The local bases of primitive non-powerful signed symmetric digraphs with loops*

Yanling Shao[†], Yubin Gao Department of Mathematics, North University of China Taiyuan, Shanxi 030051, P.R. China

Abstract

Let S be a primitive non-powerful signed digraph of order n. The base of a vertex u, denoted by $l_S(u)$, is the smallest positive integer l such that there is a pair of SSSD walks of length t from u to each vertex $v \in V(S)$ for any integer $t \geq l$. We choose to order the vertices of S in such a way that $l_S(1) \leq l_S(2) \leq \ldots \leq l_S(n)$, and call $l_S(k)$ the kth local base of S for $1 \leq k \leq n$. In this work, we use PNSSD to denote the class of all primitive non-powerful signed symmetric digraphs of order n with at least one loop. Let l(k) be the largest value of $l_S(k)$ for $S \in PNSSD$, and $L(k) = \{l_S(k) \mid S \in PNSSD\}$. For $n \geq 3$ and $1 \leq k \leq n-1$, we show l(k) = 2n-1 and $L(k) = \{2,3,\ldots,2n-1\}$. Further, we characterize all primitive non-powerful signed symmetric digraphs whose kth local bases attain l(k).

AMS classification: 15A48, 05C20, 05C50

Keywords: Signed digraph; Primitive digraph; Local base.

1 Introduction

Let D be a digraph (permits loops but no multiple arcs). Digraph D is called *primitive* if there is a positive integer k such that for all ordered pairs of vertices u and v (not necessarily distinct) in D, there exists a walk of length k from u to v([1]).

A signed digraph S is a digraph where each arc of S is assigned a sign 1 or -1. The sign of the walk W (in a signed digraph), denoted by $\operatorname{sgn} W$,

^{*}Research supported by NNSF of China (No. 10571163) and NSF of Shanxi (No. 2007011017).

[†]Corresponding author. E-mail addresses: ylshao@nuc.edu.cn (Y. Shao), yb-gao@nuc.edu.cn (Y. Gao).

is defined to be the product of signs of all arcs in W. Two walks W_1 and W_2 in a signed digraph is called a pair of SSSD walks, if they have the same initial vertex, same terminal vertex, same length, but different signs. A signed digraph S is called powerful if S contains no pair of SSSD walks.

Let S be a primitive non-powerful signed digraph. For any $v_i, v_j \in V(S)$, the base from v_i to v_j , denoted by $l_S(v_i, v_j)$, is defined to be the smallest positive integer l_1 such that for each integer $t \geq l_1$, there exists a pair of SSSD walks of length t from v_i to v_j . The base of vertex $v_i \in V(S)$, denoted by $l_S(v_i)$, is defined to be the smallest positive integer l_2 such that for each integer $t \geq l_2$ there exists a pair of SSSD walks of length t from v_i to each vertex $v_j \in V(S)$. The base of S, denoted by l(S), is defined to be the smallest positive integer l_3 such that for all ordered pairs of vertices v_i and v_j , there is a pair of SSSD walks of length t from v_i to v_j for each integer $t \geq l_3$. Clearly, $l_S(v_i) = \max\{l_S(v_i, v_j) \mid v_j \in V(S)\}$ and $l(S) = \max\{l_S(v_i) \mid v_i \in V(S)\}$. We choose to order the vertices of S in such a way that

$$l_S(1) \le l_S(2) \le \ldots \le l_S(n),$$

and call $l_S(k)$ the kth local base of S for $1 \le k \le n$.

A digraph D is symmetric if for any $v_i, v_j \in V(D)$, (v_i, v_j) is an arc if and only if (v_j, v_i) is an arc. A signed symmetric digraph S is a symmetric digraph where each arc of S is assigned a sign 1 or -1, and the sign of (v_i, v_j) may be different from the sign of (v_i, v_i) .

We use PNSSD to denote the class of all primitive non-powerful signed symmetric digraphs of order n with at least one loop. For $n \geq 3$, and $1 \leq k \leq n$, let l(k) be the largest value of $l_S(k)$ for $S \in PNSSD$, and $L(k) = \{l_S(k) \mid S \in PNSSD\}$. Since l(n) and L(n) have been determined in [2], in this work, we shall show l(k) = 2n-1 and $L(k) = \{2, 3, \ldots, 2n-1\}$ for $1 \leq k \leq n-1$. Further, we characterize all primitive non-powerful signed symmetric digraphs whose kth local bases attain l(k).

2 Some preliminaries

Lemma 2.1 ([3]) Let S be a primitive signed digraph. Then S is non-powerful if and only if S contains a pair of cycles C_1 and C_2 (of lengths p_1 and p_2 , respectively) satisfying one of the following two conditions:

- (1) p_1 is odd, p_2 is even and $\operatorname{sgn} C_2 = -1$;
- (2) Both p_1 and p_2 are odd and $\operatorname{sgn} C_1 = -\operatorname{sgn} C_2$.

For convenience, we call a pair of cycles C_1 and C_2 satisfying (1) or (2) in Lemma 2.1 a distinguished cycle pair. Suppose C_1 and C_2 form a distinguished cycle pair of lengths p_1 and p_2 , respectively. Then the closed

walks $W_1 = p_2 C_1$ (walk around C_1 p_2 times) and $W_2 = p_1 C_2$ have the same length $p_1 p_2$ but with different signs since $(\operatorname{sgn} C_1)^{p_2} = -(\operatorname{sgn} C_2)^{p_1}$.

Let $R = \{C_1, \ldots, C_r\}$ be the set of some distinct cycles of signed digraph S. For any $u, v \in V(S)$, $d_R(u, v)$ denote the length of the shortest walk from u to v which meets C_i for each $i = 1, \ldots, r$. The following lemma is clear.

Lemma 2.2 Let S be a primitive non-powerful signed digraph with at least one loop, and C_1 and C_2 be a distinguished cycle pair of lengths p_1 and p_2 , respectively. Denote $R = \{C_1, C_2\}$. If $\min\{p_1, p_2\} = 1$, then $l_S(v_i, v_j) \leq d_R(v_i, v_j) + p_1p_2$ for any $v_i, v_j \in V(S)$.

3 Main results

Theorem 3.1 Let $n \geq 3$, $1 \leq k \leq n-1$, and $S \in PNSSD$. Then $l_S(k) \leq 2n-1$, and the equality can occur.

Proof Let C_1 be a loop of S. Since S is primitive non-powerful, by Lemma 2.1, there is a cycle C_2 of length m (m-cycle for short) in S such that C_1 and C_2 form a distinguished cycle pair. Denote $R = \{C_1, C_2\}$. Let D be the underlying digraph of S. For any $v_i, v_j \in V(S)$, we consider the following cases.

