Bound on the exponents of a class of two-colored digraphs*

Yubin Gao[†], Yanling Shao Department of Mathematics, North University of China Taiyuan, Shanxi 030051, P.R. China

Abstract

A two-colored digraph D is primitive if there exist nonnegative integers h and k with h+k>0 such that for each pair (i,j) of vertices there exists an (h,k)-walk in D from i to j. The exponent of the primitive two-colored digraph D is the minimum value of h+k taken over all such h and k. In this paper, we consider the exponents of families of two-colored digraphs of order n obtained by coloring the digraph that has the exponent $(n-1)^2$. We give the tight upper bound on the exponents, and the characterization of the extremal two-colored digraph.

AMS classification: 15A18, 05C15

Keywords: Exponent; Primitive digraph; Two-colored digraph

1 Introduction

A digraph D is *primitive* if there exists a nonnegative integer l such that for each pair (i, j) of vertices there exists a walk in D from i to j with length l. The *exponent* of D is defined to be the minimum value of l.

A two-colored digraph is a digraph whose arcs are colored red or blue. We allow loops and both a red arc and blue arc from i to j for all pairs (i,j) of vertices. The two-colored digraph D is strongly connected provided for each pair (i,j) of vertices there is a walk in D from i to j.

Given a walk w in D, r(w) (respectively, b(w)) is the number of red arcs (respectively, blue arcs), and the *composition* of w is the vector (r(w), b(w))

^{*}Research supported by NNSF of China (No. 10571163) and NSF of Shanxi (No. 20041010).

[†]Corresponding author. E-mail addresses: ybgao@nuc.edu.cn (Y.B. Gao), yl-shao@nuc.edu.cn (Y.L. Shao).

$$\left[\begin{array}{c} r(w) \\ b(w) \end{array}\right].$$

If the composition of w is (h, k), we also say that w is an (h, k)-walk.

A two-colored digraph D is *primitive* if there exist nonnegative integers h and k with h+k>0 such that for each pair (i,j) of vertices there exists an (h,k)-walk in D from i to j. The *exponent* of the primitive two-colored digraph D is defined to be the minimum value of h+k taken over all such h and k.

Let $C = \{\gamma_1, \gamma_2, \dots, \gamma_l\}$ be the set of cycles of D. Set M to be the $2 \times l$ matrix whose *i*th column is the composition of γ_i . We call M the *cycle matrix* of D. The *content* of M, denoted content(M), is defined to be 0 if the rank of M is less than 2 and the greatest common divisor (i.e., g.c.d) of all 2×2 minors of M, otherwise.

Lemma 1.1 ([1]) Let D be a two-coloring digraph with cycle matrix M. Then D is primitive if and only if D is strongly connected and content(M) = 1.

There is a natural correspondence between two-colored digraphs and nonnegative matrix pairs (see [1]). The concept of the exponent of two-colored digraph arises in the study of finite Markov chains (see [1, 2]), and some results have already obtained ([1, 3, 4, 5, 6]). The paper [1] gives the exponents of families of primitive two-colored digraphs of order n obtained by coloring the digraph (Wielandt digraph) that has the largest exponent $(n-1)^2 + 1$. In this paper, we consider the class of two-colored digraphs of order n, denoted by \mathcal{D}_n , obtained by coloring the digraph as in Fig.1.

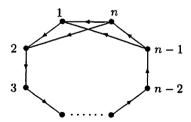


Fig. 1 The digraph

Clearly, for any $D \in \mathcal{D}_n$, D has one n-cycle and two (n-1)-cycles. Note that the path $(n-1) \to n \to 1 \to 2$ has at least two arcs having the same color. Without loss of generality, we assume that the path $(n-1) \to n \to 1 \to 2$ has at least two red arcs. Thus the two-colored digraphs in \mathcal{D}_n have ten cases as in Table 1.

Table 1

	$(n-1) \rightarrow n$	$n \to 1$	$1 \rightarrow 2$	$(n-1) \rightarrow 1$	$n \rightarrow 2$
Case 1	red	red	red	red(blue)	blue(red)
Case 2	red	red	red	red	red
Case 3	red	red	red	blue	blue
Case 4	red	blue	red	red(blue)	blue(red)
Case 5	red	blue	red	red	red
Case 6	red	blue	red	blue	blue
Case 7	red(blue)	red	blue(red)	red	red
Case 8	red(blue)	red	blue(red)	red(blue)	blue(red)
Case 9	red(blue)	red	blue(red)	blue(red)	red(blue)
Case 10	red(blue)	red	blue(red)	blue	blue

Throughout the remainder of the paper, for any $D \in \mathcal{D}_n$, we let M be the cycle matrix of D, γ_1 , γ_2 and γ_3 be three cycles of D, and the composition of γ_i be the *i*th column of M for i = 1, 2, 3.

