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Abstract

Let S be a primitive non-powerful signed digraph of order n. The
base of a vertex u, denoted by Is(w), is the smallest positive integer
1 such that there is a pair of SSSD walks of length ¢ from u to each
vertex v € V(S) for any integer ¢ > I. We choose to order the vertices
of S in such a way that ls(1) < Is(2) £ ... < ls(n), and call Is(k)
the kth local base of S for 1 < k < n. In this work, we use PNSSD
to denote the class of all primitive non-powerful signed symmetric
digraphs of order n with at least one loop. Let I(k) be the largest
value of ls(k) for S € PNSSD, and L(k) = {Is(k) | S € PNSSD}.
Forn>3and 1< k <n—1, weshow I(k) = 2n — 1 and L(k) =
{2,3,...,2n—1}. Further, we characterize all primitive non-powerful
signed symmetric digraphs whose kth local bases attain I(k).

AMS classification: 15A48, 05C20, 05C50
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1 Introduction

Let D be a digraph (permits loops but no multiple arcs). Digraph D
is called primitive if there is a positive integer k such that for all ordered
pairs of vertices u and v (not necessarily distinct) in D, there exists a walk
of length k from u to v([1]).

A signed digraph S is a digraph where each arc of S is assigned a sign
1 or —1. The sign of the walk W (in a signed digraph), denoted by sgnW,
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is defined to be the product of signs of all arcs in W. Two walks W; and
W2 in a signed digraph is called a pair of SSSD walks, if they have the
same initial vertex, same terminal vertex, same length, but different signs.
A signed digraph S is called powerful if S contains no pair of SSSD walks.

Let S be a primitive non-powerful signed digraph. For any v, v € -
V(S), the base from v; to v;, denoted by ls(v;,v;), is defined to be the
smallest positive integer {; such that for each integer ¢ > {1, there exists a
pair of SSSD walks of length ¢ from v; to v;. The base of vertez v; € V(S),
denoted by Ils(v;), is defined to be the smallest positive integer > such
that for each integer ¢ > I3 there exists a pair of SSSD walks of length
t from v; to each vertex v; € V(S). The base of S, denoted by I(S), is
defined to be the smallest positive integer I3 such that for all ordered pairs
of vertices v; and vj, there is a pair of SSSD walks of length ¢ from v; to
vj for each integer ¢ > l3. Clearly, Is(v;) = max{ls(vi,v;) | v; € V(S)}
and {(S) = max{ls(v;) | v: € V(S)}. We choose to order the vertices of S
in such a way that

Is(1) <15(2) <... < lg(n),

and call Is(k) the kth local base of S for 1 < k < n.

A digraph D is symmetric if for any v;,v; € V(D), (vi,v;) is an arc if
and only if (v, v;) is an arc. A signed symmetric digraph S is a symmetric
digraph where each arc of S is assigned a sign 1 or —1, and the sign of
(vi,v;) may be different from the sign of (vj, v;).

We use PNSSD to denote the class of all primitive non-powerful signed
symmetric digraphs of order n with at least one loop. For n > 3, and
1 <€ k < n, let {(k) be the largest value of Ig(k) for S € PNSSD, and
L(k) = {is(k) | S € PNSSD}. Since I(n) and L(n) have been determined
in [2], in this work, we shall show {(k) = 2n~1and L(k) = {2,3,...,2n-1}
for 1 < k < n—1. Further, we characterize all primitive non-powerful signed
symmetric digraphs whose kth local bases attain {(k).

2 Some preliminaries

Lemma 2.1 ([3]) Let S be a primitive signed digraph. Then S is non-
powerful if and only if S contains a pair of cycles Cy and C, (of lengths p,
and p2, respectively) satisfying one of the following two conditions:

(1) p1 is odd, pp is even and sgnCyp = —1;

(2) Both py and p; are odd and sgnC) = —sgnCs.

For convenience, we call a pair of cycles C; and C, satisfying (1) or
(2) in Lemma 2.1 a distinguished cycle pair. Suppose C) and C, form a
distinguished cycle pair of lengths p; and p, respectively. Then the closed
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walks W) = paC (walk around C) p2 times) and Wp = p, C; have the same
length p1p2 but with different signs since (sgnCy)?? = —(sgnCs)?*.

Let R = {C),...,C,} be the set of some distinct cycles of signed digraph
S. For any u,v € V(S), dr(u,v) denote the length of the shortest walk
from u to v which meets C; for each ¢ = 1,...,r. The following lemma is
clear.

