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Abstract
For a graph G = (V, E) and a binary labeling f : V(G) — Za, let v;(i) =
|£~(5)]. The labling f is said to be friendly if v (1) —vs(0)] < 1. Any vertex
labeling f : V(G) — Z; induces an edge labeling f* : E(G) — Z2 defined by
Fo(zy) = |f(2) — f(y)l. Let ef(3) = [£*~1(3)]. The friendly index set of the
graph G, denoted by FI(G), is defined by

FI(G) = {les(1) — es(0)] : f is a friendly vertex labeling of G }.

In [15] Lee and Ng conjectured that the friendly index sets of trees will
form an arithmetic progression. This conjecture has been mentioned in [17]
and other manuscripts. In this paper we will first determine the friendly
index sets of certain caterpillars of diameter four. Then we will disprove the
conjecture by presenting an infinite number of trees whose friendly index sets
do not form an arithmetic progression.
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1 Introduction

In this paper all graphs G = (V, E) are connected, finite, simple, and undirected.
For graph theory notations and terminology not described in this paper, we refer
the readers to [6). Let G = (V,E) be a graph and f : V(G) — Z2 a vertex
labeling (coloring) of G. For i € Zg, let vs(i) = |f~!(¢)|. The coloring f is said
to be friendly if |vs(1) — v;(0)| < 1. For example, consider the graph H, depicted
in Figure 1, which consists of eight vertices. The provision |vf(1) — 24(0)] < 1
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stipulates that in order to have a friendly coloring, four vertices must be labeled
0, and the remaining four vertices must be labeled 1.

Any vertex labeling f : V(G) — Z; generates an edge labeling f* : E(G) — Z,
defined by f*(zy) = |f(x) — f(y)]. For i € Zy, let e;(i) = |f*~1(i)|. The number
N(f) = leg(1) — e£(0)] is called the friendly index of f. The friendly indez set of
the graph G, denoted by FI(G), is defined by

FI(G)={N(f): [ is a friendly coloring of G }.

For example, FI(H) = {1,3,5,7}. Three other friendly colorings of H which
provide the indices 3,5, 7 are found in Figure 2.

Figure 1: A typical friendly labeling of H and its induced edge labeling.

For a graph G, the maximum element of FI(G) is called the mazimum friendly
indez of G and the friendly coloring f : V(G) — Z, that provides this index is
called the mazimum friendly coloring of G. The following useful observation will
be used on several occasions.

Observation 1.1. If f: V(G) — Z; is a friendly coloring, then so is its comple-
mentary (inverse) coloring g : V(G) — Z; defined by g(v) = 1 — f(v) Yo € V(G).
Furthermore, N(g) = N(f).

Readers interested in friendly colorings and friendly index sets of graphs are re-
ferred to a number of relevant literature that are mentioned in the bibliography
section, including [15, 17].

In general, the elements of FI(G) do not necessarily form an arithmetic progres-
sion. However, Lee-Ng [15] conjectured that the elements of the friendly index set
of any tree will form an arithmetic progression. This has since been verified for
several classes of trees [17] and is also supported by graph H. Nonetheless, in this
paper we will determine the friendly index sets of a class of caterpillars of diameter
4 and will present an infinite number of trees whose friendly index sets do not form
an arithmetic progression. First a few well known results (15, 17]:

Theorem 1.2. (Lee-Ng) For any graph G with q edges, FI(G) C {q~ 2 :i =
0, 1123 Tt lq/2.l}

Theorem 1.3. (Lee-Ng) Let 1 < m < n. For the complete bipartite graph Knn
we have

_ [ {m-20)2:0<i< |m/2]} i m+niseven;
FI(K"'-")—{ [(+1):0<ism}  if menis odd
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Figure 2: FI(H) ={1,3,5,7}.

Theorem 1.4. (Lee-Ng) The friendly indez set of a full binary tree with depth
d>1is
{0,2,4,--- 24t —4}.

Theorem 1.5. (Salehi-Lee) If T = (p,q) is a tree with perfect matching, then
FI(T)={1,3,5,--- ,q}.

