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Abstract

The Szeged index of a graph G is defined as Sz(G) =
2e-uveEG)Nu(€IG)N(e|G), where Ny(e|G) is the number of
vertices of G lying closer to u than to v and Ny(e|G) is the
number of vertices of G lying closer to v than to u. In this article,
the Szeged index of some hexagonal systems applicable in
nanostructures is computed.
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1. Introduction

A topological index is a real number related to a molecular graph. It must be a
structural invariant, ie., it does not depend on the labelling or the pictorial
representation of a graph. The Wiener index W is the first topological index
proposed in chemistry. It was introduced in 1947 by chemist Harold Wiener for
characterization of alkanes. This index is defined as the sum of all distances
between distinct vertices, see [18].

We now describe some notations where will be kept throughout.
Benzenoid graphs, graph representations of benzenoid hydrocarbons, are
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defined as finite connected plane graphs with no cut-vertices, in which all
interior regions are mutually congruent regular hexagons. Let G be a benzenoid
graph. If all vertices of G lie on its perimeter, then G is said to be
catacondensed; otherwise it is pericondensed. More details on this important
class of molecular graphs can be found in the book of Gutman and Cyvin [7],
and in the references cited therein.

Let G be a molecular graph possessing n vertices and m edges. If e is
an edge of G, connecting the vertices u and v, then we write € = uv. If Gis a
connected graph and x and y are its two vertices, then the distance d(x,y)
between the vertices x and y is equal to the length of the shortest path that
connects them in G.

The Szeged index is a mathematically elegant topological index
defined by Ivan Gutman at the Attila Jozsef University in Szeged, and so it was
called the Szeged index, denoted by Sz. For more information about Szeged
index we encourage the reader to consult [1-3,5,6,8-15,19,21] and references
therein. To define we assume that G is a graph and e = uv is an edge of G. The
number of vertices of G whose distance to the vertex u is smaller than the
distance to the vertex v is denoted by n,(e). Analogously, n,(e) is the number of
vertices of G whose distance to the vertex v is smaller than the distance to the
vertex u. The vertices equidistant to u and v are not counted. Then the Szeged
index of G is defined as Sz(G) = Z.cgny(€)ne).

Shiu, Tong and Lam [16] computed the Wiener index of three classes
of benzenoid graphs named I, J*™ and K™". In [20], the authors computed the
Szeged index of these benzenoid graphs, for some special values of m and n. In
this paper, we continue this work to compute the Szeged index of I"™, J*™ and
K™, for every positive integers m and n. All graphs considered are connected
graphs. Our notation is standard and mainly taken from [4,17].

2. Main Results

In this section we extend the results of [20] on computing the Szeged index of
™, J*™ and K™. We first define these classes of benzenoid graphs. A
hexagonal rectangle is called hexagonal jagged-rectangle, or simply HJIR, if the
number of hexagonal cells in each row is alternative between n and n - 1.
Obviously, there are three types of HIR. If the top and bottom rows are longer
we shall call it HIR of type 1 and denote by I™™. If the top and bottom rows are
shorter we shall call it HIR of type K and denote by K™™. The last one is called
HIJR of type J and denoted by J*™. In the mentioned paper, Shiu, Tong and Lam
computed the Wiener index of an arbitrary HJR, see [16] for details.
It is easy to see that [V(I*™)| = 2m(2n + 1), [V(™™)| = 2m(2n+1) + 2n

-1, [IVK™)| = 2m(2n + 1) + 2(2n - 1) and [V(Q"™)| = 2mn + 2m + 2n. We
also partition the set E(X), X € { "™, J*™, K™, Q™" }, into three subsets F, L;
and L, as follows:

F = The set of all vertical edges,

L = The set of all oblique edges from left to right,
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R = The set of all oblique edges from right to left.

Define SZ](X) = Zewvanu(e)nv(e)’ SZZ(X) = 2:e=uwsan(e)nv(e) and
S23(X) = Zeuvernu(€)ny(e). It is clear that Sz(X) = Sz,(X) + Sz(X) + Sz3(X) and
by symmetry of X, Sz,(X) = Sz;(X). Thus for computing Sz(X), it is enough to
compute Sz,(X) and Szy(X).

We now proceed to compute the Szeged index of the graph of I™™,
Figure 1. To compute Sz,(G), we notice that there are 2m + 1 rows with vertical
edges, see Figure 1. Define &t N — {0,1} by €(i) = 1, if i is odd, and 0
otherwise. We also assume that A and B are sets of all vertical edges lie in the
long and small rows of this graph, respectively. Then nl(e)=(2n+1)i and

n!(e)=(2n+1)(2m—i)a in which niu (e) denotes the number of vertices of G

in the i™ row whose distance to the vertex u is smaller than the distance to the

vertex v. Then the number of vertical edges in the i row is &(i) + n and we
have:
Sz, (I"™) = 327" (&(i) + n)i(2n + 1)(2n + 1)(2m ~ )
16 33_4 3

2
=3 m’n’-=n m+3m +— 3 I 8n%m?® +4nm? + nm.

