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Abstract

Let n,s1 and sz be positive integers such that 1 < & < nf2, 1< s <
n/2, 81 # s2 and ged(n,s1,32)=1. An undirected double-loop network
G(n; £s1,%s2) is a graph (V, E), where V=Zn ={0,1,2,---,n — 1}, and
E={i—i+s (modn),i—i—s1 (modn),i—i+s; (modn),i—
i—s2 (modn)|i=0,1,2,---,n—1}. In this paper, a diameter formula
is given for an undirected double-loop network G(n; +s1,ks2). As its
application, two new optimal families of undirected double-loop networks
are presented.

1 Introduction

An undirected double-loop network is very useful in designs of local area
networks, multimodule memory organization, data alignment in parallel memory
systems and super-computer architecture. Many researchers are interested in the
case of undirected networks [2, 4, 5, 7, 8, 10, 13, 15-18], while others are interested
in the case of directed ones [1, 3, 6, 9-12, 14]. Their interests mainly focus on
routing, diameters and optimal double-loop networks. For more details we refer
readers to [3] and [12] and the references therein.

Now we give definitions of some notations used in the following. Let G be
a finite group with e as its identity. Let S C G be a generator set of G such
that e ¢ S and g™ € Sif g € S. Define Cayley graph Cay(G,S)= (V, E),
where V=G and E={(z,y)| y=zg for some g € S}. Then Cay(G,S) isa regular,
vertex-transitive graph of degree=|S|.
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Let n,s1 and s2 be positive integers such that 1 < 81 < n/2,1 < s2 < n/2,
s1 # s2. The undirected double-loop network G(n; +s;,=s;) is a graph (V, E),
where V=2Z,={0,1,2,---,n — 1}, and E={i » i+ s (modn),i — i— s
(mod n),i —i+s2 (modn),i —»i-s2 (modn)|i=0,1,2,---,n—1}. Thus
G(n; %s1, £s2) is a Cayley graph Cay(Za, {s1, s2, —s1, —82}).

Let d(i,7) be the length of a shortest path from i to j. The maximum
length among all pairs of nodes, denoted by d(n;=+s1, +s2), is the diameter of
G(n;£s1,182). As G(n; £s1, £s2) is vertex symmetric, d(n; %s;, +s2)= max{d(i,
0) | 0 < i < n}. Let D(n)=min{d(n;+s1,%s2) | 1 < 81 < s2 < n/2}. Wong and
Coppersmith [16] gave a lower bound (v2n — 3)/2 for D(n). Boesch and Wang
[4] sharpened the bound by giving lb(n)=[@], where [z] denotes the min-
imum integer > z. For any n, taking s1 = lb(n) and s; = lb(n) + 1(see [4,17])
yields a graph G(n;%s1,£s2) of diameter ib(n). Du et al. [7] gave an upper
bound of max{g+1,7 —2,h—r—1} for d(n; £1, +h), where n=gh+r,0 < r < h.
Mukhopadhyaya and Sinha (13] proposed an O(D) time optimal routing for an
undirected double-loop network, where D is the diameter of the network. They
also listed some open problems in [13], one of which is to derive an analytical
formula for the diameter of G(n; +1,+h). In this paper, we will give a diameter
formula for an undirected double-loop network G(n; +s;, +s2) and therefore solve
this problem. This paper is organized in such a way that Section 2 provides some
preliminary facts, observations, and known results concerning undirected double-
loop networks. In Section 3, a diameter formula for d(n; s, +s2) is presented.
In Section 4, two new optimal families of undirected double-loop networks are
given.

2 Preliminary Observations

Let Z and Z* be the set of integers and nonnegative integers respectively.
Let |z] denote the maximum integer < x. Given G(n;+s;, +32), an edge from
ito(i+s) (mod n) is called a [+s] edge, where s € {s1,82}. It is known that
G(n;£s1,%32) is connected if and only if ged(n, 81,52)=1. In the following we
always assume that 1 < s; < s2 < n/2 and ged(n, 81, s2)=1.