Lemma 2.2 Let S be a primitive non-powerful signed digraph with at
least one loop, and C, and Cy be a distinguished cycle pair of lengths p
and po, respectively. Denote R = {C1,Cs}. If min{p1,p2} = 1, then
Is(vi, ;) < dr(vi,v5) + p1p2 for any vi,v; € V(S).

3 Main results

Theorem 3.1 Letn > 3,1 <k <n-1, and S € PNSSD. Then
lg(k) < 2n — 1, and the equality can occur.

Proof Let C, be a loop of S. Since S is primitive non-powerful, by
Lemma 2.1, there is a cycle C, of length m (m-cycle for short) in S such
that C; and C» form a distinguished cycle pair. Denote R = {C},C2}. Let
D be the underlying digraph of S. For any v;,v; € V(S), we consider the
following cases.

Case 1. m = 1. Then dg(vi,v;) < 2(n—1). Sols(v;,v;) £ 2(n-1)+1=
2n — 1 by Lemma 2.2 and Ig(v;) < 2n — 1 for any vertex v;.

Case 2. m > 2. If m is odd, then dp(v;,v;) < 2(n — %1). So
ls(vi,v;) < 2(n— ™) +m = 2n—1 by Lemma 2.2 and I5(v;) < 2n—1 for
any vertex v;. If m is even, then the diameter of D d(D) < n—-%. Suppose
d(D) < n—%—1. Then dgr(vi,v;) < 2(n—% —1) and s(v;, vj) < 2(n—-F -
1)+m = 2n—2 by Lemma 2.2. So ls(v;) < 2n—2 for any vertex v;. Suppose
d(D) = n— %. Without loss of gencrality, let d(vy, Un-gp+1) =n—F, and
the shortest path in D from v to vn_z 41 isv; —m v — - > Un_mg1. If
C is (not) at vertex v, then max{dgr(vi,v;) | v; € V(S)} <2(n- 3) -1
for v; # vn—m41(v1). So ls(vi,v;) < 2(n— 2)—1+4+m =2n—1by Lemma
2.2 and lg(v;) < 2n —1 for v; # vn_%.,.l(vl).

Combining the above cases, we have ls(k) < 2n —1for 1 < k<n-1.

On the other hand, take S; € PNSSD such that its underlying digraph
is D, (as given in Figure 1), the loop at vertex v; is negative, and the other

arcs are positive.

O e )

n v2 V3

Fig. 1 Digraph D,
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For any v; € V(S,), since each walk of length 2n — 2 from v; to v; is
positive. Thus there is no pair of $SSD walks of length 2n — 2 from v; to
vi. Sols,(v;) =2n—1andlg(k)=2n—1for1<k<n-1 O

Corollary 3.2 Forn>3 and1<k<n-1,1(k)=2n—-1.
Lemma 3.3 Forn>3,1<k<n-2, and2<t<n-1,2te L(k).

Proof Let 2 <¢<n-—1 Take S € PNSSD such that its underlying
digraph is the digraph obtained from D2 (as given in Figure 2) by adding
loops at vertices vg41, V42, .. ., Un, respectively, the arc (v1,v2) is negative,
and the other arcs are positive. We shall show ls(k) =2t for 1 < k < n-—2.

Ut
Vet2

n V2 v3 V-1 vt
Un

Fig. 2 Digraph D,

For vertex v, since therc exists a walk of length 2¢ from v1 to v; such
that it meets both a positive loop and a negative 2-cycle for any vertex
v; € V(S), so ls(v1,v;) < 2¢t+2 by Lemma 2.2 and ls(v1) < 2t+2. On the
other hand, each walk of length 2t + 1 from v; to v; is negative. Thus there
is no pair of SSSD walks of length 2¢ +1 from v; to v; and Is(v)) =2t +2.

For vertex vs, since there exists a walk of length 2t — 1 from v, to
v; such that it meets both a positive loop and a negative 2-cycle for any
vertex v; € V(S), so ls(vg,v;) < 2t~ 142 =2t + 1 by Lemma 2.2 and
ls(v2) < 2t + 1. On the other hand, each walk of length 2t from v to v; is
positive. Thus there is no pair of SSSD walks of length 2¢ from v, to v1
and lg(ve) = 2t + 1.