To compute Sz,(I™™), we consider two different cases as follows:
Case 1) n 2 m. Suppose k; denotes the number of obllque edges from
left to right in the i row. Suppose e = uv is an edge in the i row of I*™ then

2i 1<i<m
k; =42m m<i<n
2n+m-i) n<i<m+n

n! W(e)= (ZS_MMM(K +Ks+,+l))
+(Zs_Mml m}(K +Ks+l)) s
+(Z“““ ' (K, +K,, +1))

s=Max{i,n}
and ni,,(e) =2m(2n+1)- n‘u(e). Therefore,
2m? -2i2 —j+4nm I<i<m
ni,(e)= 4nm - 4im +2m? +m m<i<n
4mn+2m?+2n? +n+m+4im-4in+2i =i n<i<m+n
This implies that
2i2 +i I1€i<m
niv(e)= m + 4im - 2m? m<i<n ,

m-2m?-2n* -n+4im-4in+2i’ -i n<i<m+n

and so
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m+n~l

15Sz,(I*) =15 """ kin), (e)n, (e)
=80m’n® +12m°® - 40m*n +120m°n? - 25m* + 70m°n .

—-20m® + 40m®n +25m> + 8m.
Therefore,

15Sz(I™) =240m’n’ +24m’ —80m"n + 360m’n® — 50m* +
200m’n — 20mn’ ~30m’ +80m’n + 50m?* +15mn + 21m.
Case 2) m 2 n. In this case the number of oblique edges from left to

right in the i row of I*™ and ni, (e) are computed as
2i 1<i<m
k; =<2n m<i<n ,
2n+m-i) n<i<m+n
0,(e) =( Zaa K, +K,, +D)
+( Zmaim (K, + K, +2)).
+( Tt m (K, + K +1))

Using above calculations and some simple equations about the sum of
successive integers and successive squares, one can see that

4nm+2m-2i% —i I€i<m
n‘;,(e)---<2n2 +4nm—4in+n+2m-2i m<i<n ,
{4mn+2m2 +2n2 +n+m-4im—-4in+2i2 -i n<ism+n
) Hence
2i% +i 1<i<m
n‘v(e)=<-2n2+4in—n+2i m<i<n

-2m? -2n2 —n+4im+4in+m-2i> +i n<i<m+n

for m > n, 15Sz(I™) = 15Sz,(I™) + 30Sz,(I*™) = 240m’n’® + 15mn + 280m’n’
+10m’® — 40mn? + 50n® + 40mn*® — 16n° + 100m°n + 80mn® — 50n* + 5m + 16n.
Thus we proved the following theorem:

Theorem 1. The Szeged index of I"™ is computed as follows:
240m°n® +24m* — 80m*n +360m’*n? - 50m* +21m m<n

4+200m>3n — 20mn® - 30m® +80m°n +50m? +15mn
S2( ) =—x

240m>n® + 15mn + 280m>n? +10m>3 - 40mn? +50n®+ n=<m
40mn* - 16n° +100m®n +80mn> - 50n* + 5m +16n

In particular case that m = n, Sz(I*") = (1/15)(240n° + 304n° + 130n* + 500’
65n + 21n).
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We now compute the Szeged index of J™7, Flgure 2. To do this, we
notice that according to vertical edges, there are 2m rows in which 1%, 3“‘
(2m-1)" rows of the graph have exactly n+1 vertical edges and other rows have
n vertical edges. On the other hand, if e = uv lie in the i row of J™™ then

n.(e)=(2n +1)i and since jma is bipartite
nl(e)=2m@2n+1)+(@2n~-1)-ni(e) =(m-i}2n+1)+2n-1. Thus
38z, (") = 32 (e@)+n)i2n+D[2n +D2m -i)+2n- l]
= 16m’n’ + 24m’n® + 24m’n’® +12m’n + 12m’n
+8mn’ +2m’ + m -3m* - 6nm?.

To compute Sz,(J™™), we consider again two separate cases that n > m
ornzm.