Consider a path from i to j involving w, z,y, and z (all non-negative integers)
number of [+s1], [—s1], [+8s2], [~s2] edges respectively. Then j = (i +ws; —zs; +
ys2 — 282) (mod n). Since we are only interested in the length of the paths,
we shall denote such a path by w[+s1] + z[—s1] + y[+s2] + 2z[—s2]. If a path
w[+s1] + z[—s1] + y[+52] + z[—s2] from i to j is the shortest one, then at most
one of w and z is nonzero and at most one of y and z is nonzero.

Given G(n;%s1,%s2), we construct an infinite grid Gn,+s,,+s, in Z? by la-
belling each lattice point (4, j) by is1 + js2 (mod n). We refer to a lattice point
with label ¢ as an i-point. If is; +js2 =0 (mod n), then we call (4, j) a O-point.

We define

dist((z1, 1), (z2,92)) = |21 — 22| + ly1 — 2|

as the distance between lattice points (z1,y1) and (2, %2).
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Let |@| denote the length of the vector @ and let @ X B be the vector
product of & and B. Suppose that A, B,C, and D are (0,0), (u,v), (u—a,v+b),
and (—a, b) respectively, where u,v,a,b € Z* and lattice points A, B, and D are
not on the same line. Let Smapcp denote the area of the parallelogram ABCD.
Notice that Soascp =|AB x AD|, we have Soapcp =ub+ va.

Fig. 1 A,B,C,D,G,H,K,L,M and N are 0-points.

Since the following three lemmas can be proved just like Lemma 1, Lemma 2
and Lemma 3 in [7), their proofs are omitted here.

Lemma 1: Suppose that 0-points A, B,C, D have coordinates (0, 0), (u,v),
(u—a,v+b), and (—a,b), respectively, with u,v,a,b are all nonnegative integers.
If the area of the region X covered by the parallelogram ABCD, excluding the
two edges BC and CD(and by implication, the lattice points B, C and D), is n,
then 3 contains exactly n lattice points whose labels are O, 1,2,---,n-1.

Corollary 1: The region X and lattice points A, B,C, D are defined as in
Lemma 1. Suppose that the area of ¥ is n. If (p, g) is a 0-point, then there exist
two integers t1, %2 such that (p,g) = t1(u,v) + t2(—a,b).

Proof. As A, B and D are not on the same line, there exist two real numbers
t1,t2 such that (p,q) = #1(u,v) + t2(—a,b). If t1 and ¢ are not both integers, as
B and D are 0-points, then T = (t1 — [t1])(x,v) + (t2 — [¢2])(—a, b) is a O-point.
As T is in &, we know that there are two 0-points A and T in £. This contradicts
the conclusion of Lemma 1. m]

Lemma 2: Suppose that the region X and the four lattice points A, B,C,D
are defined as in Lemma 1 and that u > v,a < u,a < band v < b. Con-
sider the points P and Q with coordinates (|(u — a)/2],[(v + b) /2]) and ([(u —
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a)/2], [(v + b)/2]), respectively. If £ includes n lattice points, then no 0-point
is closer to P than the nearest of the points A, B,C, D. Thus, the shortest dis-
tance from node 0 to node [(u — a)/2)s1 + [(v + b)/2]s2 in G(n;+s1,%s2) is
min{dist(A, P), dist(B, P),dist(C, P),dist(D, P)}. The shortest distance from
node 0 to node [(u — a)/2]s1 + [(v + b)/2]s2 is similarly related to point Q.

Lemma 3: Suppose that the region £ and the four lattice points A, B,C, D
are defined as in Lemma 1 and that v < v,b < a,u < a and b < v. Consider
the points P’ and Q' with coordinates (—|(a — u)/2], [(v + b)/2]) and (—[(a —
u)/2], [(v + b)/2]), respectively. If £ includes n lattice points, then no 0-point
is closer to P’ than the nearest of the points A, B,C,D. Thus, the shortest
distance from node 0 to node —|(a — u)/2s1 + [(v + b)/2]s2 in G(n; £s1, £s2)
is min{dist(A, P'),dist(B, P'),dist(C, P'),dist(D, P')}. The shortest distance
from node 0 to node —[(u — a)/2]s1 + [(v + b)/2]s2 is similarly related to point
Q.