For vertex v;, where 3 < i < n, since there exists a walk of length
2(t - 1) from v; to v; such that it mects both a positive loop and a negative
2-cycle for any vertex v; € V(S), so lg(vi,v;) < 2(t—1)+2 = 2t by Lemma
2.2 and ls(v;) < 2¢t. On the other hand, cach walk of length 2¢ — 1 from
v; to v; is positive. Thus there is no pair of $SSD walks of length 2¢ — 1
from v; to v; and lg(v;) = 2.

Consequently, lg(k) =2t for 1< k<n-2. O

Lemma 3.4 Forn>3 and 1 <t<n-2, 2t+2€ Ly(n-1).

Proof Let 1<t <n-—2 TakeS € PNSSD such that its underlying
digraph is the digraph obtained from D5 by adding a loop at vertex v;, the
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arcs (Vg,Vi+1), (Ve, Vi), - - -, (Ve, Un) are negative, and the other arcs are
positive. We shall show Is(n — 1) = 2t + 2.

For vertex v;, where t + 1 < i < m, since there exists a walk of length
2t from v; to v; such that it meets both a positive loop and a negative
2-cycle for any vertex v; € V(S), so ls(vi,v;) < 2t +2 by Lemma 2.2 and
Is(v;) € 2t + 2. On the other hand, cach walk of length 2¢ + 1 from v; to
v; is negative. Thus there is no pair of SSSD walks of length 2¢ + 1 from
v; to v; and lg(v;) = 2t + 2.

For vertex v;, where 1 < i < t, since there exists a walk of length 2¢ — 1
from v; to v; such that it meets both 2 positive loop and a negative 2-cycle
for any vertex v; € V(S), so is(v;,v;) $ 2t ~1+2=2t+1 by Lemma 2.2
and lg(v;) < 2t + 1.

Since t < n — 2, consequently lg(n — 1) =2t+2. O

Lemma 3.5 Forn>3,1<k<n-1l,endl1 <t<n-1,2t+1¢€ L(k).

Proof Let 1 <t < n-—1 Take S € PNSSD such that its underly-
ing digraph is the digraph obtained from D, by adding loops at vertices
V1, Va1, Ve2s - - - » Un, TESpectively, the loop at vertex vy is negative, and the
other arcs are positive. We shall show ls(k) =2t+1for 1<k <n-1.
For any v; € V(S), since there exists a walk of length 2¢ from v; to v;
such that it meets both a negative loop and a positive loop for any vertex
vj € V(8), so ls(vi,v;) £ 2t+1 by Lemma 2.2 and lg(v;) < 2t+1. On the
other hand, each walk of length 2t from v; to v; is positive. Thus there is
no pair of $SSD walks in S of length 2t from v; to v; and lg(v;) = 2t + 1.
Consequently, Is(k) =2t+1for1<k<n—-1. O

Lemma 3.6 Forn>3andl1 <k<n-1,2¢€ L(k).

Proof Take S € PNSSD with V(S) = {v1,vs,...,vn} such that its
underlying digraph is the symmetric complete digraph with a loop at each
vertex, the arcs (vg,v1), (v3,v1),. - -, (¥n,v1) and the loop at vertex v; are
negative, and the other arcs are positive. We shall show ls(k) = 2 for
1<k<n-1.

For any vertices v;,v; € V(S), walks v; = v2 — v; and v; = v — v;
form a pair of $SSD walks of length 2 from v; to v;. Since there exists a
loop at each vertex, so there exists a pair of SSSD walks of length ! from
v; to v; for each integer ! > 2. On the other hand, ls(v;) = 2 for any
S € PNSSD. So lg(v;) = 2 for any v; € V(S).

Consequently, lg(k) =2for 1 <k<n—-1.0

Since 1 ¢ L(k) for n > 3 and 1 < k < n — 1, combining Theorem 3.1
and Lemmas 3.3-3.6, we obtain the following theorem.

Theorem 3.7 Forn>3 and1<k<n-1, L(k)={2,3,...,2n—1}.
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4 The extremal signed symmetric digraphs

In this section, we characterize all primitive non-powerful signed sym-
metric digraphs of order n with at least one loop whose kth local bases
attain {(k).

Lemma 4.1 Letn >3, S € PNSSD with D as the underlying digraph
and there exist at least one negative 2-cycle in S. Then
(Distk)<2n—2for1<k<n-2.
(2) ls(n — 1) = 2n — 1 if and only if D is isomorphic to D3 (as given

in Figure 3).
O e <>

n v2 v3 Vn-1 Un
Fig. 3 Digraph D3

Proof Let C; and C; be a loop and a negative 2-cycle of S, respectively,
and R = {Cy,C2}. Then C; and C; form a distinguished cycle pair. Clearly
d(D) < n— 1. For any v;,v; € V(S), we consider the following cases.

