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Abstract

Anthony J. Macula constructed a d—disjunct matrix &(n,d, k) in (1],
and we now know it is determined by one type of pooling space. In this
paper, we give some properties of 6(n, d, k) and its complement 6°(n, d, k).
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1 Introduction

Group testing has many applications such as screening blood samples for
diseases, screening vaccines for contamination and DNA library screening.
A group testing algorithm is non-adaptive if all tests must be specified
without knowing the outcomes of other tests and a mathematical model of
non-adaptive group testing design is a d—disjunct matrix. A group testing
algorithm is error tolerant if it can detect or correct some e errors in test
outcomes. We know if we view the d—disjunct matrices as i—disjunct
matrices(0 < i < d), then they can detect e errors. In this paper we
count the number e for each i with 0 < i < d and we show if 8(n,d, k) is
d—disjunct, then §°(n,d, k) is m—disjunct for some m with 0 <m < n.
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2 Preliminary results

Let n be a positive integer and [r] denote {1,2,--,n}. Let ((})) denote
the family of j—subsets of [n]. For d < k < n, we define the (7)) x (%) {0,1}
matrix §(n, d, k)([1]) by letting the rows and the columns be, respectively,
represented by the members of ((7))) and ((%)) in the following way: For
a given D € ((})) and K € ((})), the matrix 6(n,d, k) has a 1 in its
(D, K)th entry if and only if D C K.

Consider a ¢ x n {0,1} matrix u. Let R; and C; denote row i and
column j respectively. Abusing notation, we also let R; (resp. C;) denote
the set of column (resp. row) indices corresponding to the 1 entries.

Definition 2.1. (/2]) A t xn matriz p is said to be d—disjunct if the union

of any d columns does not contain another column.

Definition 2.2. (/2/) A txn p is said to be (d, €)—disjunct if for any d+1

d
columns Cpy,Cy,- -+ ,Cy of u there are at least e+1 elements in Cop — U¢c.

=0

The definition also can described in this way: A d—disjunct matrix p is

called (d, e)—disjunct if and only if given any d + 1 columns of y with one

designated, there are e + 1 rows with a 1 in the designated column and a

0 in each of the other d columns. From a coding theory point of view, a

(d, e)—disjunct matrix is equivalent to a superimposed distance code with
strength d and distance e + 1.

Proposition 2.3. (/3, 4]) A matriz p is d—disjunct if and only if it is
(d, 0)—disjunct.
Proposition 2.4. ([1]) é(n,d,k) is a (§) x (}) d—disjunct matriz with

n—d) .

column weight (5) and row weight ( g

Proposition 2.5. ([5, 6/) §(n,s,k)(d < s < k) is a (d, (=) — 1) disjunct

maltriz.
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From Proposition 2.5 we can easily have that Matrix d(n, d, k) is

(d,0) — disjunct,
(d-1, (’;:gﬁ:};) — 1) — disjunct,

(d-2, (5:53:3) —1) — disjunct,

(d -1, (’;:gjjg —1) — disjunct,

(d-(d-1), (Z:i) -~ 1) — disjunct.

3 Main results

Theorem 3.1. If the intersection of any m k—subsets in ((})) has at least
d elements, whereas the intersection of any m + 1 k—subsets has at most
d — 1 elements, then the complement of 6(n,d, k), 6°(n,d, k), is at most

m—disjunct.

Proof. Let Cjy,Cjy,++- ,Cj,, be m+ 1 columns of 6(n,d, k) with Cj, be-
ing distinguished. We know there is a row with all 1 entries in columns
Cjys+++ ,Cj,, and there does not exist a row with all 1 entries in columns
CjosCiys** Cja- So in matrix §°(n,d, k) there is a row with all O entries
in columns Cj, ,--- ,Cj,, and there does not exist a row with all 0 entries
in columns Cj,,Cj,,*+ ,Cj,.. Thus Cj, does not contain in the union of
Cjys++* 1Cjn- Therefore 6°(n,d, k) is at most m—disjunct. O

For example, 6°(5,2,3) is 1—disjunct, §°(6,2,4) is 1—disjunct, and
§¢(5,2,4) is 3—disjunct.

Corollary 3.2. §°(n,d,n — 1) is (n — d)—disjunct.

Proof. It is easy to sce that the intersection of any m columns of 6(n,d, n~
1) has n — m elements. so there are (";™) rows with all 1 entries in these

columns in §(n,d,n — 1). Now we consider 6°(n,d,n — 1). There are exact
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("¢™) rows with all 0 entries in these columns. Observe that ("~(~%9) = 1

and (*~("74+1)) = 0. Our assertion is proved.

Corollary 3.3. Ford < ! < n—1, &(n,d,n—1) is (n - ,(j2}) -
1)—disjunct.

4 Remarks

Tayuan Huang and Chih-wen Weng define a pooling space and show us
how to construct d—disjunct matrices from a pooling space in {2]. §(n, d, k)
is a type of d—disjunct matrix constructed from a pooling space which is
a ranked partially ordered set and its partial order relation is the inclusion
relation between subsets. In fact, these d—disjunct matrices determined
by the pooling spaces mentioned in [2] also have the similar properties
above. For cxample, from the attenuated space Ay(D, N)(D < N) we can
constructed a type of d—disjunct matrix 9(D, d, k). 7(D,d, k) is

(d,0) — disjunct,
(d-1, [zl ql4=d=DXN=D) _ 1) _ disjunct,

(d-2, [k (d— 2)] q(d-(d-2))(N-D) — 1) — disjunct,

d—(d—2)
(d—1,[5 {jj*’] qld=@=NW=-D) _ 1) _ disjunct,

(d—(d-1), ['j:}]q(l(d_l)(N'D) — 1) — disjunct,

and its complement 7°(D,d, D — 1) is (D — d)—disjunct.
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