Case 1. m = 1. Then $d_R(v_i, v_j) \le 2(n-1)$. So $l_S(v_i, v_j) \le 2(n-1)+1 = 2n-1$ by Lemma 2.2 and $l_S(v_i) \le 2n-1$ for any vertex v_i .

Case 2. $m \geq 2$. If m is odd, then $d_R(v_i, v_j) \leq 2(n - \frac{m+1}{2})$. So $l_S(v_i, v_j) \leq 2(n - \frac{m+1}{2}) + m = 2n - 1$ by Lemma 2.2 and $l_S(v_i) \leq 2n - 1$ for any vertex v_i . If m is even, then the diameter of D $d(D) \leq n - \frac{m}{2}$. Suppose $d(D) \leq n - \frac{m}{2} - 1$. Then $d_R(v_i, v_j) \leq 2(n - \frac{m}{2} - 1)$ and $l_S(v_i, v_j) \leq 2(n - \frac{m}{2} - 1) + m = 2n - 2$ by Lemma 2.2. So $l_S(v_i) \leq 2n - 2$ for any vertex v_i . Suppose $d(D) = n - \frac{m}{2}$. Without loss of generality, let $d(v_1, v_{n - \frac{m}{2} + 1}) = n - \frac{m}{2}$, and the shortest path in D from v_1 to $v_{n - \frac{m}{2} + 1}$ is $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_{n - \frac{m}{2} + 1}$. If C_1 is (not) at vertex v_1 , then $\max\{d_R(v_i, v_j) \mid v_j \in V(S)\} \leq 2(n - \frac{m}{2}) - 1$ for $v_i \neq v_{n - \frac{m}{2} + 1}(v_1)$. So $l_S(v_i, v_j) \leq 2(n - \frac{m}{2}) - 1 + m = 2n - 1$ by Lemma 2.2 and $l_S(v_i) \leq 2n - 1$ for $v_i \neq v_{n - \frac{m}{2} + 1}(v_1)$.

Combining the above cases, we have $l_S(k) \leq 2n-1$ for $1 \leq k \leq n-1$. On the other hand, take $S_1 \in PNSSD$ such that its underlying digraph is D_1 (as given in Figure 1), the loop at vertex v_1 is negative, and the other arcs are positive.

Fig. 1 Digraph D_1

For any $v_i \in V(S_1)$, since each walk of length 2n-2 from v_i to v_i is positive. Thus there is no pair of SSSD walks of length 2n-2 from v_i to v_i . So $l_{S_1}(v_i) = 2n-1$ and $l_{S_1}(k) = 2n-1$ for $1 \le k \le n-1$. \square

Corollary 3.2 For $n \ge 3$ and $1 \le k \le n-1$, l(k) = 2n-1.

Lemma 3.3 For $n \ge 3$, $1 \le k \le n-2$, and $2 \le t \le n-1$, $2t \in L(k)$.

Proof Let $2 \le t \le n-1$. Take $S \in PNSSD$ such that its underlying digraph is the digraph obtained from D_2 (as given in Figure 2) by adding loops at vertices $v_{t+1}, v_{t+2}, \ldots, v_n$, respectively, the arc (v_1, v_2) is negative, and the other arcs are positive. We shall show $l_S(k) = 2t$ for $1 \le k \le n-2$.

For vertex v_1 , since there exists a walk of length 2t from v_1 to v_j such that it meets both a positive loop and a negative 2-cycle for any vertex $v_j \in V(S)$, so $l_S(v_1, v_j) \leq 2t + 2$ by Lemma 2.2 and $l_S(v_1) \leq 2t + 2$. On the other hand, each walk of length 2t + 1 from v_1 to v_1 is negative. Thus there is no pair of SSSD walks of length 2t + 1 from v_1 to v_1 and $l_S(v_1) = 2t + 2$.

For vertex v_2 , since there exists a walk of length 2t-1 from v_2 to v_j such that it meets both a positive loop and a negative 2-cycle for any vertex $v_j \in V(S)$, so $l_S(v_2, v_j) \leq 2t-1+2=2t+1$ by Lemma 2.2 and $l_S(v_2) \leq 2t+1$. On the other hand, each walk of length 2t from v_2 to v_1 is positive. Thus there is no pair of SSSD walks of length 2t from v_2 to v_1 and $l_S(v_2) = 2t+1$.

For vertex v_i , where $3 \leq i \leq n$, since there exists a walk of length 2(t-1) from v_i to v_j such that it meets both a positive loop and a negative 2-cycle for any vertex $v_j \in V(S)$, so $l_S(v_i, v_j) \leq 2(t-1) + 2 = 2t$ by Lemma 2.2 and $l_S(v_i) \leq 2t$. On the other hand, each walk of length 2t-1 from v_i to v_i is positive. Thus there is no pair of SSSD walks of length 2t-1 from v_i to v_i and $l_S(v_i) = 2t$.

Consequently, $l_S(k) = 2t$ for $1 \le k \le n-2$. \square

Lemma 3.4 For $n \ge 3$ and $1 \le t \le n-2$, $2t+2 \in L_n(n-1)$.

Proof Let $1 \le t \le n-2$. Take $S \in PNSSD$ such that its underlying digraph is the digraph obtained from D_2 by adding a loop at vertex v_1 , the

arcs $(v_t, v_{t+1}), (v_t, v_{t+2}), \dots, (v_t, v_n)$ are negative, and the other arcs are positive. We shall show $l_S(n-1) = 2t+2$.

For vertex v_i , where $t+1 \le i \le n$, since there exists a walk of length 2t from v_i to v_j such that it meets both a positive loop and a negative 2-cycle for any vertex $v_j \in V(S)$, so $l_S(v_i, v_j) \le 2t + 2$ by Lemma 2.2 and $l_S(v_i) \le 2t + 2$. On the other hand, each walk of length 2t + 1 from v_i to v_i is negative. Thus there is no pair of SSSD walks of length 2t + 1 from v_i to v_i and $l_S(v_i) = 2t + 2$.

For vertex v_i , where $1 \le i \le t$, since there exists a walk of length 2t-1 from v_i to v_j such that it meets both a positive loop and a negative 2-cycle for any vertex $v_j \in V(S)$, so $l_S(v_i, v_j) \le 2t - 1 + 2 = 2t + 1$ by Lemma 2.2 and $l_S(v_i) \le 2t + 1$.

Since $t \leq n-2$, consequently $l_S(n-1) = 2t+2$. \square

Lemma 3.5 For $n \ge 3$, $1 \le k \le n-1$, and $1 \le t \le n-1$, $2t+1 \in L(k)$.