By Lemma 2 and Lemma 3, we know that
d(n; £s1,£s2) > min{dist(P, A), dist(P, B), dist(P,C), dist(P, D)},

where P is a lattice point near or in the center of the parallelogram ABCD. This
inequality is helpful in studying diameters of undirected double-loop networks in
the next section.

3 A diameter formula for an undirected double-
loop network

In this section, we will give a diameter formula for for an undirected double-loop
network.
Definition 1: (a1, a2) is said to be a non-negative solution of the congruence
equation
zs1 +ys2 =0 (mod n) (1)

if @151 + @282 =0 (mod n), a1,a2 € Z* and (a1,a2) # (0,0). (u,v) is said to
be the smallest non-negative solution of the congruence equation (1) if (u,v) is a
non-negative solution of the equation (1) and the following conditions hold:

(1) if (a1, @2) is a non-negative solution of the equation (1), then u+v < a1 + az.
(2) if (a1,a2) is a non-negative solution of the equation (1) with (a1,02) # (u,v)
and u + v = a1 + a2, then u > a;.

For example, it is easy to see that (4, 1), (2, 3), (0, ), (8,2), (4,6), - - - are non-
negative solutions of the equation z + 6y = 0 (mod 10). Thus (4,1) is the
smallest non-negative solution of the equation z + 6y =0 (mod 10).

Definition 2: Let (u,v) be the smallest non-negative solution of the con-
gruence equation (1). (—a1,a2) is said to be a cross solution of the congruence
equation (1) if —a151 +a2s2 =0 (mod n), a1,a2 € Z*¥, (—ai,a2) # (0,0), and
(~a1,a2), (0,0), (u,v) are not on the same line. (—a, b) is said to be the smallest
cross solution of the congruence equation (1) if (—a,b) is a cross solution of the
equation (1) and the following conditions hold:

(1) if (—a1,a2) is a cross solution of the equation (1), then @ + b < a, + as.
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(2) if (—a1,a2) is a cross solution of the equation (1) with (—a1,a2) # (~a,b)
and a + b = a; + a2, then b > a2.

For example, it is easy to see that (2, 2) is the smallest non-negative solution of
the equation 4z+5y =0 (mod 18), and (—9,0),(-7,2), (-5,4),(-3,6),(-1,8),
(-18,0), (—14,4),(—16,2), - - - are cross solutions of the congruence equation 4z +
5y =0 (mod 18). Thus (—1,8) is the smallest cross solution of the congruence
equation 4z + 5y =0 (mod 18).

Lemma 4: Let (u,v) be the smallest non-negative solution of the congruence
equation (1) and (—a, b) be the smallest cross solution of the congruence equation
(1). Ifu < v, then @ > u,a > b,b < v.

Proof. Firstly, we claim that b < v. In fact, if b > v, then (ma—u,b-v)is
a cross solution of the equation (1) and @ + u + b — v < a + b. This contradicts
the hypothesis that (—a,b) is the smallest cross solution of the equation (1).

Secondly, we prove a > b. If a < b, since b < v, (u + a,v — b) must be a non-
negative solution of the equation (1) and u+a+v—b<u+v. This contradicts
the hypothesis that (u,v) is the smallest non-negative solution of the equation
(1).

Finally, we prove a > u. If a < u, since a > b, (u —a,v+ b) must be a non-
negative solution of the equation (1) and u —a+b+v < u +v. This contradicts
the hypothesis that (u,v) is the smallest non-negative solution of the equation
(1). 0O

By similar arguments, we can show the following Lemma 5.

Lemma 5: Let (u,v) be the smallest non-negative solution of the equation
(1), and (—a, b) be the smallest cross solution of the equation (1). If u > v, then
a<u,a<bv<b

Lemma 6: Let (u,v) be the smallest non-negative solution of the congruence
equation (1) and (—a, b) be the smallest cross solution of the congruence equation
(1). Then ub + va=n.

Proof. We consider two cases.

Case 1: u > v, by Lemma 5 we know that @ < u,a £ b,v< b.

As any one of two cases: (1) u+v > a+b, (2) u+v < a+bmay happen, for
convenience, in the following we just consider the first case: u+v > a+b. The
other case can be similarly proved.

