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Abstract
Let G = (V(G), E(G)) be a nonempty graph ( may have parallel
edges). The line graph L(G) of G is the graph with V(L(G)) = E(G),
and in which two vertices e and e’ are joined by an edge if and only
if they have a common vertex in G. We call the complement of L(G)
as the jump graph. In this note, we give a simple sufficient and

necessary condition for a jump graph to have a perfect matching.
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1 Introduction

We consider finite undirected graphs (may have parallel edges) without
loops, and refer to (2] for undefined terminology and notations. For a graph,
two edges are called parallel edges if they join the same pair of distinct
vertices. A graph is simple if it has no loops and parallel edges. Let G be
a graph with parallel edges, and let v and v be two vertices of G. u(u,v)
denotes the number of edges with their two end vertices as u and v. For
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every pair of adjacent vertices, by deleting from G all but one edge joining
them, we obtain a simple spanning subgraph of G, called the underlying
simple graph of G. We denote it by G. Clearly, G is simple if and only
if G = G. Suppose that V' is a nonempty subset of V(G). The subgraph
G[V'] of G induced by V' is a graph with V(G[V']) = V' and uv € E(G[V'])
if and only if uv € E(G). As usual, £(G),w(G), A(G), and §(G) denote the
number of edges, the number of components, the maximum degree, and the
minimum degree of G, respectively. A subset M of E is called a matching
of G if no two elements of M are adjacent in G. A matching M is called a
perfect matching if every vertex of G is incident with an edge of M in G.
A component of a graph is odd or even according as it has an odd or even
number of vertices. We denote by o(G) the number of odd components of
G. Tutte [6] obtained a necessary and sufficient condition for a graph to
have a perfect matching.

Theorem 1.1 (Tutte’s Theorem). A graph G has a perfect matching if
and only if o(G — S) < |S] for all proper subset S of V(G).

For two graph G and H, Let G = (V(G), E(G)) and H = (V(H), E(G))
be two graphs. The union G U H of G and H is the graph whose vertex
set is V(G)UV (H) and the edge set E(G)UE(H). Particularly, we denote
their union by G + H if they are disjoint, i. e., V(G) N V(H) = ¢. The
disjoint union of k copies of G is written as kG. C, and K, are the cycle
and complete graph with n vertices respectively. K is the graph resulting
from K4 by deleting an edge. K, , is the complete bipartite graph with
two partite sets containing r and s vertices. In particular, if one of » and
s is equal to 1, K, is called a star.

Let G = (V(G), E(G)) be a nonempty graph (i. e. G contains at least
one edge). The line graph L(G) of G is the graph with V(L(G)) = E(G),
and in which two vertices e and e’ are joined by an edge if and only if
they have a common vertex in G. For a graph G, we call the complement
of L(G) as the jump graph of G [3]. Clearly, both L(G) and J(G) are
simple. It is well known that for a connected graph G, L(G) has a perfect
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matching if and only if G has an even number of edges. So, it is natural
to consider when the complement of a line graph, the jump graph, has
a perfect matching. Wu and Wang (8] proved that for a simple graph
G 2 K3 + K,, J(G) has a perfect matching if and only if £(G) is an even
number not less than 2A(G). In this note, we generalize the previous result
to graphs with parallel edges. Before stating our main result, we need an
additional notation. For a graph G, V(G) = maz{e(H) | H is a subgraph
of G with H = K3} if G contains a triangle, otherwise V(G) = 0. The

following is our main theorem.

Theorem 1.2. For a graph G, J(G) has a perfect matching if and only if
£(G) is an even number not less than 2maz{A(G), V(G)}.

2 Connectedness of jump graphs

Since both L(G) and J(G) are defined on the edge set of a graph G,
we assume the graph under consideration is nonempty and has no isolated
vertices. It is easy to see that for a graph G, L(G) is connected if and only
if G is connected.

For a simple graph G, an edge e is called a dominating edge if it is
adjacent to every other edge of G. Observe that if G has a dominating edge
e, then e is an isolated vertex of J(G), and thus J(G) is not connected.
So, if J(G) is connected, then G contains no dominating edges. Chartrand
et. al [3] proved that this necessary condition is almost sufficient for every
simple graph to have its jump graph connected.

Lemma 2.1( {3} ). For a simple graph G with at least 5 vertices, J(G) is

connected if and only if it contains no dominating edges.