Proof Let $1 \leq t \leq n-1$. Take $S \in PNSSD$ such that its underlying digraph is the digraph obtained from D_2 by adding loops at vertices $v_1, v_{t+1}, v_{t+2}, \ldots, v_n$, respectively, the loop at vertex v_1 is negative, and the other arcs are positive. We shall show $l_S(k) = 2t + 1$ for $1 \leq k \leq n - 1$.

For any $v_i \in V(S)$, since there exists a walk of length 2t from v_i to v_j such that it meets both a negative loop and a positive loop for any vertex $v_j \in V(S)$, so $l_S(v_i, v_j) \leq 2t + 1$ by Lemma 2.2 and $l_S(v_i) \leq 2t + 1$. On the other hand, each walk of length 2t from v_i to v_i is positive. Thus there is no pair of SSSD walks in S of length 2t from v_i to v_i and $l_S(v_i) = 2t + 1$.

Consequently, $l_S(k) = 2t + 1$ for $1 \le k \le n - 1$. \square

Lemma 3.6 For $n \ge 3$ and $1 \le k \le n-1$, $2 \in L(k)$.

Proof Take $S \in PNSSD$ with $V(S) = \{v_1, v_2, \ldots, v_n\}$ such that its underlying digraph is the symmetric complete digraph with a loop at each vertex, the arcs $(v_2, v_1), (v_3, v_1), \ldots, (v_n, v_1)$ and the loop at vertex v_1 are negative, and the other arcs are positive. We shall show $l_S(k) = 2$ for $1 \le k \le n-1$.

For any vertices $v_i, v_j \in V(S)$, walks $v_i \to v_2 \to v_j$ and $v_i \to v_1 \to v_j$ form a pair of SSSD walks of length 2 from v_i to v_j . Since there exists a loop at each vertex, so there exists a pair of SSSD walks of length l from v_i to v_j for each integer $l \geq 2$. On the other hand, $l_S(v_i) \geq 2$ for any $S \in PNSSD$. So $l_S(v_i) = 2$ for any $v_i \in V(S)$.

Consequently, $l_S(k) = 2$ for $1 \le k \le n-1$. \square

Since $1 \notin L(k)$ for $n \geq 3$ and $1 \leq k \leq n-1$, combining Theorem 3.1 and Lemmas 3.3-3.6, we obtain the following theorem.

Theorem 3.7 For $n \geq 3$ and $1 \leq k \leq n-1$, $L(k) = \{2, 3, ..., 2n-1\}$.

4 The extremal signed symmetric digraphs

In this section, we characterize all primitive non-powerful signed symmetric digraphs of order n with at least one loop whose kth local bases attain l(k).

Lemma 4.1 Let $n \geq 3$, $S \in PNSSD$ with D as the underlying digraph and there exist at least one negative 2-cycle in S. Then

- (1) $l_S(k) \leq 2n-2$ for $1 \leq k \leq n-2$.
- (2) $l_S(n-1) = 2n-1$ if and only if D is isomorphic to D_3 (as given in Figure 3).

Fig. 3 Digraph D_3

Proof Let C_1 and C_2 be a loop and a negative 2-cycle of S, respectively, and $R = \{C_1, C_2\}$. Then C_1 and C_2 form a distinguished cycle pair. Clearly $d(D) \leq n - 1$. For any $v_i, v_j \in V(S)$, we consider the following cases.

Case 1. $d(D) \leq n-2$. Then $d_R(v_i, v_j) \leq 2(n-2)$ and $l_S(v_i, v_j) \leq 2(n-2)+2=2n-2$ by Lemma 2.2. So $l_S(v_i) \leq 2n-2$ for any vertex v_i .

Case 2. d(D) = n - 1. Without loss of generality, let $d(v_1, v_n) = n - 1$, and the shortest path in D from v_1 to v_n be $v_1 \to v_2 \to \cdots \to v_n$. If either there exists a loop at vertex v_k , where $2 \le k \le n - 1$, or there exist loops at both vertices v_1 and v_n , then there exists a walk of length 2(n-2) from v_i to v_j such that it meets both a loop and a negative 2-cycle. So $l_S(v_i, v_j) \le 2(n-2) + 2 = 2n-2$ by Lemma 2.2 and $l_S(v_i) \le 2n-2$ for any vertex v_i . If there exists a loop at exactly vertex v_1 or v_n , then D is isomorphic to D_3 . Now, we calculate the base of each vertex.

For vertex v_n , since there exists a walk of length 2(n-1) from v_n to v_j such that it meets both the loop and a negative 2-cycle for any vertex $v_j \in V(S)$, so $l_S(v_n, v_j) \leq 2(n-1)+2=2n$ by Lemma 2.2 and $l_S(v_n) \leq 2n$. On the other hand, there exists the unique walk of length 2n-1 from v_n to v_n . Thus there is no pair of SSSD walks of length 2n-1 from v_n to v_n and $l_S(v_n)=2n$.

For vertex v_{n-1} , since there exists a walk of length 2(n-2)+1 from v_{n-1} to v_j such that it meets both the loop and a negative 2-cycle for any vertex $v_j \in V(S)$, so $l_S(v_{n-1},v_j) \leq 2(n-2)+1+2=2n-1$ by Lemma 2.2 and $l_S(v_{n-1}) \leq 2n-1$. On the other hand, there exists the unique walk of length 2n-2 from v_{n-1} to v_n . Thus there is no pair of SSSD walks of length 2n-2 from v_{n-1} to v_n and $l_S(v_{n-1})=2n-1$.

For vertex v_i , where $1 \le i \le n-2$, since there exists a walk of length 2(n-2) from v_i to v_j such that it meets both the loop and a negative

2-cycle for any vertex $v_j \in V(S)$, so $l_S(v_i, v_j) \leq 2(n-2) + 2 = 2n-2$ by Lemma 2.2 and $l_S(v_i) \leq 2n-2$.

Consequently, we have $l_S(k) \le 2n-2$ for $1 \le k \le n-2$, and $l_S(n-1) = 2n-1$ if and only if D is isomorphic to D_3 . \square

Lemma 4.2 Let $n \geq 3$, and $S \in PNSSD$ with D as the underlying digraph. If each 2-cycle of S is positive, and there exist both a negative loop and a positive loop in S. Then $l_S(k) = 2n - 1$ for $1 \leq k \leq n - 1$ if and only if D is isomorphic to D_1 .

