Some Properties of Macula's matrix and its complement *

Wen Liu¹ Yafan Yue² Suogang Gao¹

- Math. and Inf. College, Hebei Normal University, Shijiazhuang, 050016.
 P.R.China;
 - 2. Beihua Institute of Astronautic Engineering, LangFang, 065000, P.R.China

Abstract

Anthony J. Macula constructed a d-disjunct matrix $\delta(n, d, k)$ in [1], and we now know it is determined by one type of pooling space. In this paper, we give some properties of $\delta(n, d, k)$ and its complement $\delta^c(n, d, k)$.

Key words: d-disjunct matrix pooling design

1 Introduction

Group testing has many applications such as screening blood samples for diseases, screening vaccines for contamination and DNA library screening. A group testing algorithm is non-adaptive if all tests must be specified without knowing the outcomes of other tests and a mathematical model of non-adaptive group testing design is a d-disjunct matrix. A group testing algorithm is error tolerant if it can detect or correct some e errors in test outcomes. We know if we view the d-disjunct matrices as i-disjunct matrices(0 < i < d), then they can detect e errors. In this paper we count the number e for each i with 0 < i < d and we show if $\delta(n,d,k)$ is d-disjunct, then $\delta^c(n,d,k)$ is m-disjunct for some m with $0 \le m \le n$.

^{*}Corresponding author: Suogang Gao, Mathematics and Information College, Hebei Normal University, Shijiazhuang, 050016, P.R.China; E-mail: sggao@heinfo.net

2 Preliminary results

Let n be a positive integer and [n] denote $\{1, 2, \dots, n\}$. Let $\binom{n}{j}$ denote the family of j-subsets of [n]. For d < k < n, we define the $\binom{n}{d} \times \binom{n}{k} \{0, 1\}$ matrix $\delta(n, d, k)([1])$ by letting the rows and the columns be, respectively, represented by the members of $\binom{n}{d}$ and $\binom{n}{k}$ in the following way: For a given $D \in \binom{n}{d}$ and $K \in \binom{n}{k}$, the matrix $\delta(n, d, k)$ has a 1 in its (D, K)th entry if and only if $D \subset K$.

Consider a $t \times n$ $\{0,1\}$ matrix μ . Let R_i and C_j denote row i and column j respectively. Abusing notation, we also let R_i (resp. C_j) denote the set of column (resp. row) indices corresponding to the 1 entries.

Definition 2.1. ([2]) A $t \times n$ matrix μ is said to be d-disjunct if the union of any d columns does not contain another column.

Definition 2.2. ([2]) A $t \times n$ μ is said to be (d, e)-disjunct if for any d+1 columns C_0, C_1, \dots, C_d of μ there are at least e+1 elements in $C_0 - \bigcup_{i=0}^d C_i$.

The definition also can described in this way: A d-disjunct matrix μ is called (d,e)-disjunct if and only if given any d+1 columns of μ with one designated, there are e+1 rows with a 1 in the designated column and a 0 in each of the other d columns. From a coding theory point of view, a (d,e)-disjunct matrix is equivalent to a superimposed distance code with strength d and distance e+1.

Proposition 2.3. ([3, 4]) A matrix μ is d-disjunct if and only if it is (d,0)-disjunct.

Proposition 2.4. ([1]) $\delta(n,d,k)$ is a $\binom{n}{d} \times \binom{n}{k}$ d-disjunct matrix with column weight $\binom{k}{d}$ and row weight $\binom{n-d}{k-d}$.

Proposition 2.5. ([5, 6]) $\delta(n, s, k)(d \le s < k)$ is a $(d, {k-d \choose s-d}-1)$ -disjunct matrix.

From Proposition 2.5 we can easily have that Matrix $\delta(n, d, k)$ is

$$(d,0) - disjunct,$$
 $(d-1,\binom{k-(d-1)}{d-(d-1)} - 1) - disjunct,$
 $(d-2,\binom{k-(d-2)}{d-(d-2)} - 1) - disjunct,$
 \vdots
 $(d-i,\binom{k-(d-i)}{d-(d-i)} - 1) - disjunct,$
 \vdots
 $(d-(d-1),\binom{k-1}{d-1} - 1) - disjunct.$

3 Main results

Theorem 3.1. If the intersection of any m k-subsets in $\binom{n}{k}$ has at least d elements, whereas the intersection of any m+1 k-subsets has at most d-1 elements, then the complement of $\delta(n,d,k)$, $\delta^c(n,d,k)$, is at most m-disjunct.

