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Abstract

A two-colored digraph D is primitive if there exist nonnegative
integers h and k with h + k > 0 such that for each pair (i,7) of
vertices there exists an (h, k)-walk in D from i to j. The exponent of
the primitive two-colored digraph D is the minimum value of h + &
taken over all such k and k. In this paper, we consider the exponents
of families of two-colored digraphs of order n obtained by coloring
the digraph that has the exponent (n — 1)%. We give the tight upper
bound on the exponents, and the characterization of the extremal
two-colored digraph.
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1 Introduction

A digraph D is primitive if there cxists a nonnegative integer { such
that for each pair (4, j) of vertices there exists a walk in D from i to j with
length I. The ezponent of D is defined to be the minimum value of I.

A two-colored digraph is a digraph whose arcs are colored red or blue.
We allow loops and both a red arc and blue arc from i to j for all pairs
(4, 7) of vertices. The two-colored digraph D is strongly connected provided
for each pair (4, 7) of vertices there is a walk in D from i to j.

Given a walk w in D, 7(w) (respectively, b(w)) is the number of red arcs
(respectively, blue arcs), and the composition of w is the vector (r(w), b(w))
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or
r(w)
[ b(w) ] ’
If the composition of w is (h, k), we also say that w is an (h, k)-walk.

A two-colored digraph D is primitive if there exist nonnegative integers
h and k with 2 + & > 0 such that for each pair (7, j) of vertices there exists
an (h,k)-walk in D from ¢ to j. The ezponent of the primitive two-colored
digraph D is defined to be the minimum value of h + k taken over all such
h and k.

Let C = {71,72,...,7} be the set of cycles of D. Set M to be the 2 x {
matrix whose ith column is the composition of ;. We call M the cycle
mairiz of D. The content of M, denoted content(M), is defined to be 0 if
the rank of M is less than 2 and the greatest common divisor (i.e., g.c.d)
of all 2 x 2 minors of M, otherwise.

Lemma 1.1 ({1]) Let D be a two-coloring digraph with cycle matriz M.
Then D is primitive if and only if D is strongly connected and content(M) =
1.

There is a natural correspondence between two-colored digraphs and
nonnegative matrix pairs (see {1]). The concept of the exponent of two-
colored digraph arises in the study of finite Markov chains (see [1, 2]), and
some results have already obtained ([1, 3, 4, 5, 6]). The paper [1] gives the
exponents of families of primitive two-colored digraphs of order n obtained
by coloring the digraph (Wielandt digraph) that has the largest exponent
(n = 1)2 + 1. In this paper, we consider the class of two-colored digraphs
of order n, denoted by D, obtained by coloring the digraph as in Fig.1.

1 n

Fig. 1 The digraph

Clearly, for any D € D,, D has one n-cycle and two (n — 1)-cycles.
Note that the path (n — 1) —= n — 1 — 2 has at least two arcs having the
same color. Without loss of generality, we assume that the path (n —1) —
n — 1 — 2 has at least two red arcs. Thus the two-colored digraphs in D,,
have ten cases as in Table 1.
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Table 1

(n—-1)—n|[n—o1 1—-2 (n—-1)—1 n—2
Case 1 red red red red(blue) | blue(red)
Case 2 red red red red red
Case 3 red red red blue blue
Case 4 red blue red red(blue) | blue(red)
Case 5 red blue red red red
Case 6 red blue red blue blue
Case 7 red(blue) red | blue(red) red red
Case 8 red(blue) red blue(red) red(blue) | blue(red)
Case 9 red(blue) red blue(red) | blue(red) | red(blue)
Case 10 | red(blue) red | blue(red) blue blue

Throughout the remainder of the paper, for any D € D,, we let M
be the cycle matrix of D, 71, v2 and 73 be three cycles of D, and the
composition of 4; be the ith column of M for i =1,2,3.

2 The primitivity of a two-colored digraph in
D,

Let D € D,,. Note that D is strongly connected. We assume that the
path2 — 3 — .. — (n—2) — (n—1) have a red arcs and (n —a — 3) blue
arcs. Clearly, 0 <a<n-3.

