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The graphs in this paper are simple and undirected. Let G = (V, E) be a
graph on n vertices. The Laplacian matriz is L(G) = D(G) — A(G), where
D(G) is the diagonal matrix of vertex degrees and A(G) is the adjacent
matrix of G. The Laplacian characteristic polynomial of G is just det(
zI — L(G)), which is denoted by ®(G,z), or simply ®(G). From the fact
that L(G) is a real symmetric matrix and Ger3gorin's theorem [4], it follows
that its cigenvalues are nonnegative real numbers, and 0 is the smallest
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eigenvalue of L(G). Hence its eigenvalues can be denoted by

p1(G) 2 p2(G) 2 -+ 2 pa(G) =0,
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in a non-increasing order. The largest eigenvalue u;(G) is the Laplacian
spectral radius of graph G. Similarly, the spectral radius of graph G is the
largest eigenvalue of A(G), which is denoted by p(G).

Up to now, there are many results about Laplacian spectral radius of
graphs. Some are about bounds (see (7, 12, 13, 16]), and others are about
extremal graphs (see [2, 9, 19, 20, 21]). In this paper, we restrict our
consideration to the Laplacian spectral radius of unicyclic graphs on n
vertices with k (k > 1) pendant vertices, and prove that ¢% is the unique
graph with the largest Laplacian spectral radius among all these graphs
when n > k + 4,

2 Prelimaries

We first give some lemmas that will be used in the main results.

Let G be a graph and let G’ = G + e be the graph obtained from G by
inserting a new edge e into G. It follows by the well-known Courant-Weyl
inequalities (sec, e.g., (1], Theorem 2.1) that the following is true.

Lemma 2.1. 1(G') 2 m(G) 2 p2(G') 2 p2(G) 2 -+ 2 pa(G') =
l‘n(G) =0.

Let Gu : vH denote the graph formed by identifying the vertex u of G
with the vertex v of H (see Fig. 1). If u is a vertex of G, let L,(G) denote
the principal submatrix of L(G) formed by deleting the row and the column
corresponding to vertex u. In the following, we always use ®(L,(G)) to
denote the characteristic polynomial of L,(G). The line graph LS of a
graph G is constructed by taking the edges of G as vertices of LC, and
joining two vertices in LS whenever the corresponding edges in G have a
common vertex. The set of neighbors of a vertex v; in G is denoted by
Ng(v;), or briefly by N(v;).

G H Gu:vH

Fig. 1. Graph Gu : vH.
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Lemma 2.2. [19] Let G = G1u: vGa. Then
®(G) = B(G1)®(Ly(G2)) + ®(Lu(G1))2(G2) — z@(Lu(G1))2(Lo(G2))-

If h(z) is a polynomial in the variable z, let A(h) denote the largest real
root of equation h(z) = 0.

Lemma 2.3. [20] Let h{z) and g(z) be monic polynomials with real roots.
If h(z) < g(z) for all > Mg), then A(R) > A(g).

In the following lemma, we assume that X, Y are two unit eigenvectors
of Hy, H, corresponding to p1(Hy), #1(H2), respectively.

Lemma 2.4. [19] Let Gi and G2 be shown as in Fig. 2, G, = Hyu*
uGv : v*Hy and Go = Hiu* : vGv : v* Ha. If (L4 (G)) < &(Ly(G)) for all
z > u1(G1). Then p1(G1) € p1(Gz). In particular, inequality is strict if
H, and Hs are both bipartite graphs.

>
L £y
G %
1 G,

Fig. 2. Graphs G; and Gs.

Lemma 2.5. [19] Let G be a connected graph of order n and X = (Tv,, Tug,
ve oy 2y, )T a unit eigenvector of G correspoding to p1 (G). If there exist three
different vertices vi, vit1, v; such that 2, < zy,,, < Ty, and v; is adjacent
to viy1, v; is nonadjacent to v;. Then pi(G) < (G — vivip1 + viv;).
Especially, inequality is strict if Ty, # Tv;.