2 The primitivity of a two-colored digraph in \mathcal{D}_n

Let $D \in \mathcal{D}_n$. Note that D is strongly connected. We assume that the path $2 \to 3 \to \cdots \to (n-2) \to (n-1)$ have a red arcs and (n-a-3) blue arcs. Clearly, $0 \le a \le n-3$.

For Case 1, the cycle matrix of D is

$$M = \begin{bmatrix} a+3 & a+2 & a+1 \\ n-a-3 & n-a-3 & n-a-2 \end{bmatrix}.$$
 (1)

Then content(M) = g.c.d $\{n-a-3,2n-a-3,n-1\}=1$, and so D is primitive.

For Case 2, the cycle matrix of D is

$$M = \begin{bmatrix} a+3 & a+2 & a+2 \\ n-a-3 & n-a-3 & n-a-3 \end{bmatrix}.$$
 (2)

Then content(M) = n - a - 3, and so D is primitive if and only if a = n - 4. For Case 3, the cycle matrix of D is

$$M = \begin{bmatrix} a+3 & a+1 & a+1 \\ n-a-3 & n-a-2 & n-a-2 \end{bmatrix}.$$
 (3)

Then content $(M) = 2n - a - 3 \neq 1$, and so D is not primitive.

For Case 4, the cycle matrix of D is

$$M = \begin{bmatrix} a+2 & a+2 & a+1 \\ n-a-2 & n-a-3 & n-a-2 \end{bmatrix}.$$
 (4)

Then content(M) = g.c.d $\{-(a+2), n-a-2, n-1\} = 1$, and so D is primitive.

For Case 5, the cycle matrix of D is

$$M = \begin{bmatrix} a+2 & a+2 & a+2 \\ n-a-2 & n-a-3 & n-a-3 \end{bmatrix}.$$
 (5)

Then content $(M) = -(a+2) \neq 1$, and so D is not primitive.

For Case 6, the cycle matrix of D is

$$M = \begin{bmatrix} a+2 & a+1 & a+1 \\ n-a-2 & n-a-2 & n-a-2 \end{bmatrix}.$$
 (6)

Then content(M) = n - a - 2, and so D is primitive if and only if a = n - 3. For Case 7, the cycle matrix of D is

$$M = \begin{bmatrix} a+2 & a+2 & a+1 \\ n-a-2 & n-a-3 & n-a-2 \end{bmatrix}.$$
 (7)

Then content(M) = g.c.d $\{n-a-2, -(a+2), -(n-1)\}$ = 1, and so D is primitive.

For Case 8, the cycle matrix of D is

$$M = \begin{bmatrix} a+2 & a+1 & a+1 \\ n-a-2 & n-a-2 & n-a-2 \end{bmatrix}.$$
 (8)

Then content(M) = n - a - 2, and so D is primitive if and only if a = n - 3. For Case 9, the cycle matrix of D is

$$M = \begin{bmatrix} a+2 & a+2 & a \\ n-a-2 & n-a-3 & n-a-1 \end{bmatrix}.$$
 (9)

Then content(M) = g.c.d $\{2n-a-2, -(a+2), 2(n-1)\}$, and so D is primitive if and only if a is odd.

For Case 10, the cycle matrix of D is

$$M = \begin{bmatrix} a+2 & a+1 & a \\ n-a-2 & n-a-2 & n-a-1 \end{bmatrix}.$$
 (10)

Then content(M) = g.c.d $\{2n-a-2, n-a-2, n-1\} = 1$, and so D is primitive.

To combine above discussions, we have the following result.

Theorem 2.1 Let $D \in \mathcal{D}_n$. Then D is primitive if and only if D is one of the eight types in Table 2.