For Case 1, the cycle matrix of D is

a+3 a+?2 a+1 (1)
n—a—3 n—-a-3 n—-a-2 |’

M= |
Then content(M) = g.cd{n—a—-3,2n—a—-3,n—1} =1, andso D is

primitive.
For Case 2, the cycle matrix of D is

_ a+3 a+2 a+?2
M_[n—a,—S n—a—3 n—-a—3]' @)

Then content(M) = n—a—3, and so D is primitive if and only if e = n—4.
For Case 3, the cycle matrix of D is

_ a+3 at+1 a+1
M_[n—a—3 n—a-—2 n—a—-—2]' ®)

Then content(M) =2n —a — 3 # 1, and so D is not primitive.
For Case 4, the cycle matrix of D is

_ a+2 a+2 at+l
M_[n—a—2 n—a-3 n—a—2]' (4)
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Then content(M) = g.c.d{—(a+2),n-a—2,n -1} = 1, and s0 D is
primitive.
For Case 5, the cycle matrix of D is

(5)

M= a+2 a+2 a+2
" [n-e-2 n-a¢-3 n-—a-3|"
Then content(M) = —(a + 2) # 1, and so D is not primitive.

For Case 6, the cycle matrix of D is

M—[ a+2 a+1 a+1 ] 6)

| n—-a-2 n—a-2 n-a-2

Then content(M) = n—a—2, and so D is primitive if and onlyifa =n-3.
For Case 7, the cycle matrix of D is

M= a+2 a+2 a+1
" |n-a-2 n-a-3 n-a-2|"

)

Then content(M) = g.cd{n—a—2,—(a+2),—(n—1)} = 1, and so D is
primitive.
For Case 8, the cycle matrix of D is

M=[ a+2 a+1 a+1 } (8)

n—-a—2 n—-a—-2 n—a-2

Then content(M) = n—a—2, and so D is primitive if and onlyifa =n-3.
For Case 9, the cycle matrix of D is

M=[ a+2 a+2 a ] ()

n—-a—2 n—a-3 n—-a-1

Then content(M) = g.c.d{2n —a — 2,—(a + 2),2(n — 1)}, and so D is
primitive if and only if a is odd.
For Case 10, the cycle matrix of D is

M=[ a+2 a+1 a ] (10)

n—a—2 n—-a-2 n—a-1
Then content(M) = g.cd{2n —a—2,n—a - 2,n — 1} =1, and so D is

primitive.
To combine above discussions, we have the following result.

Theorem 2.1 Let D € D,,. Then D is primitive if and only if D is one
of the eight types in Table 2.
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Table 2

(n-1)—>n|n—-1 1—2 (n-1)—>1 n— 2 a

Type 1 red red red red(blue) [ blue(red)

Type 2 red red red red red a=n-—4
Type 3 red blue red red(blue) | blue(red)

Type 4 red blue red blue blue a=n-3
Type 5 | red(blue) red blue(red) red red

Type 6 | red(blue) red | blue(red) | red(blue) | blue(red) | a =n-3
Type 7 | red(blue) red blue(red) | blue(red) [ red(blue) | ais odd
Type 8 | red(blue) red blue(red) blue blue

3 The tight bound on the exponents

In this section, we give the tight upper bound on the exponents of prim-
itive two-colored digraphs in D,, and the characterization of the extremal
two-colored digraph. The main result is Theorem 3.9.

Lemma 3.1 Let D € D, be primitive. If D is Type 1 in Table 2, then
exp(D) € 2n% —4n + 2.

Proof The cycle matrix of D is

M={ a+3 a+2 a+1 ],

n—a—3 n—a—-3 n—a-—2

where 0 <a<n-3.

For any pair (i, j) of vertices of D, we prove that there is a (2na+4n —
a® —da—-5,2n2 — 3na—8n+a?+5a+7)-walk in D. Let p;; be the shortest
path from i to j. Denote r = r(p;;) and b = b(p;;). It is easy to see that
0<b<n-a—2and 0<r+b<n—1 We consider the walk that starts
at vertex i, follows p;; to vertex j and along the way goes (n —1—7 — b)
times around 1, (r + 2b) times around 72, and (n —a —2—b) times around
~3. Such a walk has composition

[2]+(n-1-r-b)[n“+33]+(r+2b)[nf‘_:fs]

- —

a+1 _ 2na+4n—a%?—-4a-5
+(n_a-‘2_b)[n—a—2 ] . [ 2n2—3na—8n+a2+5a+7]'
' Hence exp(D) < 2n? —na—4n+a+2<2n?-4n+2. O

Lemma 3.2 Let D € D, be primitive. If D is Type 2 in Table 2, then
exp(D) < 2n% —4n+1.

