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Abstract

In this paper, we consider the class of impartial combinatorial
games for which the set of possible moves strictly decreases. Each
game of this class can be considered as a domination game on a
certain graph, called the move-graph. We analyze this equivalence for
several families of combinatorial games, and introduce an interesting
graph operation called twin and match that preserves the Grundy
value. We then study another game on graphs related to the dots
and bozes game, and we propose a way to solve it.

1 Introduction

In a graph G = (V, E), we denote by Ng(z) the neighborhood of z € V,
i.e. the set {y € V/ y is adjacent to z}. When G is a directed graph,
Ng(z) = {y € V/ there is an edge from z to y}. The closed neighborhood
of z is defined by Ng[z] = Ng(z) U {z}.

The domination game on a (directed) graph G = (V, E) is the two-player
game where each player chooses a vertex and removes its closed neighbor-
hood from G. The first player unable to play loses.

We consider the class I of impartial games where the set of possible moves
is finite, and strictly decreases after each player’s turn. All the moves are
available at the beginning and there is no new move that appears during
the game.
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To any game of this class we associate a move-graph G, = (V, E), where
V is the set of all possible moves of the graph. There is an edge from v;
to v; if playing according to the move v; forbids to play according to v; in
the continuation of the game.

We instantly deduce from these definitions that playing a game of I is
equivalent to playing the domination game on its move-graph.

We now give some examples of this equivalence:

Given a partially-ordered set (poset) P, we define a poset game as a two-
player game where each player alternately removes an element z from P
and all the elements greater or equal to z. The player who removes the last
element from P is the winner. By definition of a poset game, all of them
are equivalent to a domination game on their move-graph.

The set of poset games includes lots of classical games : the game of Nim
(see [4]), green Hackenbush (see [2]), the superset game (see [8]), or Chomp
(see [7] or [5)) as examples. The latter is often played on a rectangular
chocolate bar, where two players alternately select a square, remove (or
eat) it and all the squares to the right and below it. The player eating the
last square (the upper left one, supposed poisoned) loses the game.

Here is the move-graph of Chomp: we have a directed move-graph where
each vertex corresponds to the selection of a square (see Figure 1).

Figure 1: Move-graph of Chomp played on a 2x4 grid

Most removal games, such as the game of Nim and its variants, can be
played on their move-graphs. Consider Wythoff’s game (studied for the
first time in [10]): two players alternately move from a given configuration,
made up of two heaps of tokens. There are two different types of moves
: removing any number of tokens from a single heap (the Nim rule), or
removing the same number of tokens from both heaps. The winning player
is the one taking the last token, the other loses as he is unable to move
again. A game configuration is denoted by (a,b), where a and b are the
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number of tokens in each heap. As depicted below, the move-graph can be
constructed with (a + b + min(a, b)) vertices.

i“
|

Figure 2: Move-graph of Wythoff’s game from position (5,2)

Moves associated with the sets of vertices A and B define moves according
to the Nim-rule (i.e. when a player removes tokens in a single heap), and
are constructed as tournaments digraphs. A tournament digraph with n
vertices is the digraph T’ = (V, E), where V = {v1,... ,v,}, and (v;,v;) € E
iff ¢ > j. Indeed, choosing the vertex labeled (a — i) (resp. (b —{)) in the
domination game amounts to leaving ¢ tokens in the first (resp. second)
heap. The set of vertices C defines moves according to both heaps. Its size
is naturally equal to the minimum size of both heaps, and C is also build
as a tournament digraph.

Edges from A/B to C : Moves leaving more than min(a, b) tokens in a heap
allow all moves according to both heaps, that is why there is no edge from
such vertices to C. Moves leaving strictly less than min(a,b) tokens in a
heap forbid certain moves belonging to C : a move leaving (min(a, b) — i)
tokens in a heap has exactly 7 edges to the ¢ smallest (according to their
label) vertices of C.