 $1 \rightarrow 2$ $(n-1) \to 1$ $n \rightarrow 2$ $(n-1) \to n$ a $n \rightarrow 1$ red(blue) blue(red) Type 1 red red red red $a=n-\overline{4}$ red Type 2 red red red blue(red) red(blue) Type 3 red blue red blue blue a = n - 3Type 4 red blue red red red Type 5 red(blue) blue(red) red blue(red) a = n - 3red(blue) blue(red) Type 6 red(blue) red a is odd red(blue) blue(red) blue(red) Type 7 red(blue) red blue blue blue(red) Type 8 red(blue) red

Table 2

3 The tight bound on the exponents

In this section, we give the tight upper bound on the exponents of primitive two-colored digraphs in \mathcal{D}_n , and the characterization of the extremal two-colored digraph. The main result is Theorem 3.9.

Lemma 3.1 Let $D \in \mathcal{D}_n$ be primitive. If D is Type 1 in Table 2, then $\exp(D) \leq 2n^2 - 4n + 2$.

Proof The cycle matrix of D is

$$M = \left[\begin{array}{cccc} a+3 & a+2 & a+1 \\ n-a-3 & n-a-3 & n-a-2 \end{array} \right],$$

where $0 \le a \le n-3$.

For any pair (i, j) of vertices of D, we prove that there is a $(2na + 4n - a^2 - 4a - 5, 2n^2 - 3na - 8n + a^2 + 5a + 7)$ -walk in D. Let p_{ij} be the shortest path from i to j. Denote $r = r(p_{ij})$ and $b = b(p_{ij})$. It is easy to see that $0 \le b \le n - a - 2$ and $0 \le r + b \le n - 1$. We consider the walk that starts at vertex i, follows p_{ij} to vertex j and along the way goes (n - 1 - r - b) times around γ_1 , (r + 2b) times around γ_2 , and (n - a - 2 - b) times around γ_3 . Such a walk has composition

$$\begin{bmatrix} r \\ b \end{bmatrix} + (n - 1 - r - b) \begin{bmatrix} a + 3 \\ n - a - 3 \end{bmatrix} + (r + 2b) \begin{bmatrix} a + 2 \\ n - a - 3 \end{bmatrix}$$

$$+ (n - a - 2 - b) \begin{bmatrix} a + 1 \\ n - a - 2 \end{bmatrix} = \begin{bmatrix} 2na + 4n - a^2 - 4a - 5 \\ 2n^2 - 3na - 8n + a^2 + 5a + 7 \end{bmatrix}.$$

Hence $\exp(D) \le 2n^2 - na - 4n + a + 2 \le 2n^2 - 4n + 2$. \Box

Lemma 3.2 Let $D \in \mathcal{D}_n$ be primitive. If D is Type 2 in Table 2, then $\exp(D) \leq 2n^2 - 4n + 1$.

Proof The cycle matrix of D is

$$M = \left[\begin{array}{ccc} n-1 & n-2 & n-2 \\ 1 & 1 & 1 \end{array} \right].$$

Clearly, D has only one blue arc, and the blue arc is in the path $2 \rightarrow 3 \rightarrow \cdots \rightarrow (n-1)$.

For any pair (i,j) of vertices of D, we prove that there is a $(2n^2 - 6n + 4, 2n - 3)$ -walk in D. Let p_{ij} be the shortest walk from i to j containing the blue arc. Denote $r = r(p_{ij})$ and $b = b(p_{ij})$. It is easy to see that b = 1 and $0 \le r \le 2n - 4$. We consider the walk that starts at vertex i, follows p_{ij} to vertex j and along the way goes (2n - 4 - r) times around γ_1 , and r times around γ_2 . Such a walk has composition

$$\left[\begin{array}{c} r \\ 1 \end{array}\right] + (2n-4-r) \left[\begin{array}{c} n-1 \\ 1 \end{array}\right] + r \left[\begin{array}{c} n-2 \\ 1 \end{array}\right] = \left[\begin{array}{c} 2n^2-6n+4 \\ 2n-3 \end{array}\right].$$

Hence $\exp(D) \le 2n^2 - 4n + 1$. \square

Lemma 3.3 Let $D \in \mathcal{D}_n$ be primitive. If D is Type 3 in Table 2, then $\exp(D) \leq n^2 - n$.

Proof The cycle matrix of D is

$$M = \left[\begin{array}{cccc} a+2 & a+2 & a+1 \\ n-a-2 & n-a-3 & n-a-2 \end{array} \right],$$

where $0 \le a \le n-3$.