Lemma 2.6. [8] Let u,v be two vertices of a connected bipartite graph
G = (W, Vo,E). Suppose that v1,v2,...,vs (1 < s < d(v)) are some
vertices of Ng(v) \ Ng(u) different from u. Let X be a unit eigenvector
of G correspoding to p1(G), and let G* be the graph obtained from G by
deleting the edges vv; and adding the edges uv; (1 < i < s). If |zu| 2 |2o]
and G* is also a bipartite graph, then p1(G*) > 11 (G).
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Let G be a connected graph, and uv € E(G). The graph Gy,v is ob-
tained from G by subdividing the edge uv, i. e., adding a new vertex w
and edges wu, wv in G — uv. Hoffman and Smith define an internal path
of G as a walk vovy -+ - v (s > 1) such that the vertices vg, vy, ... ,Ug arc
distinct, d(vo) > 2, d(vs) > 2, and d(v;) = 2, whenever 0 < i < s. And s is
called the length of the internal path. An internal path is closed if vy = v,.
They proved the following result.

Lemma 2.7. [3] Let uv be an edge of the connected graph G on n vertices.
(¢) If uv does not belong to an internal path of G, and G # C,, then
P(Gu) > p(G).
(i) If uv belongs to an internal path of G, and G # W,,, where W,, is
shown in Fig. 38, then p(Gy,y) < p(G).

......

Fig. 3. W,.

Lemma 2.8. [19] Let e = uv be an arbitrary edge of a bipartite graph
G = (V,E) (V| =n), G**(w) be the graph obtained from G by contracting
the edge e into a new vertez w. Then
(1) If uv does not belong to an interval path, then pi(G* (w)) < 1 (G).
(2) If uv belongs to an interval path and G¥*(w) is still a bipartite graph,
then 1 (G*¥(w)) > pu1(G).

Lemma 2.9. [17] p1(G) < 2 + p(L€), the equality holds if and only if G
is a bipartite graph.

Lemma 2.10. [5] Let G be a connected bipartite graph and H a subgraph
of G. Then py(H) < p1(G), and equality holds if and only if G = H.

Lemma 2.11. [8] Let G be a connected graph on n vertices and v be a

vertez of G. Let Gk, be the graph defined as in Fig. 4. Ifl > k> 1, then
1(Gr-1,141) € p1(Gh,),

with equality if and only if there ezists a unit eigenvector of Gy, corre-

sponding to p1(Gi,) taking the value O on vertez v. Especially, inequality

is strict if G is a bipartite graph.
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Vi-2

el 5

12 ‘/.“1 Vs ./o/’u

Gk ! Gk- 1,/+1

Fig. 4. Graphs Gi, and Gi_1,141.

Lemma 2.12. [6, 15] Let G be a connected graph on n vertices with at least
one edge, then 11(G) = A(G) + 1, where A(G) is the marimum degree of
the graph G, with equality if and only if A(G) =n — 1.

Lemma 2.13. [18] Let G be a graph on vertices labelled 1,2,...,n, and
suppose that vertices 1 and 2 of G are not adjacent. Form G from G
by adding the edge between vertices 1 and 2. Then the Laplacian spectral
integral variation occurs in one place if and only if in G, vertices 1 and
2 have the same set of neighbours. In the case that Laplacian spectral
integral variation occurs in one place, the eigenvalue of G that increased by
2 is given by the degree of vertez 1 (equivalently, the degree of vertex 2).