Proof Sufficiency is immediate from the proof of Theorem 3.1. Now we consider necessity. Let C_1 and C_2 be the negative loop and positive loop, respectively. Then C_1 and C_2 form a distinguished cycle pair of S. Denote $R = \{C_1, C_2\}$. For any $v_i, v_j \in V(S)$, if $d(D) \leq n-2$, then $d_R(v_i, v_j) \leq 2(n-2)$ and $l_S(v_i, v_j) \leq 2(n-2)+1=2n-3$ by Lemma 2.2. So $l_S(v_i) \leq 2n-3$ for any vertex v_i contradicting $l_S(k)=2n-1$ for $1 \leq k \leq n-1$. So d(D)=n-1. Without loss of generality, let $d(v_1, v_n)=n-1$, the shortest path in D from v_1 to v_n be $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n$. Let C_1 and C_2 be at vertices v_t and v_s , respectively, and t>s. If $v_s \neq v_1$ ($v_t \neq v_n$), then for $v_i \neq v_1$ ($v_i \neq v_n$), $d_R(v_i, v_j) \leq 2(n-2)+1$ for any $v_j \in V(S)$ and $l_S(v_i, v_j) \leq 2(n-2)+1+1=2n-2$ by Lemma 2.2. So $l_S(v_i) \leq 2n-2$ for any vertex $v_i \neq v_1$ ($v_i \neq v_n$) contradicting $l_S(k)=2n-1$ for $1 \leq k \leq n-1$. The lemma now follows. \square

Lemma 4.3 Let $n \geq 3$, and $S \in PNSSD$ with D as the underlying digraph. If each 2-cycle of S is positive, and the signs of all loops of S are the same, then $l_S(k) \leq 2n - 2$ for $1 \leq k \leq n - 1$.

Proof Let C_1 be a loop of S. Since S is primitive non-powerful, by Lemma 2.1, there is a cycle C in S such that C_1 and C form a distinguished cycle pair. Denote C_2 to be the cycle of length m satisfying: (1) C_1 and C_2 form a distinguished cycle pair; (2) there is no cycle C such that C_1 and C form a distinguished cycle pair and the length of C is less than C must be a simple cycle and we call C_1 and C_2 the shortest distinguished cycle pair. Denote C is less than C the shortest distinguished cycle pair. Denote C is less than C the shortest distinguished cycle pair. Denote C is less than C the shortest distinguished cycle pair. Denote C is less than C the shortest distinguished cycle pair. Denote C is less than C the shortest distinguished cycle pair. Denote C is less than C the shortest distinguished cycle pair.

Case 1. m is odd. Then $d(D) \leq n - \frac{m+1}{2}$ and $\operatorname{sgn} C_1 = -\operatorname{sgn} C_2$. Without loss of generality, let $\operatorname{sgn} C_1 = +$. If $d(D) \leq n - \frac{m+1}{2} - 1$, then $d_R(v_i, v_j) \leq 2(n - \frac{m+1}{2} - 1)$ and $l_S(v_i, v_j) \leq 2(n - \frac{m+1}{2} - 1) + m = 2n - 3$ by Lemma 2.2. So $l_S(v_i) \leq 2n - 3$ for any vertex v_i . If $d(D) = n - \frac{m+1}{2}$, without loss of generality, let $d(v_1, v_{n - \frac{m+1}{2} + 1}) = n - \frac{m+1}{2}$, the shortest path in D from v_1 to $v_{n - \frac{m+1}{2} + 1}$ be $v_1 \to v_2 \to \cdots \to v_{n - \frac{m+1}{2} + 1}$. Since C_1 and C_2 are

the shortest distinguished cycle pair and $|V(C_2) \cap \{v_1, v_2, \dots, v_{n-\frac{m+1}{2}+1}\}| \ge \frac{m+1}{2}$, without loss of generality, we can let $C_2 = v_t \to v_{t+1} \to \cdots \to v_{t+\frac{m-1}{2}} \to v_n \to v_{n-1} \to \cdots \to v_{n-\frac{m+1}{2}+2} \to v_t$, where $1 \le t \le n-m+1$. Subcase 1.1. $2 \le t \le n-m$.

Subcase 1.1.1. C_1 is at vertex v, where $v \neq v_1$ and $v \neq v_{n-\frac{m+1}{2}+1}$. Then $d_R(v_i, v_j) \leq 2(n - \frac{m+1}{2} - 1)$ and $l_S(v_i, v_j) \leq 2(n - \frac{m+1}{2} - 1) + m = 2n - 3$ by Lemma 2.2. So $l_S(v_i) \leq 2n - 3 < 2n - 2$ for any vertex v_i .

Subcase 1.1.2. C_1 is at vertex v_1 or $v_{n-\frac{m+1}{2}+1}$. Without loss of generality, let C_1 be at vertex v_1 . Now, we calculate the base of each vertex.

Firstly, we consider vertex $v_{n-\frac{m+1}{2}+1}$. Since each 2-cycle of S is positive and C_2 is negative, the signs of $v_t \to v_{t+1} \to \cdots \to v_{t+\frac{m-1}{2}}$ and $v_t \to v_{n-\frac{m+1}{2}+2} \to v_{n-\frac{m+1}{2}+3} \to \cdots \to v_n \to v_{t+\frac{m-1}{2}}$ is different. If $v_j \neq v_{n-\frac{m+1}{2}+1}$, then $d_R(v_{n-\frac{m+1}{2}+1},v_j) \leq 2(n-\frac{m+1}{2})-1$ and $l_S(v_{n-\frac{m+1}{2}+1},v_j) \leq 2(n-\frac{m+1}{2})-1 + m = 2n-2$ by Lemma 2.2. If $v_j = v_{n-\frac{m+1}{2}+1}$, since for any integer $l \geq 2(n-\frac{m+1}{2})+1$,

$$W_{1} = (v_{n-\frac{m+1}{2}+1} \to v_{n-\frac{m+1}{2}} \to \cdots \to v_{1}) + (l - 2(n - \frac{m+1}{2}))C_{1} + (v_{1} \to \cdots \to v_{t} \to v_{t+1} \to \cdots \to v_{t+\frac{m-1}{2}} \to \cdots \to v_{n-\frac{m+1}{2}+1})$$

and

$$W_{2} = (v_{n-\frac{m+1}{2}+1} \to v_{n-\frac{m+1}{2}} \to \cdots \to v_{1}) + (l - 2(n - \frac{m+1}{2}) - 1)C_{1}$$

$$+ (v_{1} \to \cdots \to v_{t} \to v_{n-\frac{m+1}{2}+2} \to v_{n-\frac{m+1}{2}+3} \to \cdots \to v_{n}$$

$$\to v_{t+\frac{m-1}{2}} \to \cdots \to v_{n-\frac{m+1}{2}+1})$$

form a pair of SSSD walks of length l from $v_{n-\frac{m+1}{2}+1}$ to $v_{n-\frac{m+1}{2}+1}$, thus $l_S(v_{n-\frac{m+1}{2}+1},v_{n-\frac{m+1}{2}+1}) \leq 2(n-\frac{m+1}{2})+1 = 2n-m$ and consequently $l_S(v_{n-\frac{m+1}{2}+1}) \leq 2n-2$.