For any pair (i,j) of vertices of D, we prove that there is a $(na+2n-a-2, n^2-na-3n+a+2)$ -walk in D. Let p_{ij} be the shortest path from i to j. Denote $r=r(p_{ij})$ and $b=b(p_{ij})$. It is easy to see that $0 \le r+b \le n-1$. We consider the walk that starts at vertex i, follows p_{ij} to vertex j and along the way goes (n-1-r-b) times around γ_1 , b times around γ_2 , and r times around γ_3 . Such a walk has composition

$$\begin{bmatrix} r \\ b \end{bmatrix} + (n-1-r-b) \begin{bmatrix} a+2 \\ n-a-2 \end{bmatrix} + b \begin{bmatrix} a+2 \\ n-a-3 \end{bmatrix} + r \begin{bmatrix} a+1 \\ n-a-2 \end{bmatrix}$$
$$= \begin{bmatrix} na+2n-a-2 \\ n^2-na-3n+a+2 \end{bmatrix}.$$

Hence $\exp(D) \le n^2 - n$. \square

Lemma 3.4 Let $D \in \mathcal{D}_n$ be primitive. If D is Type 4 in Table 2, then $\exp(D) = 2n^2 - 3n + 1$.

Proof The cycle matrix of D is

$$M = \left[\begin{array}{ccc} n-1 & n-2 & n-2 \\ 1 & 1 & 1 \end{array} \right].$$

Clearly, D has only three blue arcs, and they are $n \to 1$, $(n-1) \to 1$ and $n \to 2$.

First, we prove that $\exp(D) \leq 2n^2 - 3n + 1$.

Let (i,j) be any pair of vertices of D, and p_{ij} be the shortest walk from i to j containing one blue arc. Denote $r = r(p_{ij})$ and $b = b(p_{ij})$. It is easy to see that b = 1 and $0 \le r \le 2n - 3$. We consider the walk that starts at vertex i, follows p_{ij} to vertex j and along the way goes (2n - 3 - r) times around γ_1 , and r times around γ_2 . Such a walk has composition

$$\left[\begin{array}{c} r \\ 1 \end{array}\right] + (2n - 3 - r) \left[\begin{array}{c} n - 1 \\ 1 \end{array}\right] + r \left[\begin{array}{c} n - 2 \\ 1 \end{array}\right] = \left[\begin{array}{c} 2n^2 - 5n + 3 \\ 2n - 2 \end{array}\right].$$

Hence $\exp(D) \le 2n^2 - 3n + 1$.

Next, we prove that $\exp(D) \ge 2n^2 - 3n + 1$.

Note that the compositions of cycles γ_2 and γ_3 are the same. Now we set

$$N = \left[\begin{array}{cc} n-1 & n-2 \\ 1 & 1 \end{array} \right].$$

Suppose that (h, k) is a pair of nonnegative integers such that for all pairs (i, j) of vertices there is an (h, k)-walk from i to j. By considering i = j = 2, we see that there exist nonnegative integers u and v with

$$\left[\begin{array}{c} h \\ k \end{array}\right] = N \left[\begin{array}{c} u \\ v \end{array}\right].$$

Taking i = 1 and j = n, then there is a unique path from i to j, and this path has composition (n - 1, 0). Hence

$$Nz = \left[\begin{array}{c} h - (n-1) \\ k \end{array} \right]$$

has a nonnegative integer solution. Then

$$z = N^{-1} \left[\begin{array}{c} h - (n-1) \\ k \end{array} \right] = \left[\begin{array}{c} u \\ v \end{array} \right] - N^{-1} \left[\begin{array}{c} n-1 \\ 0 \end{array} \right] = \left[\begin{array}{c} u \\ v \end{array} \right] - \left[\begin{array}{c} n-1 \\ 1-n \end{array} \right] \ge 0.$$