3 Main results

A unicyclic graph is a connected graph in which the number of edges equals
the number of vertices. We may use the following notation to represent an
unicyclic graph: G = U(C; T, T3, . . ., Tt); where C; is the unique cycle in
G with V(C)) = {v1,v2,...,u} such that v; is adjacent to viy1 ( mod )
for 1 € i < . For cach i, let T; be the component of G — {V(C) — v;}
containing v; (see Fig. 5). If |V(Ti)] = 1, we say T; is a trivial tree. Let
Uy, (k) denote the set of all unicyclic graphs with n vertices and k (k=22
pendant vertices. Let 0% be the graph on n vertices obtained from Cy by
attaching & paths of almost equal lengths at the same vertex. If U is any
vertex set of G, we usually use G — U to denote the graph obtained from
G by deleting all the vertices in U and their incident edges.
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Fig. 5. Graph U(C;; 1, T3, ..., T}).

Let Uy (k) denote the set of all unicyclic graphs on n (n > k+4) vertices
with k (k > 1) pendant vertices. Let
Us={G =U(C;;T1,...,T1) € Un(k)| L is odd};
Uk={c =U(CyT,... yT1) € Un(k)| 1 is even}.

Lemma 3.1. For any graph G € U¥, we have

#1(G) < p1(0%),
and equality holds if and only if G = (%,

Proof: Let G =U(C;; T, Ts,...,T1) €UF and X = (z1,Z2,...,2,)T be a
unit eigenvector of G corresponding to x;(G), where z; corresponds to the
vertex v; (1 <7< n).

Choosc G € U¥ such that the Laplacian spectral radius of G is as large
as possible. We first show some facts.
Fact 1. G has a unique nontrivial attached tree.
Proof. Suppose not, we may assume that |V(T})| # 1 and V(T # 1,
where i # j. Denote N(v;) \ V(C)) = {ui,...,u,}, N(v;)\ V(C) =
{wl,.. .,wt}.

If |z 2 |z4], let G* =G - Vjwy ~ e — VW + vw + -+ vwy.

If I:E,I < I:L‘jl, let G* =G —-vjug —+ - — ViUs -+ vjuy + - - - + vius.

Then, in either case, G* € U*. By Lemma 2.6, we have 11(G) < 1 (G*),
which is a contradiction.

Suppose that v; is the root of the nontrivial attached tree.
Fact 2. For any vertex v € V(T}) \ {v1}, de(v) < 2.
Proof. On the contrary, there exists a vertex v, of T\ — v; such that
dg(vr) > 2. Since T is a tree, there is a unique path P connecting vertices
v1 and v.. Denote P = vjvy, -+ -vy_jv,. Let G* = GVt (w) + vgu,
where v, is a pendant vertex of T) — v; and u is a new vertex different
from the vertices of G*"~1""(w). Then G* € U*. By Lemma 2.8, we have
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#1(G) < p1(GPr-1¥r(w)). Since G¥r-1*r(w) is a proper subgraph of G*, by
Lemma 2.10, we get p1(G¥r-1*r(w)) < p1(G*). So 11(G) < p1(G*), which
is a contradiction.
Fact 3. | = 4.
Proof. On the contrary, [ > 6. Let G* be the graph obtained from G by
contracting the edges vjve and vovs. Suppose that u is a pendent vertex
of G, and v, w are two new vertices different from the vertices of G*. Let
G** = G* +w+vw. Then G** € U*. By Lemma 2.7 and Lemma 2.10, we
have p(L®) < p(LC") < p(LE™"). Since G, G*, G** are all bipartite graphs,
by Lemma 2.9, 111(G) < p1(G*) < p1(G**), which is a contradiction.
Fact 4. The k paths attached to v; have almost equal lengths.
Proof. It is obvious by Lemma 2.11.

Up to now, we have proved the result. ]

Lemma 3.2. Let G| and Gy be shown as in Fig. 6. Then u1(G) <
p1(Ga).

Fig. 6. Graphs G; and Gs.