Secondly, we consider vertex $v_i \neq v_{n-\frac{m+1}{2}+1}$. Since $d_R(v_i, v_j) \leq 2(n-\frac{m+1}{2}-1)+1$ for any $v_j \in V(S)$, so $l_S(v_i, v_j) \leq 2(n-\frac{m+1}{2}-1)+1+m = 2n-2$ by Lemma 2.2 and $l_S(v_i) \leq 2n-2$ for any vertex $v_i \neq v_{n-\frac{m+1}{2}+1}$.

Consequently, $l_S(k) \leq 2n-2$ for $1 \leq k \leq n-1$.

Subcase 1.2. t = n - m + 1 or t = 1, and $m \le n - 1$. Without loss of generality, let t = n - m + 1.

Subcase 1.2.1. C_1 is at vertex v, where $v \neq v_1$, $v \neq v_n$, and $v \neq v_{n-\frac{m+1}{2}+1}$. Since $m \leq n-1$, then $d_R(v_i,v_j) \leq 2(n-\frac{m+1}{2}-1)$ and $l_S(v_i,v_j) \leq 2(n-\frac{m+1}{2}-1)+m=2n-3$ by Lemma 2.2. Thus $l_S(v_i) \leq 2n-3$ for any vertex v_i .

Subcase 1.2.2. C_1 is at vertex v_1 , or $v_{n-\frac{m+1}{2}+1}$, or v_n . Without loss of generality, let C_1 be at vertex v_1 . Now, we calculate the base of each vertex.

Firstly, we consider vertex $v_{n-\frac{m+1}{2}+1}$ and v_n . If $v_j \neq v_{n-\frac{m+1}{2}+1}$ and $v_j \neq v_n$, then $d_R (v_{n-\frac{m+1}{2}+1}, v_j) \leq 2(n-\frac{m+1}{2})-1$ and $l_S(v_{n-\frac{m+1}{2}+1}, v_j) \leq 2(n-\frac{m+1}{2})-1+m=2n-2$ by Lemma 2.2. For vertices $v_{n-\frac{m+1}{2}+1}$ and v_n , since for any integer $l \geq 2(n-\frac{m+1}{2})+1$,

$$W_{1} = (v_{n-\frac{m+1}{2}+1} \to v_{n-\frac{m+1}{2}} \to \cdots \to v_{1}) + (l - 2(n - \frac{m+1}{2}))C_{1} + (v_{1} \to \cdots \to v_{n-m+1} \to v_{n-m+2} \to \cdots \to v_{n-\frac{m+1}{2}+1})$$

and

$$W_2 = (v_{n-\frac{m+1}{2}+1} \to v_{n-\frac{m+1}{2}} \to \cdots \to v_1) + (l-2(n-\frac{m+1}{2})-1)C_1 +$$

$$(v_1 \longrightarrow \cdots \longrightarrow v_{n-m+1} \longrightarrow v_{n-\frac{m+1}{2}+2} \longrightarrow v_{n-\frac{m+1}{2}+3} \longrightarrow \cdots \longrightarrow v_n \longrightarrow v_{n-\frac{m+1}{2}+1})$$

form a pair of SSSD walks of length l from $v_{n-\frac{m+1}{2}+1}$ to $v_{n-\frac{m+1}{2}+1}$, and $W_1+(v_{n-\frac{m+1}{2}+1}\to v_n)$ and $W_2+(v_{n-\frac{m+1}{2}+1}\to v_n)$ form a pair of SSSD walks of length l+1 from $v_{n-\frac{m+1}{2}+1}$ to v_n , thus $l_S(v_{n-\frac{m+1}{2}+1},v_{n-\frac{m+1}{2}+1})\leq 2(n-\frac{m+1}{2})+1=2n-m$ and $l_S(v_{n-\frac{m+1}{2}+1},v_n)\leq 2n-m+1$. So $l_S(v_{n-\frac{m+1}{2}+1})\leq 2n-2$. Similarly, we can show $l_S(v_n)\leq 2n-2$.

Secondly, we consider vertex v_i , where $v_i \neq v_{n-\frac{m+1}{2}+1}$ and $v_i \neq v_n$. Since $d_R(v_i, v_j) \leq 2(n-\frac{m+1}{2}-1)+1$ for any vertex v_j of S, so $l_S(v_i, v_j) \leq 2(n-\frac{m+1}{2}-1)+1+m=2n-2$ by Lemma 2.2 and $l_S(v_i) \leq 2n-2$.

Consequently, $l_S(k) \leq 2n-2$ for $1 \leq k \leq n-1$.

Subcase 1.3. m=n. Without loss of generality, let $C_2=v_1\to v_2\to \cdots\to v_{\frac{n+1}{2}}\to v_n\to v_{n-1}\to\cdots\to v_{\frac{n+1}{2}+1}\to v_1$, and C_1 be at vertex v_1 . Now, we calculate the base of each vertex.

Firstly, we consider vertex $v_{\frac{n+1}{2}}$ and v_n . If $v_j \neq v_{\frac{n+1}{2}}$ and $v_j \neq v_n$, then $d_R(v_{\frac{n+1}{2}}, v_j) \leq n-2$ and $l_S(v_{\frac{n+1}{2}}, v_j) \leq n-2+n=2n-2$ by Lemma 2.2. For vertices $v_{\frac{n+1}{2}}$ and v_n , since for any integer $l \geq n$,

$$W_1 = (v_{\frac{n+1}{2}} \to v_{\frac{n+1}{2}-1} \to \cdots \to v_1) + (l-n+1)C_1 + (v_1 \to v_2 \to \cdots \to v_{\frac{n+1}{2}})$$

and

$$W_2 = (v_{\frac{n+1}{2}} \to v_{\frac{n+1}{2}-1} \to \cdots \to v_1)$$

+ $(l-n)C_1 + (v_1 \to v_{\frac{n+1}{2}+1} \to v_{\frac{n+1}{2}+2} \to \cdots \to v_n \to v_{\frac{n+1}{2}})$

form a pair of SSSD walks of length l from $v_{\frac{n+1}{2}}$ to $v_{\frac{n+1}{2}}$, and $W_1+(v_{\frac{n+1}{2}}\to v_n)$ and $W_2+(v_{\frac{n+1}{2}}\to v_n)$ form a pair of SSSD walks of length l+1 from $v_{\frac{n+1}{2}}$ to v_n , thus $l_S(v_{\frac{n+1}{2}},v_{\frac{n+1}{2}})\leq n<2n-2$, and $l_S(v_{\frac{n+1}{2}},v_n)\leq n+1\leq 2n-2$. So $l_S(v_{\frac{n+1}{2}})\leq 2n-2$. Similarly, we can show $l_S(v_n)\leq 2n-2$.