Case 1. d(D) < n —2. Then dg(vi,v;) < 2(n — 2) and Is(vi,v;) <
2(n—2)+2 =2n—2 by Lemma 2.2. So lg(v;) < 2n — 2 for any vertex v;.

Case 2. d(D) = n — 1. Without loss of generality, let d(v;,v,) =n —1,
and the shortest path in D from v; to v, be v; — vo — -+ — v,. If
either there exists a loop at vertex vx, where 2 < k < n — 1, or there exist
loops at both vertices v; and vy, then there exists a walk of length 2(n — 2)
from v; to v; such that it meets both a loop and a negative 2-cycle. So
ls(vi,v;) < 2(n—2)+2 =2n—2 by Lemma 2.2 and Is(v;) < 2n — 2 for
any vertex v;. If there exists a loop at exactly vertex v, or v,, then D is
isomorphic to D3. Now, we calculate the base of each vertex.

For vertex v,, since there exists a walk of length 2(n — 1) from v, to
v; such that it meets both the loop and a negative 2-cycle for any vertex
v; € V(S), s0ls(vn,v;) < 2(n—1)+2 = 2n by Lemma 2.2 and ls(v,) < 2n.
On the other hand, there exists the unique walk of length 2n — 1 from v,
to v,. Thus there is no pair of SSSD walks of length 2n — 1 from v, to v,
and lg(v,) = 2n.

For vertex v,_1, since there exists a walk of length 2(n — 2) + 1 from
Un—1 to vj such that it meets both the loop and a negative 2-cycle for any
vertex v; € V(S), so ls(vn_1,v;) <2(n—2)+1+4+2=2n—1 by Lemma 2.2
and ls{vp-1) < 2n — 1. On the other hand, there exists the unique walk
of length 2n — 2 from v,_; to v,,. Thus there is no pair of SSSD walks of
length 2n — 2 from v,,—; to v, and Is(v,_;) = 2n — 1.

For vertex v;, where 1 < i < n — 2, since there exists a walk of length
2(n — 2) from v; to v; such that it meets both the loop and a negative
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2-cycle for any vertex v; € V(S), so ls(vi,v;) <2(n—2)+2=2n—-2by
Lemma 2.2 and Is(v;) < 2n — 2.

Consequently, we have lg(k) < 2n—2for 1 < k < n—2,and ls(n— 1)=
2n — 1 if and only if D is isomorphic to D3. D

Lemma 4.2 Let n > 3, and S € PNSSD with D as the underlying
digraph. If each 2-cycle of S is positive, and there exist both a negative
loop and a positive loop in S. Thenlg(k) =2n—1for1<k<n-—-14f
and only if D is isomorphic to D;.

Proof Sufficiency is immediate from the proof of Theorem 3.1. Now
we consider necessity. Let C; and C; be the negative loop and positive
loop, respectively. Then Cj and Cs form a distinguished cycle pair of S.
Denote R = {Ci,C2}. For any v;,v; € V(S), if d(D) £ n — 2, then
dr(vi,v;) < 2(n—2) and ls(v;,v;) < 2(n—2) + 1 = 2n — 3 by Lemma 2.2.
So Ig(v;) < 2n—3 for any vertex v; contradicting ls(k)=2n—-1for1 <k <
n—1. So d(D) = n — 1. Without loss of generality, let d(v1,v,) =n -1,
the shortest path in D from v; to v, be v; — v — -+ — v,. Let C, and
C- be at vertices v, and v, respectively, and t > s. If v, # vy (v¢ # vn),
then for v; # vy (vi # vn), dr(vi,v;) < 2(n —2) + 1 for any v; € V(S5) and
ls(vi,v;) £2(n—2)+1+1=2n—2by Lemma 2.2. So Is(v;) < 2n—2 for
any vertex v; # vy (v; # v,) contradicting ls(k) =2n—~1for1 <k <n-1.
The lemma now follows. O

Lemma 4.3 Letn > 3, and S € PNSSD with D as the underlying
digraph. If each 2-cycle of S is positive, and the signs of all loops of S are
the same, then lg(k) <2n—2 for 1<k <n-1.