Proof: Let H) = G~{uy,vn1}, Hp = G—{uz,v2, w2}, H = G—{uy,v1,w1,8,} =
G — {ug,v2,wp, s2}. By Lemma 2.2, we have

8(Cs) = z(z-3)%

)
z(z — 2)%(z — 4);

®(Cy) =
®(Ly(C3)) = (z—1)(z~3);
B(Ly(Cy)) = (z—2)(z®—4z+2);

®(Lu(H1)) = (z-1)'z%-3z+1)"*
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®(L,(H)) = (z—1)*(z%-32+1)}
®(G1) O(H1)®(Lu(C3)) + B(Lu(H1))(2(C3) — 2B(Lu(Cs)));
®(G2) D(H2)®(Lv(Cs1)) + B(Lo(H2))((Cy) — 2®(Ly(Ca)));
®(H1) = ®(H)B:+ (Ps—xB2)B;Bj;
S(H)(z® — 3z + 1) — z(z — 2)(z — 1)"(z? - 3z + 1)};
®(H)B, + (P, — .’L‘B])BéBi;
= ®(H)(z-1)-z(x - 1)(z? -3z +1)%.
®(G1) - ®(G2) = ®(H1)®(Lu(C3)) — ®(H2)®(Lu(Cy))
+ @(Lu(H1))(2(Cs) — z®(Lu(C3)))
— (Lo (H2))(®(Ca) — 28(Lo(Ca)))
= ®H)(z-1)(z-3)(2® -3z +1)
- z(z — 2)(z — 3)(z — 1)+ (2? — 3z + 1)*
+ (z = 1)Y(z® — 3z + 1) (-2z)(z — 3)
—B(H)(x - 1)z - 2)(a® — 4z +2)
+z(z - 2)(2® —dz + 2)(z - 1)!(z® - 3z + 1)t
- (z - )"*(2? = 3z + 1)} (- 22)(z — 2)(z — 3)
= ®(H)(z-1)[(z-3)(2® -3z +1) — (z - 2)(z® — 4z
+2)] - z(z - 2)(z — 1)!(2? - 3z + 1)*[(z — 1)(z — 3)
- (z® ~ 4z +2)] - 2z(z ~ 3)(z — 1)}(2? — 3z + 1)*
[(z® =3z + 1) — (z — 1)(z — 2)]
= ®(H)z-1)-z(x - 2)(z - 1)'(z® - 3z + 1)
+2z(z — 3)(z — 1)"(2? - 3z + 1)
= ®(H)(z—1)+z(z - 4)(z - 1)}(z? - 3z + 1)*.

1l

®(H2)

Since H and Cj are both proper subgraphs of bipartite graph Ga, by
Lemma 2.10, we get p1,(G2) > p1(H), p1(G2) > 111(Cy) = 4. As we know
MG2) = p1(Ga), we get B(Gy) — ¥(Gz) > 0, for all z > A(G3). By Lemma
2.3, we get A(G1) < A(Gz), i.e., u1(G1) < 1(Gs). ]

Lemma 3.3. For any graph G € U¥, we have u1(G) < py (0%).

Proof: Let G = U(C;;Th, T>,...,T}) € Uk. We can prove the result by
induction on .

If I = 3, let G* be the graph obtained from G by attaching T and T
to vertex v;. Then by Lemma 2.4, we have u1(G) < 1(G*). Denote by
Ti the unique attached tree of G*. Let &' = G* — vov3. Then Lemma
2.13, we get u1(G*) = p1(G’). Since n > k + 4, there must exist a vertex
vj € V(T7) such that dg- (v1,v;) = 2. Let G” = G’ + vov;. Then G” € UF.
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If G* = G, then G” = G3, where G, G2 are shown as in Fig. 6. Then by
Lemma 3.2, we have 4 (G’) < u1(G”). Otherwise, G* 2 G;. By Lemma
2.1, we have u;(G’) < 11 (G”) and the unique cycle G, of G” is of length
4. Then by Lemma 3.1, we get 13(G”) < p1(0%). So p1(G) < p1(0%).

Suppose the result is true for each graph belonging to U¥ with a cycle
of length smaller than I. In the following, we always assume that ! > 5.
Case 1. There exists some 1 € i < ! such that dg(v;i) = de(Vit1(mod 1)) =
2.