Let M=(* 2 ). The set MZ?, whose elements are linear combinations (with
integral coefficients) of the (column) vectors my=(}) and may=(7"), is said to be
the lattice generated by M. Clearly, M 72 with usual vector addition is a normal
subgroup of Z2.

Let e;=(2) and e2=(?). Now define a map g: Cay(Z>/MZ’, {e1, €2, —€1, —ez2})
— Cay(Zn, {51, 82, —81,~32}) by ¢( (:;))=:L‘131 + za82.

For any t € Zn, as ged(n, 81, 52)=1, there exist two integers z1, T2 such that
z181 + 282 =t (mod n). That is, ¢ is a surjective map.

In the following we will prove ¢ is injective.

Since m1=(*) and m,=(7") are linear independent, for any two integers
Z1, T2, there exist two real numbers ¢, ¢2 such that (;;): timy +toma. If 218 +
2282 =0 (mod n), then we will prove that t1, 2 are both integers. That is, (;;

€ MZ2.
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If ¢1,¢2 are not both integers, then t; = [t1| + 71, t2 = |t2] + r2, where
0 <7 <1,0 <72 <1 and at least one of r1,r; is not zero. Thus (r1u —rza)s; +
(riv+r2b)s2 =0 (mod n).

If riu —r2a < 0, since ~mMu+rea+rv+reb<a+b, itis contradictory to
that (—a, b) is the smallest cross solution of the congruence equation (1).

If riu — r2a > 0, three subcases are considered.

Subcase 1.1: mu —rea < u—a. As (riu — r2a, 710 + r2b) and (u—a—-riu+
r2a,b + v — rv — r2b) are two non-negative solutions of the equation (1) and
nu—raa+nrv+rebtu—a—rnutratbtv—riv—rb=u—a+b+4+v <
a+b+u+v < 2u+ 2, we see that either myu — r2a + r1v + 726 < u + v or
u—a—r1u+r2a+b+v—r1v—r2b < u+v holds. This contradicts the hypothesis
that (u,v) is the smallest non-negative solution of the equation (1).

Subcase 1.2: riu—72a > u—a and r1v+r2b < v. As (u—riutr2a, v—riv—r2b)
is a non-negative solution of the equation (1) and u —riu+rea+v—riv—r2b <
u+v, it contradicts the hypothesis that (u, v) is the smallest non-negative solution
of the equation (1).

Subcase 1.3: riu—r2e >uv—aand riv+r2b > v. As (u—a —ru+rea, b+
v — 119 — 72b) is a cross solution of the equation (1) and —(u — @ — ru + r2a) +
b+v—r1v—72b < a+b, it contradicts the hypothesis that (—a, b) is the smallest
cross solution of the congruence equation (1).

From above, we see that ¢ is injective. It is easy to verify that ¢ is a homo-
morphism. Thus ¢ is an isomorphism between Cay(Z?/MZ?, {e1, €2, —e1, —e3})
and Cay(Zy, {s1,82,—81,—s2}). So |Z*/MZ?| = |Z,| = n. By Proposition 2.1
(10], we have |detM| = |Z2/MZ?|. Thus n = |detM| = ub + va.

Case 2: u < v. The equality n = ub + va can be similarly proved. m]

Theorem 1: Given G(n;+ts1,+s2), where n, s; and s, are positive integers
such that 1 < 51 < n/2, 1 < 52 < n/2, 51 # s2 and ged(n, 51, 52)=1. Let (u,v)
be the smallest non-negative solution of the congruence equation (1) and (—a, b)
be the smallest cross solution of the congruence equation (1). Let mi=|(u +
v)/2), ra=|(a +b)/2), rs=|(|lu - a| + v +8)/2), ra=|(u + a + |v - b])/2, and
d, = max{r1,r2,min{rs,r4}}. Then d(n; £s1,+s2) equals 13 — 1 if r3 = r4 and
(u+a)(v—>0)=1 (mod 2); otherwise, it equals d;.

Proof. We consider two cases.

Case 1: v > v. By Lemma 5 and Lemma 6 we know that a < w,a<bb>v
and ub + va=n.

Let lattice points 4, B,C and D be (0,0), (1, v), (v - a,v +b) and (—a, b) re-
spectively(see Fig. 1), and T be region surrounded by the parallelogram ABCD,
excluding the edges BC and CD. As the area of T is ub+ va = n, by Lemma 1,
we see that ¥ includes exactly n lattice points whose labels are 0,1,2,-+-,n — 1.

