d_G(v_3)\geqslant 3$ ,  $d_G(v_4)\geqslant 3$ . We may assume that  $x_{v_1}\leqslant x_{v_2}$ , since -X is also a unit eigenvector of G corresponding to  $\mu_1(G)$ . If  $x_{v_2}\leqslant x_{v_i}$ , let  $G_2=G-v_1v_2+v_1v_i$  (i=3,4); if  $x_{v_i}\leqslant x_{v_2}$  (i=3,4) and  $x_{v_4}\leqslant x_{v_3}$ , let  $G_2=G-v_3v_4+v_2v_4$ ; if  $x_{v_i}\leqslant x_{v_2}$  (i=3,4) and  $x_{v_5}\geqslant x_{v_4}>x_{v_3}$ , let  $G_2=G-v_3v_4+v_3v_5$ ; if  $x_{v_i}\leqslant x_{v_2}$  (i=3,4),  $x_{v_5}\leqslant x_{v_4}$  and  $x_{v_4}>x_{v_3}$ , let  $G_2=G-v_4v_5+v_2v_5$ . Then, in either case,  $G_2\in\mathcal{U}_e^k$  or  $G_2\in\mathcal{U}_o^k$  and by lemma 2.5,  $\mu_1(G)\leqslant \mu_1(G_2)$ . If  $G_2\in\mathcal{U}_e^k$ , since  $G_2\ncong \lozenge_4^k$ , by Lemma 3.1, we get  $\mu_1(G_2)<\mu_1(\lozenge_4^k)$ . If  $G_2\in\mathcal{U}_o^k$ , since the unique cycle of  $G_2$  is of length 3, according to the first step of induction hypothesis, we get  $\mu_1(G_2)<\mu_1(\lozenge_4^k)$ . So, in either case,  $\mu_1(G)<\mu_1(\lozenge_4^k)$ .

If  $l \geqslant 7$ , we only consider the case that  $d_G(v_{2i+1}) \geqslant 3$  and  $d_G(v_{2i}) = 2$   $(i = 1, \ldots, \lfloor \frac{l}{2} \rfloor)$ , since the other cases are similar to it and easier than it. For a similar reason to the above, we may assume that  $x_{v_l} \leqslant x_{v_1}$ . If there exists a vertex  $v_i$   $(2 \leqslant i \leqslant l-2)$  such that  $x_{v_1} \leqslant x_{v_i}$ , let  $G_3 = G - v_l v_1 + v_l v_i$ . Otherwise,  $x_{v_i} < x_{v_1}$   $(2 \leqslant i \leqslant l-2)$ . In this case, if  $x_{v_i} \geqslant x_{v_4}$ , let  $G_3 = G - v_4 v_i + v_1 v_4$  (i = 3, 5). If  $x_{v_i} < x_{v_4}$  (i = 3, 5), we consider -X. Let Y = -X. Then  $y_{v_1} \leqslant y_{v_1}$ ,  $y_{v_3} > y_{v_4}$ . If  $y_{v_l} \leqslant y_{v_3}$ , let  $G_3 = G - v_1 v_l + v_1 v_3$ ; if  $y_{v_l} > y_{v_3}$ , let  $G' = G - v_3 v_4 + v_4 v_l$ . Then, in either case,  $G_3 \in \mathcal{U}_e^k$  or  $G_3 \in \mathcal{U}_o^k$  with a smaller cycle than that of G, and by Lemma 2.5,  $\mu_1(G) \leqslant \mu_1(G_3)$ .

If  $G_3 \in \mathcal{U}_e^k$ , since  $G_3 \ncong \Diamond_4^k$ , by Lemma 3.1, we get  $\mu_1(G') < \mu_1(\Diamond_4^k)$ . If  $G_3 \in \mathcal{U}_o^k$ , then by the hypothesis, we get  $\mu_1(G_3) < \mu_1(\Diamond_4^k)$ . So in either case,  $\mu_1(G) < \mu_1(\Diamond_4^k)$ .

Combining the above three lemmas, we get our main result:

**Theorem 3.4.** For any graph  $G \in \mathcal{U}_n(k)$ , we have  $\mu_1(G) \leq \mu_1(\lozenge_4^k)$ , and equality holds if and only if  $G \cong \lozenge_4^k$ .

# References

- D.M. Cvetkovi'c, M. Doob, H. Sachs, Spectra of Graphs-theory and Applications, VEB Deutscher Verlag d. Wiss., Berlin, 1979, Acad. Press, New York, 1979.
- [2] C.X. He, J.Y. Shao, J.L. He, On the Laplacian spectral radii of bicyclic graphs, Discrete Math. (2007), doi:10.1016/j.disc.2007.11.016.
- [3] A.J. Hoffman, J.H. Smith, in: Fiedler (Ed.), Recent Advances in Graph Theory, Academia Praha, New York, 1975, 273-281.
- [4] R. Horn, C. Johnson, Matrix Analysis, Cambridge University Press, New York, 1985.
- [5] R. Grone, R. Merris, V.S. Sunder, The Laplacian spectrum of a graph, SIAMJ. Matrix Anal. Appl. 11(2) (1990) 218-238.
- [6] R. Grone, R. Merris, The Laplacian spectrum of graph II, SIAMJ. Discrete. Math. 7 (1994) 221-229.
- [7] J.M. Guo, A new upper bound for the Laplacian spectral radius of graphs, Linear Algebra Appl. 400 (2005) 61-66.
- [8] J.M. Guo, The effect on the Laplacian spectral radius of a graph by adding or grafting edges, Linear Algebra Appl. 413 (2006) 59-71.
- [9] J.M. Guo, On the Laplacian spectral radius of trees with fixed diameter, Linear Algebra Appl. 419 (2006) 618-629.
- [10] S.G. Guo, The largest eigenvalues of Laplacian matrix of unicyclic graphs, Appl. Math. J. Chinese Univ. Ser. A. 16 (2) (2001) 131-135 (in Chinese).
- [11] S.G. Guo, The spectral radius of unicyclic and bicyclic graphs with n vertices and k pendant vertices, Linear Algebra Appl. 370 (2003) 237-250.

- [12] L. Lin, The Laplacian spectral radius of graphs on surfaces, Linear Algebra Appl. 428 (2008) 973-977.
- [13] M. Lu, L.Z. Zhang and F. Tian, Lower bounds of the Laplacian spectrum of graphs based on diameter, Linear Algebra Appl. 420 (2007) 400-406.
- [14] M. Marcus, H. Minc, A survey of Matrix Theory and Matrix Inequalities. Allyn and Bacon, Inc., Boston 1964.
- [15] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197-198 (1994) 143-176.
- [16] O. Rojo, A nontrivial upper bound on the largest Laplacian eigenvalue of weighted graphs, Linear Algebra Appl. 420 (2007) 625-633.
- [17] J.L. Shu, R.K. Wen, On sharp bounds for the Laplacian spectral radius of graphs, J. East China Norm. Uni. (Natural Science) 3 (2001) 21-24 (in Chinese).
- [18] W. So, Rank one perturbation and its application to the Laplacian spectrum of a graph, Linear and Multilinear Algebra 46 (1999) 193-198.
- [19] H.P. Zhang, X.L. Zhang, The Laplacian spectral radius of unicyclic graphs with fixed diameter, submitted.
- [20] X.L. Zhang, H.P. Zhang, The Laplacian spectral radius of some bipartite graphs, Linear Algebra Appl. 428 (2008), 1610-1619.
- [21] X.L. Zhang, H.P. Zhang, The Laplacian spectral radius of unicyclic graphs with perfect matchings, submitted.