Proof Let C; be a loop of S. Since S is primitive non-powerful, by
Lemma 2.1, there is a cycle C in S such that C; and C form a distinguished
cycle pair. Denote C; to be the cycle of length m satisfying: (1) C1 and C
form a distinguished cycle pair; (2) there is no cycle C such that Cy and C
form a distinguished cycle pair and the length of C is less than m. Then
C> must be a simple cycle and we call C; and C; the shortest distinguished
cycle pair. Denote R = {C),C2}. For any v;,v; € V(S), we consider the
following cases.

Case 1. m is odd. Then d(D) < n— 2 and sgnC; = —sgnC.
Without loss of generality, let sgnCy = +. If d(D) < n — =1 — 1, then
dr(vi,v;) < 2(n— 21 —1) and Is(vi, v;) < 2(n— 2 —1)+m = 2n—-3 by
Lemma 2.2. So ls(v;) < 2n—3 for any vertex v;. If d(D) = n—241 without
loss of generality, let d(v1,v,_m41 +1) = n— BF1, the shortest path in D
from v; to Vp_mir bevy mvg— -+ — Up_ml g Since C; and Cs are
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the shortest distinguished cycle pair and [V(C;)N{v;, v,, .. ., Up_mir g H>
ﬂéﬂ, without loss of generality, we can let C, = v, — vy — --- —
Yppmol = Up = Up_p — T Up_mii = U, where 1<t<n-m+1.

Subcase 1.1. 2<t<n—m.

Subcase 1.1.1. C) is at vertex v, where v # v; and v 5 Up_miry,. Then
dr(vi,v5) < 2(n— 2#L — 1) and Ig(vi,v;) < 2(n — 2l _1)+m=2n-3
by Lemma, 2.2. So ls(v;) < 2n — 3 < 2n — 2 for any vertex v;.

Subcase 1.1.2. Cj is at vertex vy or Up_mi g Without loss of gener-

ality, let C) be at vertex v;. Now, we calculate the base of each vertex.
Firstly, we consider vertex Up_mdi . Since each 2-cycle of S is pos-
itive and C is negative, the signs of vy — vyy — -+ — v, pmot and
Ur ™ Up_mplig > Up_miiyg o D Up Vpymoa is different. If v; #
Vp_mpi gy, thendp(v, _me1,,05) < 2(n—=4#1)—1and b5 (v _mp1 1y, ) <
2(n— ﬂ;—l-) —14+m =2n-2 by Lemma 2.2. If v; = o mdl g since for

any integer [ > 2(n — mfL) 4 1,

m+1
W, = (Un—ﬁ,ﬂn T Up_mir e =)+ (1 -2(n- 2 ))Ci
+(v1 _)”"_’vl_)vt-!-l _)..._)vt+2_rl_ _)..._.)vn_mT“+1)

and

m+1
Wy = (v, _mp1 4 =V mp = o)+ (U= 2n - ——2—)—1)01

Ot = S o U iy D U m g o o v

D Uppmpt = D Uy ma )

form a pair of SSSD walks of length  from v, _ mp1 g b0V, EESPRP thus

ls(vn_%ﬂ,vn_%ﬂﬂ) < 2(n— 24y + 1 = 2n — m and consequently

ls(vn_%ﬂ_'_l) <2n-2.

Secondly, we consider vertex v; # Up_mi1 . Since dp(vi,v;) < 2(n ~
23 —1)+1 for any v; € V(S), sols(v;,v;) < 2(n~2EL —1) 4+ 14m = 2n—2
by Lemma 2.2 and lg(v;) < 2n — 2 for any vertex v; # Vp_mat

Conscquently, lg(k) <2n—2for 1<k<n-—1.

Subcase 1.2. t=n—m+1lort=1,and m < n— 1. Without loss of
generality, let t =n —m + 1.

Subcase 1.2.1. C) is at vertex v, where v # v, v # v,, and v #
Up_mel g Since m < n — 1, then dp(vi;,v;) < 2(n — = — 1) and
ls(vi,v;) < 2(n— 2+ —1)+m = 2n—3 by Lemma 2.2. Thus ls(v;) < 2n—3
for any vertex v;.

+1°
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Subcase 1.2.2. C) is at vertex vy, or v _ mt1 gy OF VUn. Without loss
of gencrality, let C; be at vertex v;. Now, we calculate the base of each
vertex.