Secondly, we consider vertex v_i , where $v_i \neq v_{\frac{n+1}{2}}$ and $v_i \neq v_n$. Since $d_R(v_i, v_j) \leq n-2$ for any vertex v_j of S, so $l_S(v_i, v_j) \leq n-2+n=2n-2$ by Lemma 2.2 and $l_S(v_i) \leq 2n-2$.

Consequently, $l_S(k) \leq 2n-2$ for $1 \leq k \leq n-1$.

Case 2. m is even. Clearly, $d(D) \leq n - \frac{m}{2}$. If $d(D) \leq n - \frac{m}{2} - 1$, then $d_R(v_i, v_j) \leq 2(n - \frac{m}{2} - 1)$. So $l_S(v_i, v_j) \leq 2(n - \frac{m}{2} - 1) + m = 2n - 2$ by Lemma 2.2 and $l_S(v_i) \leq 2n - 2$ for any vertex v_i . If $d(D) = n - \frac{m}{2}$, without loss of generality, let $d(v_1, v_{n-\frac{m}{2}+1}) = n - \frac{m}{2}$, the shortest path from v_1 to $v_{n-\frac{m}{2}+1}$ be $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_{n-\frac{m}{2}+1}$. Since C_1 and C_2 are the shortest distinguished cycle pair and $|V(C_2) \cap \{v_1, v_2, \ldots, v_{n-\frac{m}{2}+1}\}| \geq \frac{m}{2} + 1$, without loss of generality, we can let $C_2 = v_t \rightarrow v_{t+1} \rightarrow \cdots \rightarrow v_{t+\frac{m}{2}} \rightarrow v_n \rightarrow v_{n-1} \rightarrow \cdots \rightarrow v_{n-\frac{m}{2}+2} \rightarrow v_t$, where $1 \leq t \leq n-m+1$.

Šubcase 2.1. $2 \le t \le n - m$.

Subcase 2.1.1. C_1 is at vertex v, where $v \neq v_1$ and $v \neq v_{n-\frac{m}{2}+1}$. Then $d_R(v_i, v_j) \leq 2(n - \frac{m}{2} - 1)$ and $l_S(v_i, v_j) \leq 2(n - \frac{m}{2} - 1) + m = 2n - 2$ by Lemma 2.2. Thus $l_S(v_i) \leq 2n - 2$ for any vertex v_i .

Subcase 2.1.2. C_1 is at vertex v_1 or $v_{n-\frac{m}{2}+1}$. Without loss of generality, let C_1 be at vertex v_1 . Now, we calculate the base of each vertex.

Firstly, we consider vertex $v_{n-\frac{m}{2}+1}$. Since each 2-cycle of S is positive and C_2 is negative, the signs of $v_t \to v_{t+1} \to \cdots \to v_{t+\frac{m}{2}}$ and $v_t \to v_{n-\frac{m}{2}+2} \to v_{n-\frac{m}{2}+3} \to \cdots \to v_n \to v_{t+\frac{m}{2}}$ is different. If $v_j \neq v_{n-\frac{m}{2}+1}$ and $v_j \neq v_{n-\frac{m}{2}}$, then $d_R(v_{n-\frac{m}{2}+1},v_j) \leq 2(n-\frac{m}{2}-1)$ and $l_S(v_{n-\frac{m}{2}+1},v_j) \leq 2(n-\frac{m}{2}-1) + m = 2n-2$ by Lemma 2.2. For vertices $v_{n-\frac{m}{2}+1}$ and $v_{n-\frac{m}{2}}$, since for any integer $l \geq 2n-m$,

$$W_1 = (v_{n-\frac{m}{2}+1} \to v_{n-\frac{m}{2}} \to \cdots \to v_1) + (l - (2n - m))C_1$$
$$+(v_1 \to \cdots \to v_t \to v_{t+1} \to \cdots \to v_{t+\frac{m}{2}} \to \cdots \to v_{n-\frac{m}{2}+1})$$

and

$$W_{2} = (v_{n-\frac{m}{2}+1} \to v_{n-\frac{m}{2}} \to \cdots \to v_{1}) + (l - (2n - m))C_{1} + (v_{1} \to \cdots \to v_{t} \to v_{n-\frac{m}{2}+2} \to v_{n-\frac{m}{2}+3} \to \cdots \to v_{n} \to v_{t+\frac{m}{2}} \to \cdots \to v_{n-\frac{m}{2}+1})$$

form a pair of SSSD walks of length l from $v_{n-\frac{m}{2}+1}$ to $v_{n-\frac{m}{2}+1}$, and $W_1+(v_{n-\frac{m}{2}+1}\to v_{n-\frac{m}{2}})$ and $W_2+(v_{n-\frac{m}{2}+1}\to v_{n-\frac{m}{2}})$ form a pair of SSSD walks of length l+1 from $v_{n-\frac{m}{2}+1}$ to $v_{n-\frac{m}{2}}$, thus $l_S(v_{n-\frac{m}{2}+1},v_{n-\frac{m}{2}+1})\leq 2n-m$ and $l_S(v_{n-\frac{m+1}{2}+1},v_{n-\frac{m}{2}})\leq 2n-m+1$. So $l_S(v_{n-\frac{m}{2}+1})\leq 2n-2$.

Secondly, we consider vertex $v_{n-\frac{m}{2}}$. If $v_j \neq v_{n-\frac{m}{2}+1}$, then $d_R(v_{n-\frac{m}{2}}, v_j) \leq 2(n-\frac{m}{2}-1)$ and $l_S(v_{n-\frac{m}{2}}, v_j) \leq 2(n-\frac{m}{2}-1)+m=2n-2$ by Lemma 2.2. For vertex $v_{n-\frac{m}{2}+1}$, since for any integer $l \geq 2n-m-1$,

$$W_1 = (v_{n-\frac{m}{2}} \to v_{n-\frac{m}{2}-1} \to \cdots \to v_1) + (l - (2n - m - 1))C_1$$
$$+(v_1 \to \cdots \to v_t \to v_{t+1} \to \cdots \to v_{t+\frac{m}{2}} \to \cdots \to v_{n-\frac{m}{2}+1})$$

and

$$W_2 = (v_{n-\frac{m}{2}} \to v_{n-\frac{m}{2}-1} \to \cdots \to v_1) + (l - (2n - m - 1))C_1 + (v_1 \to \cdots$$

$$\rightarrow v_t \rightarrow v_{n-\frac{m}{2}+2} \rightarrow v_{n-\frac{m}{2}+3} \rightarrow \cdots \rightarrow v_n \rightarrow v_{t+\frac{m}{2}} \rightarrow \cdots \rightarrow v_{n-\frac{m}{2}+1})$$

form a pair of SSSD walks of length l from $v_{n-\frac{m}{2}}$ to $v_{n-\frac{m}{2}+1}$, thus $l_S(v_{n-\frac{m}{2}}, v_{n-\frac{m}{2}+1}) \le 2n-m-1$. So $l_S(v_{n-\frac{m}{2}}) \le 2n-2$.