Proof. Let $C_{j_0}, C_{j_1}, \dots, C_{j_m}$ be m+1 columns of $\delta(n,d,k)$ with C_{j_0} being distinguished. We know there is a row with all 1 entries in columns C_{j_1}, \dots, C_{j_m} and there does not exist a row with all 1 entries in columns $C_{j_0}, C_{j_1}, \dots, C_{j_m}$. So in matrix $\delta^c(n,d,k)$ there is a row with all 0 entries in columns $C_{j_0}, C_{j_1}, \dots, C_{j_m}$ and there does not exist a row with all 0 entries in columns $C_{j_0}, C_{j_1}, \dots, C_{j_m}$. Thus C_{j_0} does not contain in the union of C_{j_1}, \dots, C_{j_m} . Therefore $\delta^c(n,d,k)$ is at most m-disjunct.

For example, $\delta^c(5,2,3)$ is 1-disjunct, $\delta^c(6,2,4)$ is 1-disjunct, and $\delta^c(5,2,4)$ is 3-disjunct.

Corollary 3.2. $\delta^c(n, d, n-1)$ is (n-d)-disjunct.

Proof. It is easy to see that the intersection of any m columns of $\delta(n, d, n-1)$ has n-m elements. so there are $\binom{n-m}{d}$ rows with all 1 entries in these columns in $\delta(n, d, n-1)$. Now we consider $\delta^c(n, d, n-1)$. There are exact

 $\binom{n-m}{d}$ rows with all 0 entries in these columns. Observe that $\binom{n-(n-d)}{d}=1$ and $\binom{n-(n-d+1)}{d}=0$. Our assertion is proved.

Corollary 3.3. For d < l < n-1, $\delta^c(n,d,n-1)$ is $(n-l,\binom{l-1}{l-d}) - disjunct$.

4 Remarks

Tayuan Huang and Chih-wen Weng define a pooling space and show us how to construct d-disjunct matrices from a pooling space in [2]. $\delta(n,d,k)$ is a type of d-disjunct matrix constructed from a pooling space which is a ranked partially ordered set and its partial order relation is the inclusion relation between subsets. In fact, these d-disjunct matrices determined by the pooling spaces mentioned in [2] also have the similar properties above. For example, from the attenuated space $A_q(D, N)(D \leq N)$ we can constructed a type of d-disjunct matrix $\eta(D, d, k)$. $\eta(D, d, k)$ is

$$(d,0)-disjunct, \\ (d-1, \left[^{k-(d-1)}_{d-(d-1)}\right]_q q^{(d-(d-1))(N-D)}-1)-disjunct, \\ (d-2, \left[^{k-(d-2)}_{d-(d-2)}\right]_q q^{(d-(d-2))(N-D)}-1)-disjunct, \\ \vdots \\ (d-i, \left[^{k-(d-i)}_{d-(d-i)}\right]_q q^{(d-(d-i))(N-D)}-1)-disjunct, \\ \vdots \\ (d-(d-1), \left[^{k-1}_{d-1}\right]_q q^{(d-1)(N-D)}-1)-disjunct, \\ \end{cases}$$

and its complement $\eta^c(D, d, D-1)$ is (D-d)-disjunct.

5 Acknowledgement

The authors are grateful to the referee for his valuable suggestions. The third author would like to thank Professor Tayuan Huang for introducing him d-disjunct matrices and sending him the papers[2-4]. This paper was

supported by Natural Science Foundation of Hebei Province, China, (No. A2005000141).

References

- [1] A. J. Macula, A simple construction of d-disjunct matrices with certain constant weights, *Discrete Math.* 243(2002), 161-182.
- [2] Tayuan Huang, Chih-wen Weng, Pooling spaces and non-adaptive pooling designs, Discrete Math. 282(2004), 163-169.
- [3] D. Du, F. K. Hwang, Combinatorial Group testing and Its Applications, World Scientific, Singapore, 1993.
- [4] A. J. Macula, Error-correcting nonadaptive group testing with d^e-disjunct matrices, Discrete Applied Math. 80(1997), 217-222.
- [5] A. Dyachkov, A. Macula and V. Rykov, New applications and results of superimposed code theory arising from the potentialities of molecular biology. *Numbers, Information, and Complexity*, Kluwer Academic Publishers, Dordrecht, 2000.
- [6] Arkadii G. D'yachkov, Anthony J. Macula and Pavel A. Vilenkin, Non-adaptive and Trivial Two-stage Group Testing with Error-Correcting d^e-Disjunct Inclusion Matrices. To appear in Entropy, Search, Complexity Series: Bolyai Society Mathematical Studies, 16(2006).