Since u 2 v,a < u,a < b,b > v and T includes n lattice points, we can
use Lemma 2, 3 and follow the proof of Lemma 4 [7] to prove that the diameter
formula for G(n; £s;, £s3) is true.

Case 2: u < v. The diameter formula can be similarly proved by using Lemma
2, 3,4, 6 and Lemma 5[7]. O

Example 1: computing the diameter of G(38; £2, £5). It is easy to see that
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(4, 6) is the smallest non-negative solution of the congruence equation 2z+5y =0
(mod 38), and (—5,2) is the smallest cross solution of the congruence equation
2z + 5y = 0 (mod 38). Thus, by Theorem 1, we have r1=5,72=3,73=4 and
r4=6. As r3 # r4, we have d(38;2, 5)=max{ri, r2, min{rs, r4}}=5.

Example 2: computing the diameter of G(39; +£1,+17). It is easy to see that
(5, 2) is the smallest non-negative solution of the congruence equation z+17y =0
(mod 39), and (—2,7) is the smallest cross solution of the congruence equation
z+ 17y =0 (mod 39). Thus, by Theorem 1, we have r1=3,72=4,7r3=6 and
rs=6. Asrz=r4 and (u+a)(v—b)=(5+2)*(2-7) =1 (mod 2), we then have
d(39;1,17)=r3 — 1 =5.

4 Applications

Many optimal families of undirected double-loop networks are given in (2, 7,15].
Two new optimal families of undirected double-loop networks will be given in
this section.

In the following, we shall use the following notations:

e =2k + 2k + 1,k > 0;

Rk = {nk—1 + L,me—1 + 2, ,me 1,k 2 15
Let n € R[k] and D,=min{d(n;£1,+£s) | 1 < s < n/2}. Then

D; 2 thim) = [V 122 = k.

If there exists some hn such that D = d(n;%1,+h,) = k, then n and
G(n; %1, £h,) will be called optimal.

If there exists some h, such that D = d(n;%1,+h,) = k + 1, then n and
G(n; £1,%h,) will be called suboptimal.

A set © of natural numbers will be called an optimal (suboptimal) family if
each n € © is optimal (suboptimal).

Lemma 7[2]: Let n € R[k|, then n is optimal in each of the cases:

(1) ged(n, k) =1,

(2) ged(n, k+1) =1,

(3) ged(n,k —1) = 1 and n < 2k* + 1.

and in each case the associated hop hx is easily determined.

If k is odd, then ged(2k? — 2,k) = 1. By Lemma 7 it is easy to see that
2k? — 2, where k = 2e + 3, e € Z*, is optimal. On the other hand, there exists
k such that 2k% — 2 is suboptimal. For example, when k = 14, 2k -2=1390is
suboptimal. One can refer to Appendix B in [15].

By using the algorithm given in [18] and computer search, we find that {2k? -
2| k= 10e +10,e € {0,1,2,--,20}} is an optimal family. Thus we conjecture
that {2k2 — 2 | k = 10e + 10,e € Z*} is an optimal family. For n = 2k* — 2,k =
10e + 10, we have n = (10e + 8) * (de + 2) + (10e + 13) * (16e + 14). Since
ged(10e + 13, 4e + 2) = 1, there exist two integers «, 8 such that o(10e + 13) -
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B(de+2) =1. Let s = a(16e+ 14) + 3(10e +8) (mod n). It is easy to see that
s satisfies 10e + 8 + (10e +13)s =0 (mod n) and (—16e — 14) + (de + 2)s = 0
(mod n). By Theorem 1, we can see that d(n;+1,+s) = k = lb(n).

For n = 2k®—2, k = 10e+18, we can find s’ as above such that d(n; £1, +s') =
k. In the following we will use diameter formulas in section 3 to prove the following
theorem.

Theorem 2: (1) Let © = {2k* — 2 | k = 10e + 10,e € Z*}. Then © is an
optimal family.
(2) Let @ = {2k — 2 | k = 10e + 18,e € Z*}. Then & is an optimal family.