Let G** = G¥¥+(w) + vu, where u is a pendant vertex of G¥Vi+!(w)
and v is a new vertex different from the vertices of GV¥i+1(w). Then
G** € U and by Lemma 2.7, we have p(L) < p(LE"*1" (), By Lemma
2.9, we have 11 (G) < 2 + p(L€) and p1(G¥+1% (w)) = 2 + p(LE™ (W),
So 1(G) < p1 (GUi+¥i(w)). Since GU+1% (w) is a proper subgraph of G**,
by Lemma 2.10, we get p1(GVi+1¥i(w)) < p1(G**). Since G*™* € Uk, by
Lemma 3.1, we get 11 (G**) < p1(0%). So p1(G) < 1 (05).

Case 2. Otherwise.

Since ! is odd, there must exist some 1 < j < ! such that dg(v;) = 3,
de(Vj41(mod 1)) = 3. For convenicnce, we may assume that j = 1.

If I = 5 and two vertices of vs,v4,vs are with degree 2, say dg(v3) =
dg(vs) = 2. Then dg(vs) = 3. Denote Ng(v;) = {u1,...,us}. Let Gy =
G — viuy — - -+ — ViU + voug + - - + vouy. Then by Lemma 2.4, p1(G) <
p1(G1). Since dg, (v1) = dg,(vs) = 2, we can deal with G, in a similar
way to case 1, and prove the result.

If 1 = 5 and only one vertex of vs, v4,vs are with degree 2, say dg(vs) =
2. Then dg(vs) > 3, dg(vq) > 3. We may assume that z,, < o, since
—X is also a unit eigenvector of G corresponding to u1(G). If zy, < 2,
let Go = G —v1v2 + nv; (i = 3,4); if 2y, < Ty, (2 = 3,4) and Ty, < Tog,
let Go = G — v3vg + vavy; if Ty, € T, (8 =3,4) and zyg 2 Ty, > Tus, let
Gy = G — vy + vavus; if Ty, € To, (i = 3,4), Tys < Ty, aNd Ty, > Tug,
let Go = G — v4us + vous. Then, in either case, G2 € Z,{Z,“ or Gy € UF and
by lemma 2.5, 41(G) € p(Ge). If G2 € U*, since Gy 2 0%, by Lemma
3.1, we get u1(Ga) < m(0F). If G2 € U, since the unique cycle of G
is of length 3, according to the first step of induction hypothesis, we get
p1(G2) < p1(0%). So, in either case, p1(G) < p1(0%).

If I > 7, we only consider the case that dg(vei+1) > 3 and dg(ve;) = 2
(i=1,...,]5]), since the other cases are similar to it and easier than it. For
a similar reason to the above, we may assume that z,, < z,. If there exists
a vertex v; (2 < i <1 —2) such that =, < z,,, let G3 = G — vv, + v;.
Otherwise, T,, < Ty, (2 < ¢ < [ —2). In this case, if z,, > Zy,, let
G3 = G—v4v;+v1v4 (¢ = 3,5). If 2, < o, (i = 3,5), we consider —X. Let
Y = —=X. Then gy, < Yo Yvs > Yva- U Yu < Yoy, let Gz = G—vvitvvs; if
Yo, > Yus, let G = G—vavg+vav;. Then, in either case, G3 € Uk or Gz e U*
with a smaller cycle than that of G, and by Lemma 2.5, 11 (G) < p1(G3).

353



If G3 € Uy, since G3 2 Of, by Lemma 3.1, we get 11,(G’) < w1 (0%). If

Gs € U¥, then by the hypothesis, we get p1(Gs) < p1(0%). So in either

case, p1(G) < 1 (0F). o
Combining the above three lemmas, we get our main result:

Theorem 3.4. For any graph G € U, (k), we have

#1(G) < p1(05),
and equality holds if and only if G = 0.
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