Firstly, we consider vertex Vp_mil iy and v,. If v; # Up_mil g and
v;j # vn, then dg (v —ﬁFH’vﬂ') <2(n- !'-‘-2ﬂ)— 1 and ls(vn__n;;_;H,vj) <
2(n — 1) — 1+ m = 2n — 2 by Lemma 2.2. For vertices v, _m41,, and
v, since for any integer [ > 2(n — %"—1-) +1,

+1
Wl‘:(vn_ﬂgi'f'l_’vn—ﬂgi—""'_’Ul)+(l—2(n_m2 ))Cl

+(vl — s = VUnemtl 2 Unem42 — 000 U, rnzil +1)

and

1) - 1)Ci+

Wo = (v _mps 1y = Vpomgs =+ = 01) + (1= 2n = =

(vl—)"'_’vn—m+l —>'vn_-yg?._l_+2—)vn_&;_l+3—-)...—)vn-—P’Un_ﬂ%l_l_l)

form a pair of $5SD walks of length ! from v, _mpty to v, 1;-_1 +1» and
Wi+ (v _mpt g vp) and Wa + (v Up_mp1y) = v,.) form a pair of SSSD
walks oflength l+1fromuv, _mily to v, thus lg(v Up_mtl 415y _+_+1) <
2n — By +1 = 2n—mand Is(Vy_mp1 1y Vn vw) < 2n-m+ 1. So
Is(v, %H) < 2n ~ 2. Similarly, we can show lg(v,) < 2n — 2.

Secondly, we consider vertex v;, where v; # v, _mgiy and v; # vp.
Since dR('u,, v;) < 2(n — 2+L — 1)+ 1 for any vertex v; of S, so ls(vi,v;) <
2(n — 23 —1)+1+m—2n 2 by Lemma 2.2 and ls(v;) < 2n — 2.

Consequently, Is(k) <2n—2for 1<k <n-1.

Subcase 1.3. m = n. Without loss of generality, let Co = v; — vz —
© D Ungl D Up D Ul o0 D Undd gy UL and C; be at vertex v;.

Now, we calculate the base of each vertex.
Firstly, we consider vertex v gl and v,. Ifv; # va a1 and v; # vn, then

dR(v'. i) €n—2and ls(vapr,v;)) Sn—2+n= 2n 2 by Lemma 2.2.
For vertices va np1 and vy, since for any integer | > n,

Wi = (vags = vags_y — - = w)+{=n+ )04y = vp = - = vas)

and

W2=(v_,._P —’Ulgi_l'—’""—)vl)

+(l_n)cl+('U1—’vz"j‘i+l-—>vn_12-_l+2—>o'-—-)vn—)vn_.{_]_)
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form a pair of SS5D walks of length { from Vgt t0 Uap1, and W, +(v..+1 —
vp) and W + (v.. 1 — v,) form a pair of SSSD walks of length [+ 1 from
Ungr O vp, thus ls('UnT-H v+) <n<2n-2, and lS(U&;_] vp) <n+1<
2n - 2. So ls(vlg._;) < 2n — 2. Similarly, we can show lg(v,) < 2n — 2.
Secondly, we consider vertex v;, where v; # va gl and v; # v,. Since

dr(vi,v;) < n—2 for any vertex v; of §, so ls(v,,vJ) <n—-24+n=2n-2
by Lemma 2.2 and lg{v;) < 2n — 2.
Consequently, is(k) <2n—-2for1<k<n-1.

Case 2. m is even. Clearly, d(D) <n— 2. Ifd(D) <n—- 2 -1, then
dr(vi,v;) < 2(n — B —1). So ls(vi,v;) < 2(n -5-1) +m =2n —
by Lemma 2.2 and ls(v,) < 2n ~ 2 for any vertex v, IfdD)=n-1%,
without loss of generality, let d(v1,Vn-241) = n — 2, the shortest path

from v; to v,_m py1bevy 2 vp > -0 > Vn—z41. Smce C'1 and C, are
the shortest dlstmguished cycle pair and |V(C2) N {vy,vo,..., Un—zm}] >

% + 1, without loss of generality, we can let Co = v; — vy — -+ —
vt_,._? = Unp = Un_1] =+ = Up_myg > U, Where 1<t <n—m+1.

Subcase 2.1. 2 <t < n-—m.

Subcase 2.1.1. 01 is at vertex v, wherc v # vy and v # Un—z41. Then
dr(vi,v;) < 2(n— § — 1) and Is(v;,v;) < 2(n— B ~ 1)+ m = 2n — 2 by
Lemma 2.2, Thus ls(v,) < 2n — 2 for any vertex v,

Subcase 2.1.2. C; is at vertex vy or Un—z41. Without loss of generality,
let C; be at vertex vy. Now, we calculate the base of each vertex.