Theorem 1.8. (Salehi-Lee) FI(P,) = {n—-1-2i:0< i< [n—;lj}, where
P, (n 2 2) is the path of order n.

The Theorem 1.6 implies that for any natural number n there is a connected

graph G such that FI{(G) = {n — 2i:i=1,2,---,|n/2]}, which is an arithmetic
progression with common difference being 2.

Theorem 1.7. (Salehi-Lee) For n > 3, the friendly index set of the Fibonacci tree
FT, is {|E.| -2 : i=0,1,2,---,|qn/2]}-

Theorem 1.8. (Salehi-Lee) For n > 3, the friendly index set of the Lucas iree
LT, is{0,2,4,--- ,q}.

2 Stars

For any n > 1, the complete bipartite graph K(1,7) is called a star and is denoted
by ST (n).

The friendly index sets of stars can be obtained from Theorem 1.2. However, for
the sake of completeness of this manuscript, we present a direct proof.
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Figure 3: Star ST(n) = K(1,n).

Theorem 2.1. Ifn > 1, then FI(ST(n)) = { {?ﬁ} :; m s even;

Proof. Let G = ST(n) and let f: V(G) — Z; be the labeling defined by

0 ifx=u,u,ug,- - ,u;
)= .
fe)={ ] HrTume

Then, v¢(0) = ¢+ 1 and vs(1) = n — ¢. Consequently, by the definition of the
induced edge labeling, ¢ edges will be labeled 0, and n — i edges will be labeled
1. Then the friendly index N(f) = les(1) — e (0)| = |(n — i) — i| = |n — 2i|. We
consider two cases:

Case 1: n is even.

In order for f to be a friendly labeling, either i+1=n—-i+1,0ori+1=n—i—1.
With the former, i = § and N(f) = |n —2(})| = 0. With the latter, i = 252 and
N(f) = In - 2(252)| = 2.

Case 2: n is odd.

In order for f to be a friendly labeling, i + 1 = n —i. Thus, i = 25! and
N(f) = n - 2(%51) = 1. O

A double star is a tree of diameter 3. Double stars have two central vertices v and
v and are denoted by DS(a,b), where degu = a and degv = b, as illustrated in
Figure 4.

Figure 4: Double Star, DS(4,8), with central vertices u and v.
Theorem 2.2. Let a < b. Then

_ [ {1,3,---,2a—-1} if a+biseven;
FI(DS(“”’))‘{ 0,2,---,2a}  if a+bisodd.

374



Proof. Consider G = DS(a,b) with @ < b, which has @ + b vertices. Let f :
V(G) — Z2 be a friendly labeling defined by f(u) = 0 and f(v) = 1, with the
remaining vertices also labeled 1, excluding f(u;) = f(uz) =--- = f(w) =0 and
f(v1) = f(v2) = --- = f(v;) = 0. In this way, ¢ of the vertices adjacent to vertex a
are labeled 0 and the remaining a — ¢ — 1 vertices adjacent to vertex a (excluding
vertex b) are labeled 1. Consequently, by the induced edge labeling, i edges will
be labeled 0 and a — i edges (including edge ab) will be labeled 1. Likewise, j of
the vertices adjacent to vertex b must be labeled 0 (excluding vertex a) and the
remaining b— j — 1 vertices adjacent to vertex b must be labeled 1. So, j edges will
be labeled 1 and b — j — 1 edges will be labeled 0. Therefore, e;(0) =b—j—1+1
and e;(1) = a—i+j so that N(f) = |es(0)—es(1)| = |(b—j—1+%)— (a—i+j)| =
lb—a—-1-2(j -9

Case 1: a + bis even.

In order for f to be a friendly labeling, we require that i +j+1 = 112-_5. Therefore,
N(f)=le(1)—e(0)| = |2a —4i— 1|, where 0 <i<a-1.

Case 2: a + bis odd.