So $u \ge n-1$. Taking i=n and j=1, then the path from i to j has composition either (0,1) or (n-3,2), so we have that

$$Nz = \begin{bmatrix} h \\ k-1 \end{bmatrix}$$
 or $Nz = \begin{bmatrix} h-(n-3) \\ k-2 \end{bmatrix}$

has a nonnegative integer solution. Then

$$z = \left[\begin{array}{c} u \\ v \end{array} \right] - N^{-1} \left[\begin{array}{c} 0 \\ 1 \end{array} \right] = \left[\begin{array}{c} u \\ v \end{array} \right] - \left[\begin{array}{c} 2-n \\ n-1 \end{array} \right] \ge 0,$$

or

$$z = \left[\begin{array}{c} u \\ v \end{array} \right] - N^{-1} \left[\begin{array}{c} n-3 \\ 2 \end{array} \right] = \left[\begin{array}{c} u \\ v \end{array} \right] - \left[\begin{array}{c} -n+1 \\ n+1 \end{array} \right] \geq 0.$$

So $v \ge n - 1$. Thus

$$\exp(D) \geq h + k = \left[\begin{array}{cc} 1 & 1 \end{array}\right] N \left[\begin{array}{c} u \\ v \end{array}\right] \geq \left[\begin{array}{cc} n & n-1 \end{array}\right] \left[\begin{array}{c} n-1 \\ n-1 \end{array}\right] = 2n^2 - 3n + 1.$$

The lemma follows.

Lemma 3.5 Let $D \in \mathcal{D}_n$ be primitive. If D is Type 5 in Table 2, then $\exp(D) \leq n^2 - n$.

Proof The proof is similar to the proof of Lemma 3.3. We omit it. \square

Lemma 3.6 Let $D \in \mathcal{D}_n$ be primitive. If D is Type 6, then $\exp(D) \leq 2n^2 - 4n + 1$.

Proof The cycle matrix of D is

$$M = \left[\begin{array}{ccc} n-1 & n-2 & n-2 \\ 1 & 1 & 1 \end{array} \right].$$

Clearly, D has only two blue arcs, and they are $n \to 2$ and $1 \to 2$ (or $(n-1) \to n$ and $(n-1) \to 1$).

For any pair (i,j) of vertices of D, we prove that there is a $(2n^2-6n+4,2n-3)$ -walk in D. Let p_{ij} be the shortest walk from i to j containing one blue arc. Denote $r=r(p_{ij})$ and $b=b(p_{ij})$. It is easy to see that b=1 and $0 \le r \le 2n-4$. We consider the walk that starts at vertex i, follows p_{ij} to vertex j and along the way goes (2n-4-r) times around γ_1 , and r times around γ_2 . Such a walk has composition

$$\left[\begin{array}{c} r \\ 1 \end{array}\right] + (2n-4-r) \left[\begin{array}{c} n-1 \\ 1 \end{array}\right] + r \left[\begin{array}{c} n-2 \\ 1 \end{array}\right] = \left[\begin{array}{c} 2n^2-6n+4 \\ 2n-3 \end{array}\right].$$

Hence $\exp(D) \leq 2n^2 - 4n + 1$. \square

Lemma 3.7 Let $D \in \mathcal{D}_n$ be primitive. If D is Type 7 in Table 2, then $\exp(D) \leq 2n^2 - 3n$.

Proof The cycle matrix of D is

$$M = \left[\begin{array}{cccc} a+2 & a+2 & a \\ n-a-2 & n-a-3 & n-a-1 \end{array} \right],$$

where a is odd, and $1 \le a \le n-3$.

For any pair (i, j) of vertices of D, we prove that there is a $(2na + 4n - 3a - 6, 2n^2 - 2na - 7n + 3a + 6)$ -walk in D. Let p_{ij} be the shortest path from i to j. Denote $r = r(p_{ij})$ and $b = b(p_{ij})$. It is easy to see that $0 \le r + b \le n - 1$. We consider two cases.

Case 1. r is even. The walk that starts at vertex i, follows p_{ij} to vertex j and along the way goes (2n-3-r-b) times around γ_1 , $(b+\frac{r}{2})$ times around γ_2 , and $\frac{r}{2}$ times around γ_3 , has composition

$$\begin{bmatrix} r \\ b \end{bmatrix} + (2n - 3 - r - b) \begin{bmatrix} a + 2 \\ n - a - 2 \end{bmatrix} + (b + \frac{r}{2}) \begin{bmatrix} a + 2 \\ n - a - 3 \end{bmatrix}$$
$$+ \frac{r}{2} \begin{bmatrix} a \\ n - a - 1 \end{bmatrix} = \begin{bmatrix} 2na + 4n - 3a - 6 \\ 2n^2 - 2na - 7n + 3a + 6 \end{bmatrix}.$$