Firstly, we consider vertex Un-z41. Since each 2-cycle of § is positive
and C; is negative, the signs of v; — vy — - — vy and vy —
Un-m42 = Un_myz = " = Uy = Upym is different. If v; # Un_z241 and
vj 95 Un_ then dr(vn-m41,v;) < 2(n — % —1)and ls(v,hm“,v]) <
2(n-% - 1) +m = 2n—2 by Lemma 2.2. For vertices vn_z 41 and v,_m,
since for any integer | > 2n — m,

Wi =(n-g41 = tneg = > 01) + (I - (2n —m))C4

+('Ul—)---—)‘vt-—)vt+1—)----)vt+!zn_p..._,vn_%_’_l)

and
W, =(’Un-';—'+1 — Up.zm — "'_’vl)'l'(l_(zn_m))cl + (v — -

T U Un—mi2 S Un_my3 s = Uy S Uppm — s = Up_myy)
3 3 z

form a pair of SSSD walks of length ! from Un—z41 t0 Up_m41, and
Wi+ (v B4l = Uz ) and W2+(’Un..m+1 — Up_z) form a pair of SSSD
walks of length l+1 from Un—z+1 t0 Un_z, thus ls(v,,_mﬂ,v,,_.é.H) <
2n —m and Ils(v,,_ m+l+],'Un__) S2n-m+1. Sols(vp-m41) <2n—-2.
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Secondly, we consider vertex vz . Ifv; # vn_z 41, then dp(vn-z, vj)
<2(n-%—1)and Is(va-z,v;) < 2(n— % —1)+m =2n—2 by Lemma
2.2. For vertex vn— 41, since for any integer { > 2n —m — 1,

W, = (Un_%}. = Up_g-1 = v)+ (I — 2n-m— 1))Ch

HU1 > DV D Vg D Vi = Unogr)

and
W2 = (Va-g —vvn_zir;_l—>---—>v1)+(l—(2n—m—1))C'1+('v1 —

DU D Up—m g2 = UnoBy3 7 Un D Uppm e Vn-241)

form a pair of SSSD walks of length [ from vn_z to Va2 41, thus ls(vn-z2,
'Un—%-+l) <2n—-m-—1. So ls(’u,,_.gl) <2n-2.

Lastly, we consider vertex v;, where v; # vn_z2 4 and v; # vn-2.
Since dp(vi,v;) < 2(n — % — 1) for any vertex vj of S, so ls(vi,v;) <
2(n— 2 —1)+m=2n—2 by Lemma 2.2 and ls(v;) £2n—2.

Consequently, Is(k) <2n—2for 1 <k<n—1.

Subcase 2.2. t=n—m-+1ort=1,and m < n— 1. Without loss of
generality, let t =n-m+ 1.

Subcase 2.2.1. C; is at vertex v, where v # v, and v # Vn-241. Since
m < n—1, then dr(v;,v;) < 2(n—%—1) and Is(vi,v;) < 2n—F-1)+m=
2n — 2 by Lemma 2.2. Thus ls(v;) < 2n—2 for any vertex v;.

Subcase 2.2.2. C} is at vertex vy Of Un— g 41. Without loss of generality,
let C, be at vertex v;. Now, we calculate the base of each vertex.

Firstly, we consider vertex vp_m41. If v # vn_241, v5 F# Un-2,
and v; # vp, then dr(vn-z+1,%) < 2(n—2 —1) and Is(vn-m+1,75) <
2(n— 2 —1)+m = 2n — 2 by Lemma 2.2. For vertices vn_m 41, Un-3,
and v, since for any integer { > 2n — m,

W)= (Vn-m41 = Vp-g = n)+ (- (2n—m))C1

+(v1 — = Vp—mtl = Vn—mt2 00 Un-lz,ﬂ+l)
and
Wa = (Un-g41 = Vnsg = - = 01) + (= (2n—m))Cy
+('Ul — s = Unomtl > Un-Z 42 Un—g43 — " Un — vn—%+l)

form a pair of SSSD walks of length { from v,z 41 t0 Vn_241, Wi +
(v,._%;.,.l — vn_%) and W + (vn-z41 — ’Un_.%\) form a pair of SSSD
walks of length I + 1 from vp_z41 t0 Un—2, and Wy + (vn-g41 — Upn)
and Wo + (vn—g41 — vp,) form a pair of SSSD walks of length [ + 1 from
Vp~m 41 tO Un, thus ls(Vn—m41,Vn-g41) < 2n—m, ls(Vn-m+1,Un-2) <
2n —m+ 1, and ls(vn_%“,vn) <2n-m+1. So ls(vn_%.,.l) <2n-2.
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Secondly, we consider vertex Un—z and vn. If v; # vn_m 4, then
dr(vn-m,v;) <2(n—F—1)and ls(v,,__,v,) L2n—-F-1)+m= 2n 2
by Lemma 2.2. For vertex Un—m 41, since for any mteger l22n-m-1,