Edges from C to A/B : Moves that remove i tokens in both heaps have
i edges going to the greatest vertices of A and i other edges going to the
greatest vertices of B (starting respectively at vertices (a — min(a,b) + 1)
and (b — min(a,b) + 1)). We use the fact that for all vertex u, A \ u and
B \ u remain tournament graphs.

The move-graph is however not necessarily directed. This is the case when

considering some octal games (see [2] and the description further), or the
domino game (introduced by Conway), where two players alternately re-
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move two adjacent squares (a2 domino) in a m x n grid. Its move-graph is
depicted by figure 3, where vertices on the first and the third lines corre-
spond to horizontal dominos and the second line to the vertical ones.

hL

hi|nl v§ v5
h2| h2 v§

h2

Figure 3: Move-graph of the domino game played on a 2x5 grid

The domination game is close to Fraenkel’s game on hypergraphs (see [6])
(consider the move-graph as a hypergraph where a hyperedge represents
an closed neighborhood). The difference is that removing vertices is not
allowed.

As announced previously, we will refer in this paper to the set of octal
games, introduced by Guy and Smith.

An octal game is a removal game played on heaps of tokens. At the begin-
ning of the game, there is only one heap. Each octal game is encoded by
an octal system, and can be written .didads ..., with d; € {0...7}. The
value of each d; tells whether and how it is allowed to remove 7 adjacent
tokens in a heap. Consider the binary coding of each d;. It contains the
two-power 2F if and only if it is allowed to remove i adjacent tokens in a
heap by splitting it into k non-empty heaps.

Consider for example the game .137. We have :

e d; = 1. Allowed to remove one token in a heap iff this token is the
entire heap.

e dy =3=2+1. Allowed to remove two adjacent tokens in a heap
provided the heap is not splitted into two or more new heaps.

e d; =7=4+42+1. Allowed to remove three adjacent tokens in a
heap.

e dy =ds =...=0. By default. Not allowed to remove four or more
tokens.

Note that these rules exactly define the domination game on a chain. The
domino game played on a single row is an octal game encoded by .07.
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We now present several classical definitions in the theory of combinatorial
games: For any set S of nonnegative integers, we define Mexz(S) as the
“Minimum excluded value” of S, i.e. the least nonnegative integer not in
S.

For any game configuration C, the options of C are the set of possible re-
sulting positions reachable from C. The Grundy function g associates to
any game configuration C' a positive integer value. It is generally recur-
sively defined as g(C) = Mez(g(F(C))), where F(C) refers to the options
of C. Zeros of the Grundy function correspond to second player win con-
figurations (see [2]).

In the second section, we define an operation that preserves the Grundy
value of a game belonging to I. This leads to the construction of sets of
equivalent games. In section 3, we study the particular case of powers of
cycles. Section 4 is dedicated to a variant of the dots and bozes game.

2 Properties of the domination game

Given a graph G = (V, E), an automorphism f of G is a bijection from V' to
V such that (u,v) € E iff (f(u), f(v)) € E. f is a symmetric automorphism

if f = f-1.

Theorem 1 If a graph G admits a symmetric automorphism s such that
for every verter u, s(u) € Ngu], then G is second player win for the
domination game.

proof:

Given any vertex u € V, let G' = G\ (Ng[u] U Ng[s(u)]). Since s™! =3, s
remains an automorphism of G’ such that for every vertex u, s(u) € Ng[u].
If the first player chooses a vertex u, then a winning strategy for the second
player consists in choosing the vertex s(u). O

This theorem can be applied to particular cases of the domino game (which
remains an open problem in the general case).

Corollary 1 A configuration of the domino game is second player win if
the length and the width of the grid are both even and first player win if
they have a different parity.

37



proof:

Consider the move-graph associated with the domino game on a w x { grid.
Label the vertices of the graph with h;; (v;;) for the move consisting in
removing the horizontal (vertical) domino that starts in the square of index
(¢,j). The symmetric automorphism s that associates hi,j with Ay—ip1,0-5
and v;,j; with vy_;1-j41 satisfies the assumption of Theorem 1: on G if w
and ! are both even, on G \ Ng[h(w+1)/2,/2] if w is odd and ! even, and on
G \ Ng[vy/2,3i41)/2) if w is even and ! odd. a

R
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32 33 38 3

h

Figure 4: Move-graph of the domino game on a 3x6 grid

We now consider the case where the move-graph is a strong product of two
other graphs.