Case 2. r is odd. If r+b=n-1, then i=1 and j=n, and thus r=a+1 is even. It is a contradiction. So $r+b \le n-2$. Then the walk that starts at vertex i, follows p_{ij} to vertex j and along the way goes (n-2-r-b) times around γ_1 , $(n+b-\frac{a+2-r}{2})$ times around γ_2 , and $(\frac{r+a}{2}+1)$ times around γ_3 , has composition

$$\begin{bmatrix} r \\ b \end{bmatrix} + (n-2-r-b) \begin{bmatrix} a+2 \\ n-a-2 \end{bmatrix} + (n+b-\frac{a+2-r}{2}) \begin{bmatrix} a+2 \\ n-a-3 \end{bmatrix}$$

$$+ (\frac{r+a}{2}+1) \begin{bmatrix} a \\ n-a-1 \end{bmatrix} = \begin{bmatrix} 2na+4n-3a-6 \\ 2n^2-2na-7n+3a+6 \end{bmatrix}.$$

Lemma 3.8 Let $D \in \mathcal{D}_n$ be primitive. If D is Type 8 in Table 2, then $\exp(D) \leq 2n^2 - 4n + 2$.

Proof The cycle matrix of D is

Hence $\exp(D) \leq 2n^2 - 3n$. \square

$$M = \left[\begin{array}{cccc} a+2 & a+1 & a \\ n-a-2 & n-a-2 & n-a-1 \end{array} \right],$$

where $0 \le a \le n-3$.

For any pair (i,j) of vertices of D, we prove that there is a $(2na+2n-a^2-3a-2,2n^2-3na-6n+a^2+4a+4)$ -walk in D. Let p_{ij} be the shortest path from i to j such that $0 \le r(p_{ij}) + b(p_{ij}) \le n-1$ and

 $0 \le b(p_{ij}) \le n-a-2$. Denote $r=r(p_{ij})$ and $b=b(p_{ij})$. We consider the walk that starts at vertex i, follows p_{ij} to vertex j and along the way goes (n-1-r-b) times around γ_1 , (r+2b) times around γ_2 , and (n-a-2-b) times around γ_3 . Such a walk has composition

$$\begin{bmatrix} r \\ b \end{bmatrix} + (n-1-r-b) \begin{bmatrix} a+2 \\ n-a-2 \end{bmatrix} + (r+2b) \begin{bmatrix} a+1 \\ n-a-2 \end{bmatrix}$$
$$+(n-a-2-b) \begin{bmatrix} a \\ n-a-1 \end{bmatrix} = \begin{bmatrix} 2na+2n-a^2-3a-2 \\ 2n^2-3na-6n+a^2+4a+4 \end{bmatrix}.$$

Hence $\exp(D) \le 2n^2 - na - 4n + a + 2 \le 2n^2 - 4n + 2$.

From Lemmas 3.1–3.8, we obtain the tight upper bound on the exponents of primitive two-colored digraphs in \mathcal{D}_n , and the characterization of the extremal two-colored digraph.

Theorem 3.9 Let $D \in \mathcal{D}_n$ be primitive. Then $\exp(D) \leq 2n^2 - 3n + 1$, and $\exp(D) = 2n^2 - 3n + 1$ if and only if D has only three blue arcs which are $n \to 1$, $(n-1) \to 1$ and $n \to 2$.

References

- [1] B.L. Shader, S. Suwilo, Exponents of nonnegative matrix pairs, *Linear Algebra Appl.*, 363(2003), 275–293.
- [2] A. Berman, R. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Classics in Applied Mathematics, Vol. 9, SIAM, Philadelphia, PA, 1994.
- [3] D.D. Olesky, B.L. Shader, P. van den Driessche, Exponents of tuples of nonnegative matrices, *Linear Algebra Appl.*, 356(2002), 123-134.
- [4] L.B. Beasley, S. Kirkland, A note on k-primitive directed graphs, Linear Algebra Appl., 373(2003), 67-74.
- [5] Yubin Gao, Yanling Shao, Exponents of two-colored digraphs with two cycles, *Linear Algebra Appl.*, 407(2005), 263–276.
- [6] Yanling Shao, Yubin Gao, Liang Sun, Exponents of a class of twocolored digraphs, *Linear and Multilinear Algebra*, 53:3(2005), 175– 188.