Proof. (1) Let n = 2k®—2, where k = 10e+10. Then n = 200e2+400e+198.
Let s = 100e® + 50¢* — 26¢® — 86e® — 408¢ — 290 (mod n). It suffices to prove
that d(n; %1, &s) = 10e + 10.

Counsider the congruence equation

z+ys=0 (mod n) (*)

Let (u,v) = (10e + 8,10e + 13) and (—a,b) = (—16e — 14,4e + 2). In the
following we will prove that (u,v) is the smallest non-negative solution of the
equation () and (—a, b) is the smallest cross solution of the equation (*).

Since 10e + 8 + (10e + 13)s = 1000e® + 1800e® + 390e* — 1198¢® — 5198¢% —
8194e — 3762 =0 (mod n), (10e+ 8, 10e + 13) is a non-negative solution of the
equation (*).

Since —16e—14+(4e+2)s = 400e5+400e> —4e* —396¢> —1804e2 —~1992e—594 =
0 (mod n), (—16e — 14,4e +2) is a cross solution of the equation (*).

Suppose that (p,q) is a non-negative solution of the equation (*). As ub+
va = n, by Corollary 1, we see that there exist two integers ¢,,¢, such that
(P, @) = t1(u,v) + t2(—a,b). Thus (p,q) = (t1(10e + 8) + t2(—16e — 14), 1 (10e +
13) + t2(de + 2)). As p> 0, we have t; > ¢,.

Ift < -1,asg>0,wehavet; > 1. Thusp+g>p= t1(10e+8) +t2(—16e~
14) > 10e + 8 + 16e + 14 > 10e + 8 + 10e + 13.

Ift2 = 0, then t1 > 1. Thus p+q = £1(10e+8)+¢1(10e+13) > 10e+8+10e+13.

If t2 > 1, then t; > 2. Thus p+q > g = #;(10e + 13) + ta(de + 2) >
2(10e + 13) + 4e + 2 > 10e + 8 + 10e + 13.

From above we conclude that (1) p+¢ > u+v, (2) p+q = u + v if and
only if £ = 1,42 = 0. That is, p+ ¢ = u + v if and only if (p,q) = (u, v). Thus
(u,v) is the smallest non-negative solution of the equation (*). In the following
we prove that (—a,b) is the smallest cross solution of the equation (*). Suppose
that (—p,q) is a cross solution of the equation (). By Corollary 1, we know
that there exist two integers t1,t2 such that (—p,q) = t1(u,v) + t2(—a, b). Thus
(=P, q) = (t1(10e + 8) + t2(—16e — 14), £1(10e + 13) + t2(de + 2)).

Now we prove that ¢ > 0. If 2 = 0, as p > 0,9 > 0, then t; = 0. Thus
(—p,q) = 0, a contradiction. If t2 < 0, as p > 0, we have t; < 0. On the other
hand, since ¢ > 0, we have ¢t; > 0. A contradiction.

If ¢ <0, since ¢ > 0, we have t2 > —2¢;. Thus p+¢g > p= ~t1(10e + 8) +
t2(16e + 14) > 10e + 8 + 2(16¢ + 14) > 16e + 14 + de + 2.

Ift1 > 0, then p+q = —t1(10e+8) +t2(16e + 14) +¢; (10e +13) +t2(de+2) =
20¢2e + 16t2 + 5t > 20tze + 16t2 > 16e + 14 + de + 2.
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From above we conclude that (1) p+¢=a+b, (2) p+q=a-+bif and only
if t = 0,4, = 1. That is, p+ ¢ = a + b if and only if (—p,q) = (—a,b). Thus
(—a, b) is the smallest cross solution of the equation (x).

Thus, by Theorem 1, we have r1=|(10e + 8 + 10e + 13)/2] = 10e + 10,
ro=[(16e+14+4e+2)/2} = 10e+8, r3=|(|10e+8—16e—14|+10e+13+4e+2)/2]| =
10e + 10 and r4=|(10e + 8 + 16e + 14 + [10e + 13 — 4e — 2|)/2| = 16e + 16. Since
r3 < 74, we then have d(n; £1,+s) = 10e -+ 10.