In order for f to be a friendly labeling, i+j+1=a—i-1+(b—-j—-1)+1+1,0r
i+j+l=a—-i-1+(b-j-1)+1-1 Wii:htheformer,j—i:1‘-1""'2M and
N(f) = |b—a — 1 — 2(2tbs8i=1)| — |20 — 4i|. With the latter, j — i = 2tb58=3
and N(f) = [b—a—1—2(etb5ti=2)| = |20 — 4i — 2|. When 0 < i < a—1, the
indices 0,2, -- - , 2a will be produced.

Note that if one assigns the same labels to the central vertices u, v; for example,
f(u) = f(v) =1, then (1) = i+j and e(0) = a+b—i—j—1. Hence ¢(0) —e(l) =
a+b—2(i+3)—1. Since f is friendly, then either 2(i+5) = a-+bor 2(i+j) = a+bx1.
Therefore, N(f) does not produce an additional index. ]

Observation 2.3. If degu = 1, then DS(a,b) would become ST(b). Therefore,
we can assume that a > 2. Nevertheless, we can see that Theorem 2.2 generates
the same index set as Theorem 2.1. To illustrate, let « = 1. Then i = 0. We
consider the two cases:

Case 1: a+ b is even. Since @ = 1, b must be odd. N(f) = |22 —4i—-1| =
[2(1) —4(0) - 1| = 1.

Case 2: a+bisodd. Since a = 1, b must be even. N(f) = |2a—4i| = |2(1)—4(0)] =
2 and N(f) = |2a — 4i — 2| = |2(1) — 4(0) — 2| = 0.

Examples 2.4.

(a) FI(DS(a,a)) = {1,3,---,2a — 1}, where the maximum friendly index is
equal to the number of edges in DS(e,a).

(b) FI(DS(4,4)) = {1,3,5,7}, where @ = 4 and a + b = 4 + 4 is even. The
number of edges in DS(4,4) is 7, which is also its maximum friendly index.

(c) FI(DS(a,a+1))={0,2,- - ,2a}, where the maximum friendly index is also
equal to the size of DS(a,a+1).

(d) FI(DS(5,6)) = {0,2,4,6,8,10}, where a = 5 and a + b= 5+6 is odd. The
number of edges in DS(5,6) is 10, which is also its maximum friendly index.
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() For k > 2, the friendly index sets of all double stars of the form DS(a,a + k)
with 2a+k even, are identical. Likewise, double stars of the form DS (a,a+k)
with 2a + k odd, have identical friendly index sets.

(f) FI(DS(3,5)) ={1,3,5}, wherea =3 and a + b = 3 + 5 is even.

(g) FI(DS(3,11)) = {1,3,5}, where a = 3 and @ + b = 3 + 11 is even.
(h) FI(DS(4,9)) = {0,2,4,6,8}, where a =4 and a + b = 4 + 9 is odd.
(i) FI(DS(4,15)) = {0,2,4,6,8}, wherea =4 and a + b = 4 + 15 is odd.

3 Caterpillars

A caterpillaris a tree having the property that the removal of its end-vertices results
in a path (the spine). We use CR(ay,a2,--- ,a;) to denote the caterpillar with a
P,-spine, where the ith vertex of P, has degree a;. Since CR(1,ay,:-- ,an,1) =
CR(a1,--- ,a,) and a; # 1 (2 < i < n— 1), we will assume that a; > 2.

Figure 5: A Caterpillar of diameter n + 1 (P,-spine).

In this paper we will concentrate on caterpillars whose spines are P; and will use
the notation G = CR(a,b,c), where degu = a, degv = b, and degw = c, as
illustrated in Figure 6. This caterpillar has a + b+ c— 1 vertices and ¢ + b+ ¢ — 2
edges.

Figure 6: A Caterpillar of diameter 4, CR(8,9,8).