Lastly, we consider vertex v_i , where $v_i \neq v_{n-\frac{m}{2}+1}$ and $v_i \neq v_{n-\frac{m}{2}}$. Since $d_R(v_i, v_j) \leq 2(n - \frac{m}{2} - 1)$ for any vertex v_j of S, so $l_S(v_i, v_j) \leq 2(n - \frac{m}{2} - 1) + m = 2n - 2$ by Lemma 2.2 and $l_S(v_i) \leq 2n - 2$.

Consequently, $l_S(k) \leq 2n-2$ for $1 \leq k \leq n-1$.

Subcase 2.2. t = n - m + 1 or t = 1, and $m \le n - 1$. Without loss of generality, let t = n - m + 1.

Subcase 2.2.1. C_1 is at vertex v, where $v \neq v_1$ and $v \neq v_{n-\frac{m}{2}+1}$. Since $m \leq n-1$, then $d_R(v_i, v_j) \leq 2(n-\frac{m}{2}-1)$ and $l_S(v_i, v_j) \leq 2(n-\frac{m}{2}-1)+m = 2n-2$ by Lemma 2.2. Thus $l_S(v_i) \leq 2n-2$ for any vertex v_i .

Subcase 2.2.2. C_1 is at vertex v_1 or $v_{n-\frac{m}{2}+1}$. Without loss of generality, let C_1 be at vertex v_1 . Now, we calculate the base of each vertex.

Firstly, we consider vertex $v_{n-\frac{m}{2}+1}$. If $v_j \neq v_{n-\frac{m}{2}+1}$, $v_j \neq v_{n-\frac{m}{2}}$, and $v_j \neq v_n$, then $d_R(v_{n-\frac{m}{2}+1}, v_j) \leq 2(n-\frac{m}{2}-1)$ and $l_S(v_{n-\frac{m}{2}+1}, v_j) \leq 2(n-\frac{m}{2}-1)+m=2n-2$ by Lemma 2.2. For vertices $v_{n-\frac{m}{2}+1}, v_{n-\frac{m}{2}}$, and v_n , since for any integer $l \geq 2n-m$,

$$W_{1} = (v_{n-\frac{m}{2}+1} \to v_{n-\frac{m}{2}} \to \cdots \to v_{1}) + (l - (2n - m))C_{1}$$
$$+(v_{1} \to \cdots \to v_{n-m+1} \to v_{n-m+2} \to \cdots \to v_{n-\frac{m}{2}+1})$$

and

$$W_{2} = (v_{n-\frac{m}{2}+1} \to v_{n+\frac{m}{2}} \to \cdots \to v_{1}) + (l - (2n - m))C_{1} + (v_{1} \to \cdots \to v_{n-m+1} \to v_{n-\frac{m}{2}+2} \to v_{n-\frac{m}{2}+3} \to \cdots \to v_{n} \to v_{n-\frac{m}{2}+1})$$

form a pair of SSSD walks of length l from $v_{n-\frac{m}{2}+1}$ to $v_{n-\frac{m}{2}+1}$, $W_1+(v_{n-\frac{m}{2}+1}\to v_{n-\frac{m}{2}})$ and $W_2+(v_{n-\frac{m}{2}+1}\to v_{n-\frac{m}{2}})$ form a pair of SSSD walks of length l+1 from $v_{n-\frac{m}{2}+1}$ to $v_{n-\frac{m}{2}}$, and $W_1+(v_{n-\frac{m}{2}+1}\to v_n)$ and $W_2+(v_{n-\frac{m}{2}+1}\to v_n)$ form a pair of SSSD walks of length l+1 from $v_{n-\frac{m}{2}+1}$ to v_n , thus $l_S(v_{n-\frac{m}{2}+1},v_{n-\frac{m}{2}+1})\leq 2n-m$, $l_S(v_{n-\frac{m}{2}+1},v_{n-\frac{m}{2}})\leq 2n-m+1$, and $l_S(v_{n-\frac{m}{2}+1},v_n)\leq 2n-m+1$. So $l_S(v_{n-\frac{m}{2}+1})\leq 2n-2$.

Secondly, we consider vertex $v_{n-\frac{m}{2}}$ and v_n . If $v_j \neq v_{n-\frac{m}{2}+1}$, then $d_R(v_{n-\frac{m}{2}},v_j) \leq 2(n-\frac{m}{2}-1)$ and $l_S(v_{n-\frac{m}{2}},v_j) \leq 2(n-\frac{m}{2}-1)+m=2n-2$ by Lemma 2.2. For vertex $v_{n-\frac{m}{2}+1}$, since for any integer $l \geq 2n-m-1$,

$$W_{1} = (v_{n-\frac{m}{2}} \to v_{n-\frac{m}{2}-1} \to \cdots \to v_{1}) + (l - (2n - m - 1))C_{1}$$
$$+(v_{1} \to \cdots \to v_{n-m+1} \to v_{n-m+2} \to \cdots \to v_{n-\frac{m}{n}+1})$$

and

$$W_{2} = (v_{n-\frac{m}{2}} \to v_{n+\frac{m}{2}-1} \to \cdots \to v_{1}) + (l - (2n - m - 1))C_{1}$$
$$+(v_{1} \to \cdots \to v_{n-m+1} \to v_{n-\frac{m}{2}+2} \to v_{n-\frac{m}{2}+3} \to \cdots \to v_{n} \to v_{n-\frac{m}{2}+1})$$

form a pair of SSSD walks of length l from $v_{n-\frac{m}{2}}$ to $v_{n-\frac{m}{2}+1}$, thus $l_S(v_{n-\frac{m}{2}}, v_{n-\frac{m}{2}+1}) \leq 2n-m-1$. So $l_S(v_{n-\frac{m}{2}}) \leq 2n-2$. Similarly we can show $l_S(v_n) \leq 2n-2$.