429



Proof The cycle matrix of D is

n—1 n-2 n-2
M_[ 1 1 1 ]

Clearly, D has only one blue arc, and the blue arc is in the path 2 — 3 —
o= (n=1).

For any pair (4, §) of vertices of D, we prove that there is a (2n2 - 6n +
4,2n — 3)-walk in D. Let p;; be the shortest walk from 4 to j containing
the blue arc. Denote r = r(p;;) and b = b(p;;). It is easy to see that b = 1
and 0 < r < 2n — 4. We consider the walk that starts at vertex 7, follows
pi; to vertex j and along the way goes (2n — 4 — r) times around 7, and
r times around ;. Such a walk has composition

T n—1 n—-2]_ [ 2n2-6n+4
[1]+(2n—4—r)[ 1 ]-f—r[ 1 }—[ o —3 ]
Hence exp(D) € 2n? —-4n+1. O

Lemma 3.3 Let D € D, be primitive. If D is Type 3 in Table 2, then
exp(D) < n? —n.

Proof The cycle matrix of D is

M= a+2 a+2 a+1
" |n-a-2 n-a-3 n—-a-2 |’

where0 < a <n-3.

For any pair (%, j) of vertices of D, we prove that there is a (na+2n —
a—2,n%?-na—3n+a+2)-walkin D. Let pi; be the shortest path from i to
J. Denote r = r(p;;) and b = b(p;;). It is easy to see that 0 < r+b < n—1.
We consider the walk that starts at vertex i, follows pij to vertex j and
along the way goes (n — 1 —r — b) times around =, b times around ~2, and
7 times around 3. Such a walk has composition

SRR e PR I e Py

_ na+2n—a-—2
T | n?-na—-3n+a+2 |-

Hence exp(D) < n% —n. O

Lemma 3.4 Let D € D, be primitive. If D is Type 4 in Table 2, then
exp(D) = 2n? —3n + 1.
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Proof The cycle matrix of D is

M=[n—1 n—2 n—2]

1 1 1

Clearly, D has only three blue arcs, and they are n — 1, (n — 1) — 1 and
n— 2.

First, we prove that exp(D) < 2n? —3n + 1.

Let (i, j) be any pair of vertices of D, and p;; be the shortest walk from
i to j containing one blue arc. Denote r = r(p;;) and b = b(p;;). It is easy
to see that b =1 and 0 < 7 £ 2n — 3. We consider the walk that starts at
vertex i, follows p;; to vertex j and along the way goes (2n — 3 — r) times
around 71, and r times around «2. Such a walk has composition

r n—1 n-2] [2n2-5n+3
[1]+(2n—3-—r)[ , ]w[ , ]_[ A ]
Hence exp(D) < 2n? — 3n + 1.

Next, we prove that exp(D) > 2n? — 3n+ 1.
Note that the compositions of cycles 2 and <3 are the same. Now we

set, 0
n—1 n-
N=[ o ]

Suppose that (k, k) is a pair of nonnegative integers such that for all pairs
(4, §) of vertices there is an (h, k)-walk from i to j. By consideringi = j = 2,
we see that there exist nonnegative integers u and v with

HEN

Taking i = 1 and j = n, then there is a unique path from ¢ to j, and this
path has composition (n — 1,0). Hence

Nz=["”(:‘1)]

has a nonnegative integer solution. Then
-l |- _Ju]| N1 | n-1
2=N [ k =l | 0 =lov || 1-n |2

So v > n —1. Taking i = n and j = 1, then the path from ¢ to j has
composition either (0,1) or (n — 3,2), so we have that

Nz=[k_’i1] or Nz=[h_k(f;3)]
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has a nonnegative integer solution. Then

SUESHEBREIR
(3 ) e

Sov>mn-—1. Thus

or

n—1

exp(D) > htk = [ 1 1]N[Z]2[n n~~1][n_1

} =2n%—3n+1.

The lemma follows. O

Lemma 3.5 Let D € D, be primitive. If D is Type 5 in Table 2, then
exp(D) < n? —n.