Figure 5: P3® P4

lemma 1 If Gy or G2 is a second player win configuration, then G =
G| ® Gy is second player win too.
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proof:

If G, is second player win, then all the copies of G; are second player win
too. When the first player chooses to move on a certain copy of Gy, his
opponent keeps this property by applying its winning strategy on the same
copy of G;. a

We now introduce two graph operations preserving the Grundy value of
a configuration of the domination game. Two vertices u and v are called
twins if and only if u € N(v) and N(u) \ {v} = N(v) \ {u}.

lemma 2 When playing the domination game on a graph G, the Grundy
value of G is invariant by adding a twin vy to any vertez vo.

proof:

By induction, this is true for an isolated vertex (the empty graph is the
unique option). Suppose now that the property is true for graphs with
less than n vertices. Let G = (V, E) be a configuration of the domination
game with n vertices, and let vg be any vertex of G. Consider the graph
G2 = twin,,(G) with n + 1 vertices, and obtained from G by adding a twin
vy to the vertex vp (vj is such that Ng,[vy) = Ng[ve]). For any vertex
u € V, removing Ng,[u] can lead to several options:

o if u = vy or u = v, and since vy and v are adjacent, the resulting
graph is identical to the one obtained from G by choosing vg.

¢ if u is a neighbor of vg, then the resulting graph is the same as the
one obtained from G by choosing u.

e if u is not in the neighborhood of vy, then by induction hypothesis, the
Grundy value of the resulting graph is the same as the one obtained
from G by choosing u.

O

We call twin and match the operation that consists in twinning two non-
adjacent vertices v; and v;, and adding a matching between the pairs of
twins {v;,v{} and {vj,v;}.
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Figure 6: Examples of twin and match from a P4

Theorem 2 The Grundy value of a configuration is invariant by the twin
and match operation.

proof:
If the matching contains no edges, then Lemma 2 concludes. Otherwise,
the property is true for graphs with 2 vertices, as depicted below :

ce-ll-T1- U O

Figure 7: Twin and match operation applied on a stable of size two

Indeed, the stable of size 2 is second player win. When applying any twin
and match operation on it, the resulting graph remains winning for the
second player.

Suppose the theorem true for graphs with less than n vertices. Let G =
(V, E) be a configuration of the domination game with n vertices, and let
vp and v; be any two non-adjacent vertices of G. Consider a graph G2 with
n+2 vertices, obtained from G by constructing matched twins {vo, v} and
{v1,v]}. We consider several cases when removing the closed neighborhood
of a vertex u:

e u is vp or v§ and u is not a neighbor of v; or vj. Then G2 \ Ng,[u] =
twiny, (G \ Ng[vg]) and by Lemma 2 the Grundy value of the new
graph is the same as the one obtained from G by choosing vo.

e u is vp or v and u is a neighbor of v, or v] (because of the matching).
Then G2 \ Ng,[u] = G\ Ng[vo)- The resulting graph is the same as
the one obtained from G by choosing vg.

e u belongs to both neighborhoods in G, i.e. u € Ng(v) and u €
Ng(v). Then G2 \ Ng,[u] = G\ Ng[u], and the resulting graph is
identical to the one obtained from G by choosing u.
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e u is in a neighborhood of only one of the twinned vertices. For ex-
ample u € Ng[vo] and v ¢ Ng[v;). Hence we have Gy \ N[u] =
twin,, (G \ N[u]) and then by Lemma 2, the Grundy value of the
resulting graph is the same as the one obtained from G by choosing
u.

e u is outside both neighborhoods. Then the induction hypothesis en-
sures that the Grundy value of the resulting graph is identical to the
one obtained from G by choosing u.

O

An example of equivalent games

In this section we use Theorem 2 to build an example of a new game equiv-
alent to another known game.