It is trivial to check that among the simple graphs with no more than 4
vertices, Cy and K4 are the only two graphs with the properties that they
contain no dominating edge and their jump graphs are not connected. So,
we have
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Corollary 2.2. For a simple graph G with at least 2 edges, J(G) is
not connected if and only if either G contains a dominating edge or G €
{C4, K4} up to isomorphism.

For a simple graph G, let §(G) = maz{d(u) + d(v)| » and v are taken
over any pair of adjacent vertices in G}. Note that for a graph G, ¢(G) >
&(G) — 1, and the equality holds if and only if G contains a dominating
edge. Thus Corollary 2.2 is equivalent to the following.

Corollary 2.3. For a simple graph G of size ¢ > 2, J(G) is not connected
if and only if either ¢ = £(G) — 1 or G € {Cy4, K4} up to isomorphism.

Let G be a graph, and u,v € V(G). We call v and v are twins if they
have the same neighborhood in G. Obviously, if © and v are twins, they
are not adjacent in G. The proof of Lemma 2.4 and Corollary 2.5 below

are trivial, so it is omitted.

Lemma 2.4. Let G be graph, and u and v be twins. Then we have
(). G is connected if and only if G — u is connected.

(#?). G and G — u have the same number of nontrivial components.

Corollary 2.5. For a graph G, the following statements hold:
(). J(G) is connected if and only if J(G) is connected.
(¢). J(G) and J(G) have the same number of nontrivial components.

Theorem 2.6. Let G be a graph (may have parallel edges). Then

(¢). J(G) has at most three nontrivial components,

(i2). J(G) has three nontrivial components if and only if G = K},

(#4¢). J(G) has exactly two nontrivial components if and only if G = K
or Cy,

(iv). J(G) has no nontrivial components if and only if G = K3 or a
star,

(v). J(G) is not connected and has just one nontrivial component if
and only if G has a dominating edge, and G is not isomorphic to a star, or
K3, or K.
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Proof. By Corollary 2.5 (i¢), J(G) and J(G) have the same number of
nontrivial components. So, to prove (%), it suffices to prove the result for
J(G). By contradiction, suppose H;, Hs, H3, and H4 are four nontrivial
components of J(G). We take a vertex e; from H; for each i = 1,2, 3, and
4. By the definition of jump graph, these e;s are pairwise adjacent in G,
namely, they must have a common end vertex. Let e] be a neighbor of
e; in H;. Then e; and at least one element of {e;,e3,e4}, say ez, are not
adjacent to €] in G. So, e,€}e; is a path in J(G), and e; and e, should be
in the same component of J(G). A contradiction.

The sufficiency of (i) is obvious. To prove the necessity, we take two
adjacent vertices e; and e} from H; for each i = 1,2, 3. Let u; and v; be the
two end vertices of e; in G; u} and v] those of e} in G. By the definition
of jump graph, {u;,v;} N {u},v}} = ¢ for i = 1,2,3, and both e; and !
are adjacent to each of e; and e_’,— in G. It follows that {w;,v;,uj,vj} =
{uj,vj,u}, v} for any pair of i and j with ¢ # j. Set § = {uy,v1,ul,v}}.
Then G[S] = K,4. Clearly, if there is an edge of G whose one end vertex
is not in S, then G contains no dominating edge and G 2 C; or K;. By
Corollary 2.2 and Corollary 2.5 (i), J(G) is connected, and so J(G) is
connected. A contradiction. So, V(G) = V(G) = S and since G[S] & K4,
we have G = K.

The sufficiency of (i4¢) is also obvious. Now we show its necessity. Let
H) and H; be the two nontrivial components of J(G). We take two adjacent
vertices e; and e} from H;, i = 1,2. Let u; and v; be the two end vertices
of ¢;, and u} and vj those of €} for i = 1,2 in G. By the similar arguments
as in proof of (i), it follows that {ui,v1,u},vi} = {us,v2,ub,v5}. Let
S = {u1,v,u],v{}. Then G[S] contains C4, and thus combining with the
result of (i¢), we have G[S] = C, or K. Note that if there is an edge of G
whose one end vertex is not in S, then J(G) contains at most one nontrivial
component. This contradicts the assumption. Hence V(G) = V(G) = S,
and moreover, if w(J(G)) = 2, then G = C4, and if w(J(G)) > 3, then
G=Kj.
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The result of (iv) is obvious.