Theorem 3.1. Let a,b,c > 2 and a + b + ¢ be odd. Then FI(CR(a,b,c)) =
AUBUC, where

{120 4i—1 | :ma < i < Ma);
{126~ 4j - 1| :mp < j < Mp};
{

A
B
o] [2¢ -4k —1|:mc <k < Mc};
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and
m4 = max{0, a=tzet3}, M, = min{e — 1, atbfe=d};

mp = max{0, =etimetl}; Mp = min{b - 2, stife=2);

me = max{0, =a=btetd}; M = min{c— 1, etife=3};

Proof. Assume a,c>1,b> 2 and let f: V(G) — {0,1} be a friendly labeling. We
will consider the following cases:
Case 1. Let f(u) =0, and f(v) = f(w) = 1 be the labeling of the central vertices
and all other labels be 1 except

flw) =fluw) = = f(u) =0;
flv)) =f(v) = = f(v;) =0 (3.1)
flw) =flw) = = f(wx) = 0.

Then v;(0) =i +j+k+1and vs(1) = a+b+c—i—j—k— 2 For this labeling
to be friendly we need

at+b+e-1
2 b

which implies |e(1) — e(0)] = |2a — 4i — 1|. Moreover, i +1 < (a +b+c—1)/2 and
a—i+1< {a+b+ c—1)/2, which provide the inequalities

itj+k+l= (3.2)

(a—b—c+3)/2<iL(a+b+c~-3)/2
Therefore, the possible friendly indices obtained in this case would be
A={|2a—4i—1|:mA $’I.SMA}, (33)

where m 4 = max{0, (a — b — c + 3)/2} and My = min{a — 1, (a + b + ¢ - 3)/2}.
The label assignments f(u) = 1, and f(v) = f(w) = 0, will result in |e(1) —e(0)| =
|2a—4i—3|, which is the complementary labeling and will provide the same friendly
indices.

Case 2. We only change the labels of the central vertices by f(u) = f(w) = 1,
and f(v) = 0. Then with a similar argument as presented in the case 1, we may
get the friendly indices

B={|2b—4j—1|:mp <j < Mg}, (34)

where mp = max{0, (-a + b—c+1)/2} and Mg = min{b—2, (a+b+c-3)/2}.
The label assignments f(u) = f(w) = 0 and f(v) = 1, will result in |e(1) —e(0)| =
|2b—4j —7|, which is the complementary labeling and will provide the same friendly
indices.

Case 3. We only change the labels of the central vertices by f(u) = f(v) =1, and
f(w) = 0. Then with a similar argument as presented in the case 1, the possible
friendly indices would be

C={2c~4k—-1]:mc <j< Mc}, (3.5)
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where m¢ = max{0, (—a — b+ c+3)/2} and M¢ = min{c~1, (a + b+ c - 3)/2}.
The label assignments f(u) = f(v) = 0 and f(w) = 1, will result in |e(1) ~ e(0)| =
|2¢~4k~ 3|, which is the complementary labeling and will provide the same friendly
indices. Thus, FI(G) is a subset of the union of the three sets (3.3), (3.4) and
(3.5).

Case 4. If we assign the same labels to the central vertices u, v, and w; for
example, f(u) = f(v) = f(w) =1,thene(l) =¢+j+kande0) =a+b+c—i-
j—k—2.Hence e(0) —e(1) =a+b+c—2(i+j + k) ~ 2. Since f is friendly and
there are an even number a+b+ c—1 of vertices, then 2(i +j+ k) =a+b+c— 1.
Therefore, N(f) = 1 is a member of FI(CR(a,b,c)).

This shows that FI(CR(a,b,c)) C AU BUC. On the other hand, every element
of AUBUC is generated by a friendly coloring of CR(a, b, c), which implies that
FI(CR(a,b,c))=AUBUC. O

Observation 3.2. Ifa =c =1, then FI(CR(1,b,1)) = {1}.
Proof. Note that if @ = ¢ = 1, then CR(1,b,1) = ST(b) and my = M4 = me =

Mc =0or A= C = {1}. Also, mp = Mp = ——, which implies that B = {1}
or FI(CR(1,b,1)) = {1}. This result is consistent with Theorem 2.1. a

Observation 3.3. Ifa =1 and b,c > 2, then FI(CR(1,b,¢)) = {1,3,...,2z— 1},
where x = min{b, c}.