From the octal game .07, we get a new domino game with an additional
rule that allows to remove a trimino (three adjacent squares) starting at
an index congruent to 2 or 3 mod 4.

2 [ 6 [
1 3 9
*—o——0—0—0—0o —
Q 4 L] 8

Figure 8: Equivalent graphs

Starting configuration: a row of n squares (squares of indices 2 or 3
mod 4 are white and the others black)

Rules: remove two adjacent squares or three adjacent squares starting
with a white square

Analysis: the Grundy value has a pseudo-period 34 (see [2]) and we can
apply the winning strategy of the domino game described in [9)].

_HE __EE BN

Figure 9: A .07 equivalent game
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3 Domination game on powers of cycles

Denote by C(n, k) the kt* power of a cycle of size n. Denote by .0...7 the
octal game where the only allowed move consists in removing k adjacent
squares from a row. g...7,(n) defines the value of the Grundy function of
this game when the starting configuration is a row of size n. g(C(n,k))
defines the Grundy value of the domination game when G = C(n, k).

Theorem 3 g(C(n,k)) =1 iff go.7.(n—-k—-1)=0
g(C(n,k)) =0 iff go.7,(n—k-1)>0

proof:

From a C(n, k) there exists a unique option, which is the k** power of a
chain of size n — 2k — 1 (denoted by P(n — 2k — 1,k)). Hence the Grundy
value g(C(n, k)) is equal to 0 or 1 depending whether this power of chain
is first or second player win.

Consider now the game .0...7; played on a row of size n — k — 1. Its
move-graph is P(n — 2k — 1, k), which concludes the proof. O

For example, C(14,2) gives a P(9,2) after one move, which is the move-
graph of the octal game .007, called also the ”trimino game” on a row with
11 squares.

.
N
By removing one Vc{lex and its neighbours
N

r

2 4 6 8
I TTT  — m
1 3 S 7 9

Figure 10: Move-graph for the trimino game on a chain with 11 squares

42



4 A forest removal game

In this section we study a game on graphs related to the dots and bozes
game (see [1, 3]).

Given a graph G, we call forest removal game the two-player game where
each player removes from G a set of edges constituting a forest. The first
player unable to play loses.

In the dots and bozes game, a player removes an edge of a given graph G,
and as long as each move disconnects a vertex of G, the same player plays
again. The set of removed edges by a player in one turn is thus a forest.
However, removing any forest does not correspond to an allowed move in
the dots and bozes game.

We call a “non-adjacent cycles decomposition” of a graph G a covering of
its edges by a pair (C, F'), where C is a set of disjoint cycles (i.e. cycles
having no common edge), and F is a forest with no common edge with C.

lemma 3 (non-adjacent cycles decomposition) Any graph G = (V, E)
admits a non-edjacent cycles decomposition.

proof:

By induction on the size of E. If there is no cycle, then G is a forest,
otherwise remove the edges of a cycle from G and apply the induction
hypothesis. 0O

lemma 4 If a graph G has a non-adjacent cycles decomposition with an
empty forest, then all its non-adjacent cycles decompositions have empty
forests.

proof:

By way of contradiction, suppose that a graph G has two non-adjacent cy-
cles decomposition (C1,0) and (Cs, F). Let A be the symmetric difference.
Then C1AC, = Cy \ C; = F because C contains all the edges of G. Since
C1 and C; are both sets of cycles, F = C1AC, is also a set of cycles. O

The next theorem uses the following property, whose proof is immediate :
Graphs with a non-adjacent cycle decomposition of the form (C,#) are
graphs all of whose vertices have even degree.

Theorem 4 Second player win configurations of this game are graphs all
of whose vertices have an even degree.
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proof:

By induction on the number of edges.

It is true when the graph is a stable set.

Suppose that the graph admits a non-adjacent cycles decomposition with an
empty forest. Remove a forest and the remaining graph has a non-adjacent
cycles decomposition with a non-empty forest F. The other player chooses
to remove F and lets a resulting graph, smaller than the previous one, and
with a non-adjacent cycle decomposition containing only cycles. a
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