(v) follows from Corollary 2.2 and the results () — (iv).

3 Proof of Theorem 1.2

We first prove the necessity. Let G be a graph whose jump graph has
a perfect matching. Then clearly ¢(G) is even. Let E' be a maximum
independent set of J(G). Then any two elements of E’ are adjacent in G,
and |E'| = maz{A(G), V(G)}. Set S = E(G)\E'. Since J(G) has a perfect
matching, by Tutte’s Theorem, we have o(J(G) — S) = w(J(G) = §) =
|E'| < |S], and £(G) = |E'| +|S| > 2|E'| = 2maz{A(G), V(G)}.

Next we show the sufficiency. Suppose J(G) is not connected. Then
G = K, or Cy by €(G) > 2maz{A(G),V(G)} > &(G) and Corollary 2.3.
Let V(G) = {v1,v2,v3,v4}. First assume that G = Cj, and v; and vi4;
are adjacent in G for ¢ = 1,2,3,4, where the subscript is taken modulo
4. The fact that J(G) is not connected and e(G) > 2maz{A(G), V(G)}
implies €(G) = 2A(G), u(v1,v2) = p(vs,vs) and p(ve,vs) = p(vr,v4). Let
a = p(v,v2), and b = p(vs,vs). Thus J(G) = K, 4 + Kpp, and J(G) has
a perfect matching. If G = Ky, then similarly we have ¢(G) = 2A(G), and
(v, v2) = p(vs,va), p(vi,vs) = p(ve,vs), and p(vi,va) = p(ve,vs). Let
p(vi,v2) = a, u(vy,v3) = b, and p(vi,v4) = c. Then J(G) = Koo + Kpp +
K., and J(G) has a perfect matching.

Now suppose G is a graph with properties that e(G) is an even number
not less than 2maz{A(G), V(G)}, and J(G) has no perfect matching. Then
J(G) is connected and by Tutte’s theorem, there exists a nonempty subset
S C V(J(G)) with o(J(G) — S) > |S| + 2. Therefore, o(J(G) — S) > 3, and
J(G) — S has at most three nontrivial components by (z) of Theorem 2.6.
Clearly, J(G) — S = J(G - S). Let n = |[V(G)] and g = ¢(G). We consider
the following cases.

Case 1. J(G) — S has three nontrivial components.
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By (i¢) of Theorem 2.6, w(J(G - S)) =w(J(G) - S)=3and G- S =
K4 + (n — 4)K;. Together with w(J(G) — S) > o(J(G) — S) > |S| + 2, it
follows that |S| = 1, each component of J(G)—S isodd, and G — S = K, +
K. Let {v1,v2,v3,v4} be the set of vertices in the nontrivial component
of G — S. Then G[{v1,vs,v3,v4}] = K4. Let a = maz{u(v1,v2), p(vs,va)},
b = maz{p(vy,v3), u(v2,v4)}, and ¢ = maz{u(v,v4), p(v2,v3)}. Then

-1 < a+(@-1)+b+(b-1)+c+(c—-1)
= 2(a+b+c)-3
< 2maz{A(G),V(G)} -3,

equivalently, ¢ < 2maz{A(G),V(G)} — 2. Thus it contradicts with fact
that ¢ > 2mez{A(G), V(G)}.

Case 2. J(G) — S has exactly two nontrivial components.

By (#ii) of Theorem 2 , G — S is isomorphic to K; + (n — 4)K; or
C4 + (n — 4)K;. Since w(J(Cy + (n —4)K;)) = 2 and w(J(G) - §) > 3,
we have G — § = K + (n —4)K\. Let {v1,v2,v3,v4} be the set of vertices
in the nontrivial component of G — S. Hence G[{vi,v2,v3,v4}] & K,
where we assume that v, and v, are not adjacent in G — S. Let a =
maz{p(v1,ve), p(vs,v4)}, b = p(v1,v3), ¢ = maz{u(vy, va), p(ve,v3)}. We
consider three subcases below.

Subcase 2.1. The two nontrivial components of J(G) — S are both odd.
Then 24+ b = o(J(G) — S) > |S| +2, and |S| < b. So

g = |E(G)\S|+]S|
< e+(@a-1)+c+(c-1)+b+b
= 2(a+b+c)—2
< 2maz{A(G),V(G)} - 2.