(2) Let n = 2k? — 2, where k = 10e + 18. Thus n = 200¢® + 720e + 646. Let
s = 1005 + 410e* + 478¢> + 84e? — 42e + 30 (mod n).

It suffices to prove that d(n;=+1,+s) = 10e + 18. Consider the congruence
equation

z+ys=0 (modn) (=)

It can be similarly proved that (10e+16, 10e+21) is the smallest non-negative
solution of the equation (*+) and (—18e — 30, 2e+1) is the smallest cross solution
of the equation (¥*).

Thus, by Theorem 1, we have r1=[(10e + 16 + 10e + 21)/2| = 10e + 18,
r2=[(18e+ 30+ 2e+1)/2| = 10e+15, r3=|(|10e+ 16 — 18¢ — 30| + 10e +21 +2e +
1)/2) = 10e+18 and r4=|(10e+ 16+ 18e+30+|10e+21 —2e— 1|)/2] = 18e+33.
As r3 < 14, then we have d(n;+1,+s) =10e+18. O

Acknowledgement

We wish to thank anonymous referees for their help comments that improved
the accuracy and clarity of our presentation.

References

[1] F. Aguilo and M. A. Fiol, An efficient algorithm to find optimal double loop
networks, Discrete Mathematics 138(1995), 15-29.

[2) J. -C. Bermond and D. Tzviell, Minimal diameter double-loop networks:
dense optimal families. Networks 21(1991), 1-9.

[3] J. -C. Bermond, F. Comellas and D. F. Hsu, Distributed loop computer
networks: a survey, Journal of Parallel and Distributed Computing 24(1995),
2-10.

[4] F. T. Boesch and J. F. Wang, Reliable circulant networks with minimum
transmission delay, IEEE Trans. Circuits Syst. CAS-32(1985), 1286-1291.

[5] N. Chalamaiah and B. Ramamurty, Finding shortest paths in distributed
loop networks, Information Processing Letters 67(1998), 157-161.

(6] B. X. Chen and W. J. Xiao, A constant time optimal routing algorithm for
directed double loop networks G(n; s1, 32). In the proceeding of 5th Interna-
tional Conference on Software Engineering, Artificial Intelligence, Network-
ing, and Parallel/Distributed Computing(SNPD 2004), 1-5.

[7] B. X. Chen, W. J. Xiao and B. Parhami, Diameter Formulas for a Class
of Undirected Double-loop Networks, Journal of Interconnection Networks,
6(2005)1: 1-15.

403



(8] D. Z. Dy, D. F. Hsu, Li Qiao and Xu Jun-ming, A combinatorial problem
related to distributed loop networks, Networks 20(1990), 173-180.

(9] P. Esque, F. Aguilo and M. A. Fiol, Double commutative-step digraphs with
minimum diameters, Discrete Mathematics 114(1993), 147-157.

[10] M. A. Fiol, On congruence in Z™ and the dimension of a multidimensional
circulant, Discrete Mathematics 141(1995), 123-134.

[11] F. K. Hwang and Y. H. Xu, Double loop networks with minimum delay,
Discrete Mathematics 66(1987), 109-118.

(12] F. K. Hwang, A complementary survey on double-loop networks, Thereotical
Computer Science 263(2001), 211-229.

[13} K. Mukhopadhyaya and B. P. Sinha, Fault-tolerant routing in distributed
loop networks, IEEE Transactions on Computers 44(1995), 12:1452-1456.

[14] Q. Li, J. M. Xu and Z. L. Zhang, Infinite families of optimal double loop
networks, Science in China, Ser A 23(1993), 979-992.

[15] D. Tzvieli, Minimal diameter double-loop networks I. Large infinite Optimal
families, Networks 21(1991), 387-415.

[16] C. K. Wong and D. Coppersmith, A combinatorial problem related to mul-
timodule memory organizations, J. ACM 21(1974), 392-402.

(17] J. A. L. Yenra, M. A. Fiol, P. Morillo and 1. Alegre, The diameter of
undirected graphs associated to plane tessellations, Ars Combinatoria 20-
B(1985), 151-171.

(18] J. Zerovnik and T. Pisanski, Computing the diameter in multi-loop networks,
Journal of Algorithm 14(1993), 226-243.

404