Proof. Since a =1, then m4 = M =0 or A = {1}. Also, CR(1,b,c) = DS(b,c)
and e +b is even, which implies that a and b have the same parity. Without loss of
generality we may assume that b < c. We will consider the following three cases:

Case 1. Ifb=c,thenmp =0, Mp=5b—-2, mg=1and Mg =b~1. Therefore,

B ={|2b-4j-1]:0<j<b—2);
C ={2b-4k-1]:1<k<b-1},

consequently, BUC = {|26—4k-1]:0<k<b-1} ={1,3,--- 26— 1}.
Case 2. fc=b+2,thenmp =0, Mp =b—2, mc =2and Mg = b. Therefore,

B ={|2b-4j-1]:0<j<b-2);
C ={i2b+4—4dk—-1]:2<k<b}={|26-4k—-1]:1<k<b—1)},

consequently, BUC = {|2b~4k-1|:0<k<b-1}={1,3,--- ,26—1}.

Case 3. If c > b+2, thenmp =0, Mg =b-1, mc = c—b and M¢ = H—;—2
In this case, B=C = {1,3,---,2b — 1}, which completes the proof. (m]

The result of Observation 3.2 is consistent with the Theorem 2.1. Also, the result
of Observation 3.3 is consistent with the Theorem 2.2. The combination of these
two observations and Theorem 3.1 is summarized in the following theorem:

Theorem 3.4. Let a,c > 1, b>2 and a + b+ c be odd. Then FI(CR(a,b, ¢)) =
AUBUC, where
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{|2a—4i-1]:ma <i< Mp};
{l2b—4j-1|:mp <j< Mg}
{

A
B
C |2c—4k—1|:mcSkSMc};

and
ma = max{0, &=b¢$3}. M, = min{e — 1, 2e=3};

mp = ma’x{oa —_ml-_f;;&l}’ MB = mln{b - 2, c_-|-_-|-_52c—3};

mec = max{o: _—_a:%-[ﬂ-_fi_h Mc = min{c -1, atbic-3 b2°"3};

4 Counter Examples

Another useful observation of Theorem 3.4 is that if = c, then the boundaries
for i and k are the same, i.e. A = C. For example, when G = CR(3,5,3), we
have A = C = {1,3,5} and B = {1,3,5,9}, i.e. FI(CR(3,5,3)) = {1,3,5,9}. We
observe that the elements of the friendly index set of the caterpillar CR(3,5,3)
do not form an arithmetic progression. The next theorem will provide an infinite
number of trees whose friendly index sets do not form an arithmetic progression.

© O © L © ©
O—O0—()—0—0© O—Oo0—u)—0L—

N(f)=9 N(f)=5

© © © © © ©
O——(0)—0—0 OO—0—)r—0—0©

N(f)=3 N(f)=1
Figure 7: FI(CR(3,5,3)) = {1, 3,5,9}.

Theorem 4.1. If n > 3, then the elements of the friendly indez set for the cater-
pillar of the form CR(n,2n — 1,n), do not form an arithmetic progression.

Proof. Let n > 3 and consider the graph G = CR(n, 2n—1,n). Note that a+b+c =
4n ~ 1 is odd. Therefore, by Theorem 3.4, FI(G) = AU B U C. Also, for this
graph, A=C = {2n-1—-4il : 0< i <n-1} = {1,3,5,---,2n — 1} and
B={4n-83-45:0<j<2n-3}={1,3,--- ,4n — 9,4n — 7,4n — 3}. Since
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A C B, then FI(G) = B. We observe that B has 2n — 2 odd numbers with
min B = 1 and max B = 4n — 3. Thus, one odd number is missing. In fact, the
value 4n — 5 cannot be obtained, thereby preventing the elements of the set from
forming an arithmetic progression. a

Therefore, by Theorem 4.1 we see that caterpillars CR(n,2n — 1,n) provide in-
finitely many counterexamples to disprove the conjecture.
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