W, = (‘U,,_% S Up_z_1 vn)+ (l -2n-m - 1)),

+vr— > Un—m+1 = Upemy2 — - — 'Un—%'+l)

and
Wy =(Vn-g 2 Vi1 = = u)+ (- (2n-m-1))C

+(v1 = = Vo — Un—242 2 Un_243 = *** = Up — vn—%}+1)

form a pair of SS’SD walks of length ! from v,— 2 to vp_ = 41, thus ls(vn-z,
Un-z41) < 2n—m ~ 1. Sols(va-z) < 2n — 2. Similarly we can show
ls(va) < 2n-2.

Lastly, we consider vertex v;, where v; # Un—m41, Vi # Un, and v; #
Un—g. Since dr(vi,v;) < 2(n— % —1) for any vertex vj of §, so ls(v;,v;) <
2(n— % ~1)4+m=2n—2by Lemma 2.2 and ls(v;) < 2n — 2.

Consequently, Is(k)y<2n—2for1<k<n-1.

Subcase 2.3. m = n. Without loss of generality, let C, = v; — vy —

© T VUzil D Un D Unoy = coc = Uzyo — v; and Cy be at vertex v;.
Now, we calculate the base of each vertex

Firstly, we consider vertex vy 41. If v; # V241, Vj # va, and vj # vy,
then dp(vg+1,v;) <n—2and ls(vn.,_l,vJ) <n-2+n=2n-2 by Lemma
2.2. For vertices V341, Vg, and vy, since for any integer ! > n,

Wl’—"(vg..i.l—)’l)%—)--'—>01)+(1—n)01+(1)1—)’U2—>"'—>'U"+1)

and
We=(vg41 —vg = > u)+({-n)Cy

+(V1 = Vg2 D V343 = = U = Uz )

form a pair of SSSD walks of length ! from vyl to vz, Wi+ (vgyg —
vy ) and Wy +(v3 41 — vg) form a pair of SSSD walks of length I+ 1 from
vv-.H to vy, and W1 + (vn+1 — vn) and Wo + (vg 41 — vp) form a pair of
SSSD walks of length l+ 1 from vz 41 to vy, thus ls(vn_,.l,vnH) <n<
2n-2,ls(vg41,v3) <n+1<2n—2, and ls(vg+1,vn) < < n+ El <2n-2.
So ls(vg +1) <2n-2.
Secondly, we consider vertex vy and vn. If vj # vz 41, then dr(vg,v;) <

n—2andls(vy,v;) <n—-24+n=2n-2by Lemma 2.2. For vertex va 2+1
since for any mteger l>2n-1,

Wi=(vg svaog = >u)+(-n+1)C
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+(v1—>v2—»-~-——>v_v2; ->v%+1)

and
Wy = (vg »vg_1— - —u)+({—-n+1)C,
+(v1 = Vg2 = Vp43 = 0 Un > VR41)

form a pair of $SSD walks of length I from vy to vz 41, thus ls(vyg, v%.‘.l) <
n—1 < 2n—2andsols(vy) < 2n—2. Similarly we can show lg(vs) £ 2n-2.

Lastly, we consider vertex v;, where v; # vz 1, v; # v,, and v; # vg.
Since dp(v;,v;) < n— 2 for any vertex v; of S, so Is(vi,v;) Sn—-2+n=
2n — 2 by Lemma 2.2 and lg(v;) < 2n — 2.

Consequently, ls(k) <2n—2for1 <k<n-1.

Combining the above cases, the lemma holds O

By Lemmas 4.1-4.3, we have the following result.

Theorem 4.4 Letn >3, S € PNSSD with D as the underlying digraph.

(1) For 1 < k < n—2, lg(k) =2n—1 if and only if D is isomorphic to
D,, each 2-cycle of S is positive, and there ezist both a negative loop and
a positive loop in S.

(2) ls(n —1) = 2n — 1 if and only if either D is isomorphic to Dy, each
2-cycle of S is positive, and there ezist both a negative loop and a positive
loop in S, or D is isomorphic to D3, and there exists at least one negative
2-cycle in S.
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