Lastly, we consider vertex v_i , where $v_i \neq v_{n-\frac{m}{2}+1}$, $v_i \neq v_n$, and $v_i \neq v_{n-\frac{m}{2}}$. Since $d_R(v_i, v_j) \leq 2(n-\frac{m}{2}-1)$ for any vertex v_j of S, so $l_S(v_i, v_j) \leq 2(n-\frac{m}{2}-1)+m=2n-2$ by Lemma 2.2 and $l_S(v_i) \leq 2n-2$.

Consequently, $l_S(k) \leq 2n-2$ for $1 \leq k \leq n-1$.

Subcase 2.3. m=n. Without loss of generality, let $C_2=v_1\to v_2\to\cdots\to v_{\frac{n}{2}+1}\to v_n\to v_{n-1}\to\cdots\to v_{\frac{n}{2}+2}\to v_1$ and C_1 be at vertex v_1 . Now, we calculate the base of each vertex.

Firstly, we consider vertex $v_{\frac{n}{2}+1}$. If $v_j \neq v_{\frac{n}{2}+1}$, $v_j \neq v_{\frac{n}{2}}$, and $v_j \neq v_n$, then $d_R(v_{\frac{n}{2}+1}, v_j) \leq n-2$ and $l_S(v_{\frac{n}{2}+1}, v_j) \leq n-2+n=2n-2$ by Lemma 2.2. For vertices $v_{\frac{n}{2}+1}$, $v_{\frac{n}{3}}$, and v_n , since for any integer $l \geq n$,

$$W_1 = (v_{\frac{n}{2}+1} \to v_{\frac{n}{2}} \to \cdots \to v_1) + (l-n)C_1 + (v_1 \to v_2 \to \cdots \to v_{\frac{n}{2}+1})$$

and

$$W_{2} = (v_{\frac{n}{2}+1} \to v_{\frac{n}{2}} \to \cdots \to v_{1}) + (l-n)C_{1} + (v_{1} \to v_{\frac{n}{2}+2} \to v_{\frac{n}{2}+3} \to \cdots \to v_{n} \to v_{\frac{n}{2}+1})$$

form a pair of SSSD walks of length l from $v_{\frac{n}{2}+1}$ to $v_{\frac{n}{2}+1}$, $W_1 + (v_{\frac{n}{2}+1} \to v_{\frac{n}{2}})$ and $W_2 + (v_{\frac{n}{2}+1} \to v_{\frac{n}{2}})$ form a pair of SSSD walks of length l+1 from $v_{\frac{n}{2}+1}$ to $v_{\frac{n}{2}}$, and $W_1 + (v_{\frac{n}{2}+1} \to v_n)$ and $W_2 + (v_{\frac{n}{2}+1} \to v_n)$ form a pair of SSSD walks of length l+1 from $v_{\frac{n}{2}+1}$ to v_n , thus $l_S(v_{\frac{n}{2}+1}, v_{\frac{n}{2}+1}) \le n < 2n-2$, $l_S(v_{\frac{n}{2}+1}, v_{\frac{n}{2}}) \le n+1 < 2n-2$, and $l_S(v_{\frac{n}{2}+1}, v_n) \le n+1 < 2n-2$. So $l_S(v_{\frac{n}{2}+1}) \le 2n-2$.

Secondly, we consider vertex $v_{\frac{n}{2}}$ and v_n . If $v_j \neq v_{\frac{n}{2}+1}$, then $d_R(v_{\frac{n}{2}}, v_j) \leq n-2$ and $l_S(v_{\frac{n}{2}}, v_j) \leq n-2+n=2n-2$ by Lemma 2.2. For vertex $v_{\frac{n}{2}+1}$, since for any integer $l \geq n-1$,

$$W_1 = (v_{\frac{n}{2}} \to v_{\frac{n}{2}-1} \to \cdots \to v_1) + (l-n+1)C_1$$

$$+(v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_{\frac{n}{2}} \rightarrow v_{\frac{n}{2}+1})$$

and

$$W_2 = (v_{\frac{n}{2}} \rightarrow v_{\frac{n}{2}-1} \rightarrow \cdots \rightarrow v_1) + (l-n+1)C_1 + (v_1 \rightarrow v_{\frac{n}{2}+2} \rightarrow v_{\frac{n}{2}+3} \rightarrow \cdots \rightarrow v_n \rightarrow v_{\frac{n}{2}+1})$$

form a pair of SSSD walks of length l from $v_{\frac{n}{2}}$ to $v_{\frac{n}{2}+1}$, thus $l_S(v_{\frac{n}{2}}, v_{\frac{n}{2}+1}) \le n-1 < 2n-2$ and so $l_S(v_{\frac{n}{2}}) \le 2n-2$. Similarly we can show $l_S(v_n) \le 2n-2$.

Lastly, we consider vertex v_i , where $v_i \neq v_{\frac{n}{2}+1}$, $v_i \neq v_n$, and $v_i \neq v_{\frac{n}{2}}$. Since $d_R(v_i, v_j) \leq n-2$ for any vertex v_j of S, so $l_S(v_i, v_j) \leq n-2+n=2n-2$ by Lemma 2.2 and $l_S(v_i) \leq 2n-2$.

Consequently, $l_S(k) \leq 2n-2$ for $1 \leq k \leq n-1$.

Combining the above cases, the lemma holds

By Lemmas 4.1-4.3, we have the following result.

Theorem 4.4 Let $n \geq 3$, $S \in PNSSD$ with D as the underlying digraph.

- (1) For $1 \le k \le n-2$, $l_S(k) = 2n-1$ if and only if D is isomorphic to D_1 , each 2-cycle of S is positive, and there exist both a negative loop and a positive loop in S.
- (2) $l_S(n-1) = 2n-1$ if and only if either D is isomorphic to D_1 , each 2-cycle of S is positive, and there exist both a negative loop and a positive loop in S, or D is isomorphic to D_3 , and there exists at least one negative 2-cycle in S.

Acknowledgements

The authors thank the referee for helpful suggestions.

References

- [1] R.A. Brualdi, H.J. Ryser, Combinatorial Matrix Theory, Cambridge University Press, 1991.
- [2] Y.B. Gao, Y.H. Huang, Y.L. Shao, Bases of primitive non-powerful signed symmetric digraphs with loops, Accepted by Ars Combinatoria.
- [3] L.H. You, J.Y. Shao, H.Y. Shan, Bounds on the bases of irreducible generalized sign pattern matrices, *Linear Algebra Appl.*, 427(2007), 285-300.
- [4] B.L. Liu, L.H. You, Bound on the base of primitive nearly reducible sign pattern matrices, *Linear Algebra Appl.*, 418(2006), 863-881.
- [5] Z. Li, F. Hall, C. Eschenbach, On the period and base of a sign pattern matrix, *Linear Algebra Appl.*, 212/213(1994), 101-120.