But ¢ > 2maz{A(G), V(G)}, a contradiction.

Subcase 2.2. The two nontrivial components of J(G) — S are both even.
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Then b = o(J(G) — S) > |S| + 2, and thus ¢ = |[E(G) \ S| +|S| <
2a+2c+b+b-2=2(a+b+c)— 2, a contradiction.

Subcase 2.3. One of the two nontrivial components is even, and the
other is odd.

Then b+ 1 = o(J(G) — S) > |S|+ 2, and b > |S| + 1. Therefore
g=|EG)\S|+|S|<2+2c-1+b+b-1=2(e+b+c)-2<
2maz{A(G),V(G)} — 2, a contradiction.

Case 3. There is no nontrivial components in J(G) — S.

Then o(J(G) - S) = w(J(G) - 85) = g—|S|. Since o(J(G)-S) > |S]|+2,
we have ¢ > 2|S|+2. On the other hand, as G — S is isomorphic to K3 or a
star by (iv) of Theorem 2.6, we have ¢—|S| = maz{A(G-S),V(G-S)} £
maz{A(G),V(G)} < 4, 1. e, ¢ < 2|5|, a contradiction.

Case 4. J(G) — S has only one nontrivial component.

By (v) of Theorem 2.6, G — S has a dominating edge, say e, and let u
and v be the two end vertices of e. If there does not exist other dominating
edge that is not parallel to e in G — S, then o(J(G) — S) = pg-s(u,v) or
pg-s(u,v) + 1. Since o(J(G) — S) > |S| + 2, we have

g = |E@G)\S|+]|S]
= dg-s(u) +dg-5(v) — pg-s(u,v) + 9|
< dg-s(u) +dg-s(v) -1
< 2A(G) -1,

a contradiction.

Now suppose there exist a dominating edge e’ that is not parallel to e in
G —S. Then e and €’ have one common vertex, say u, and let w be the other
end vertex of ¢’. Since both e and €' are dominating edges of G — S, and
J(G) — S has exactly one nontrivial component, G — S is isomorphic to the
graph obtained from a star with at least 4 vertices by joining its two vertices
of degrees one. Let a = pg-s(u,v), b = peg-s(u,w), d = pg-s(v,w), and
¢ =dg-s(u) —a—b. Then we have ¢ — |S| =a + b+ c+d. Observe that
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o(J(G)-S) < w(J(G)-S) = a+b+1 and by o(J(G)~S) > |S|+2, it follows
that |S| < a+b—1. So, ¢ < (a+b+c+d)+(a+b—1) = 2(a+b)+c+d—1. On
the other hand, ¢ > 2maz{A(G), V(G)} 2 2maz{A(G - S),V(G - 9)} >
2maz{a+b+ca+b+d} > a+b+c+a+b+d=2a+b)+c+d, a
contradiction.

For all cases, we obtain a contradiction. So for any proper subset S of
V(J(G)), we have o(J(G) — S) < |S|. By Tutte’s Theorem, J(G) has a
perfect matching. The proof is complete.

4 Concluding remarks

In this note, we give a simple necessary and sufficient condition for a
jump graph J(G) (G may not be a simple graph) to have a perfect matching.
Wu and Meng [7] showed that for a simple graph G with £(G) > 11, J(G)
is hamiltonian if and only if (G) > 2A(G), or &(G) = 2A(G) and G
has no edge uv with d(u) = d(v) = A(G). So, the condition for a jump
graph having a hamiltonian cycle is slightly stronger than that for it having
a perfect matching. It is interesting to give a necessary and sufficient
condition for a jump graph J(G) (G is not a simple) to be hamiltonian.

There is a natural superclass of line graphs, called claw-free graphs. A
graph is said to be claw-free if it contains no induced subgraph isomorphic
to K 3. It is clear that line graphs are claw-free by the forbidden subgraph
characterization of line graphs by Beineke [1). Sumner [5], independently
Las Vergnas [4], proved that if G is a connected claw-free graph of even
number of vertices, then G has a perfect matching. Motivated from our
results, one may consider the corresponding problems on complements of
claw-free graphs. However, it is certainly a difficult task to characterize
those with perfect matchings or with hamiltonian cycles, since triangle-free
graphs are a special class of complements of claw-free graphs, and there is
no efficient way to determine if a triangle-free graph has a perfect matching.
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