Proof The proof is similar to the proof of Lemma 3.3. We omit it. O

Lemma 3.6 Let D € D, be primitive. If D is Type 6, then exp(D) <
2n? —4n + 1.

Proof The cycle matrix of D is
n—-1 n-2 n-2
M=[ JtonoEn ]

Clearly, D has only two blue arcs, and they are n —» 2 and 1 — 2 (or
(n=1)—nand (n~1) - 1).

For any pair (4, j) of vertices of D, we prove that there is a (2n? -6n+
4,2n — 3)-walk in D. Let p;; be the shortest walk from i to j containing
one blue arc. Denote r = 7(p;;) and b = b(p;;). It is easy to sec that b = 1
and 0 < r < 2n — 4. We consider the walk that starts at vertex 1, follows
pij to vertex j and along the way goes (2n — 4 — r) times around +;, and
7 times around 2. Such a walk has composition

[1]eemmamn[ 77 o[22 ] = [ it ]

Hence exp(D) < 2n?2 —4n +1. O

Lemma 3.7 Let D € D, be primitive. If D is Type 7 in Table 2, then
exp(D) < 2n? - 3n.
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Proof The cycle matrix of D is

_ a+2 a+2 a
M_[n—a—2 n—a—3 n—a-1 ]’

whereais odd, and 1 <a <n-3.

For any pair (4,5) of vertices of D, we prove that there is a (2na +
dn — 3a — 6,2n2 — 2na — Tn + 3a + 6)-walk in D. Let p;; be the shortest
path from i to j. Denote r = r(p;;) and b = b(p;;). It is easy to see that
0 <r+b<n-—1. We consider two cases.

Case 1. r is even. The walk that starts at vertex 4, follows p;; to vertex
j and along the way goes (2n — 3 — r — b) times around 7, (b + 5) times
around 72, and § times around <3, has composition

[2]+(2n—3—-r—b)[ni:32]+(b+g)[ni-:33]

'r[ 2 ]=[ 2na +4n — 3a — 6 ]

+§ n—a-—1 m2—-2na—Tn+3a+6

Case 2. risodd. If r+b=n—1, theni =1 and j = n, and thus
r = a+1is even. It is a contradiction. So r +b < n — 2. Then the
walk that starts at vertex i, follows p;; to vertex j and along the way goes
(n —2 —r —b) times around 71, (n +b— “—'Lg—"—'-) times around s, and
(X2 + 1) times around <3, has composition

[b]+(n—2—r—b)[n_a_2]+(n+b——2——)[n_a_3]
r+a a _ 2na+4n—3a—6
+ 2 +1)[n—a—1]~[2n2—2na—7n+3a+6]'

Hence exp(D) < 2n%2 - 3n. O

Lemma 3.8 Let D € D, be primitive. If D is Type 8 in Table 2, then
exp(D) < 2n? —dn + 2.

Proof The cycle matrix of D is

M—[ a+2 a+1 a ]

n—-a—2 n—-a—-2 n—a-1

where 0 <a <n-3.

For any pair (4,7) of vertices of D, we prove that there is a (2na +
2n — a? — 3a — 2,2n? — 3na — 6n + a? + 4a + 4)-walk in D. Let p;; be
the shortest path from i to j such that 0 < 7(p;;) + b(pi;) < n— 1 and
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0 < b(pij) <n—a— 2. Denote r = r(p;;) and b = b(pi;). We consider the
walk that starts at vertex i, follows p;; to vertex j and along the way goes
(n—1—7—b) times around 71, (7 + 2b) times around 72, and (n—a—2—b)
times around <3. Such a walk has composition

[Z]+(n—1—r—b)[ “+22]+(r+2b)[n“+i2J

n—a-— —-a

a 2na+2n—a2—-3a-2
+(n_a_2—b)[n—a—1 ] - [ 2n2 —3na—6n+a’+4a+4 ]

Hence exp(D) <2n%2 —~na—4n+a+2<2n2—4n+2. O

From Lemmas 3.1-3.8, we obtain the tight upper bound on the expo-
nents of primitive two-colored digraphs in D,,, and the characterization of
the extremal two-colored digraph.

Theorem 3.9 Let D € D, be primitive. Then exp(D) < 2n% — 3n + 1,
and exp(D) = 2n2 — 3n + 1 if and only if D has only three blue arcs which
aren—1,(n—1)—1 andn — 2.
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