Case 1) n. 2 m. Suppose T; denotes the number of edges from
left to right in the i® row of J™™. Then

2i 1€i<m
T, ={2m+1 m<ign ,
2(n+m-i)+1 n<i<m+n
ni(e) =(Zn(T, + T, +1)

+( s=m+l(Ts+ -1)) »

+H{( U (L +T,, +1))
and since J™™ is bipartite, n’,(e) = 2m(2n +1)+(2n—1)-n (¢). Using similar
calculations as above,

. 2i2 +i 1<i<m
n{,(e)=<—2m2—m+4im+2i—l m<i<n ,
L-Zm2 —2n2+4im+4in—m—n+3i-2i2—l n<i<m+n
4mn +2m +2n ~1-i-2i2 1<i<m
nl (e)=12m? +4mn + 3m - 4im + 2n - 2i m<i<n
2m2 +4mn+?.n2 —4im+3m+3n—4in—3i+2i2 n<i<m+n

Therefore,
158z,(J*™) = 80m’n® +12m’ —40m*n +120m*n? ~10m* + 20m*n + 4m?n® + 5n +
60mn’ - 45m’ + 40m*n —30mn* +10n° —35n? + 20mn —15n% - 12m,
and so 158z(J™™) = 15Sz,(J™™) + 30Sz,(J*™) = 240m’n’® + 360m>*n’ + 360m’n’ +
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180m*n®> - 60mn®> — 30n* + 24m’+ 80m‘n - 20m* +100m’n + 160mn’®

—80m® + 50m*n + 20n® —85m? + 40mn —19m + 10n.

Case 2) m 2 n. In this case, we have
2i 1€i<n

T, =12n n<is<m s
2n+m-i)+1 m<i<m+n
ni(e) =(ZL (T, +T, +1)
+(Z:'=n+l(T‘s+Ts-l+2))s
+(23§.§':|'(1; +Ts-l+l))
n!(e) =2m(2n +1)+(2n-1)-n} (e),
(232 +i 1<i<n
n.(e)=4{-2n’ —n+4in+2i n<i<m ,
L—Zm’—2n2+4im+4in—m-n+3i—2i2—1 m<i<m+n
([4mn +2m +2n-1-i-2i2 1<i<n
n’(e)=1{2n’ +4mn +3n - 4in + 2m —1-2i n<i<m ,
LZmz+4mn+2nz-4im+3m+3n—4in—3i+2i2 m<i<m+n

and so 15Sz(J™™) = 15Sz,(J™™) + 30Sz,(J™™) = 240m’n’ + 360m’n’ +
60mn? — 60n* - 90m’n + 60n° — 15m? — 90mn + 30n’ + 280m’n’ +
40mn* —16n° + 100m’n + 320mn°® + 30m’ — 50mn’* + 5m — 14n.

We now ready to state our second result.

Theorem 2. The Szeged index of ™ is computed as follows:

(240m°n*+ 360m°n? + 360m’n® + 180m?n> —-60mn> m<n
- 30n%+24m° + 80m*n — 20m* +100m*n +160mn’

-80m’ + 50m?n + 20n* —85m?> + 40mn —19m +10n

Sz(J™") =.l_lg. ;
240m’n’ + 360m’n* + 60m’n® —60n* - 90m’n + n<m
60n* —15m? — 0mn + 30n* +280m°n’ + 40mn* —16n°
(+100m’n + 320mn’ + 30m’ — 50mn® + 5m - 14n

In the case of m = n, Sz(J™") = (1/15)(240n°® + 664n° + 360n* — 70n* —

75n% - 9n).
We now compute the Szeged index of the graph K™, Figure 3.
By a similar calculations as those of Theorems 1 and 2, one can see that
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3Sz(K™) = 16m’n’ + 24m°n + 36m’n® + 12m’n + 24m’n’ + 20mn® +

2m* — 9m’n — 6m* - 9mn + 4m, and

[ 80m*n*+12m’°n - 40m*n + 120m°n>+240m*n*+ n>m

5m* ~30m*n+120m*n*+240mn’ + 70n — 70m*+

10m’n —120mn® +80n* —140m? + 70mn —120n*

S2,(komy= L. |~107m =30
15

80m’n® - 8n’® + 20mn*+240m’n*+80m’n? -35n* n<m

+350mn’+20m’n +150n* —190mn?® — 60m?n —

130n” — 60mn +23n

Therefore we can state the following theorem:

Theorem 3. The Szeged index of K™™ is computed as follows:

(240m°n® +280m*n®+720m’n’ +40mn* —16n°+100m’n m2n
+120m*n?+920mn® - 70n*+10m® —180m>*n — 440mn*

+360n* - 30m? —165mn - 960n>+20m+61n

SZ(K™™) = % <
240m°n® +24m’ - 80m*n+360m3n®+720m*n*+10m* m<n
+360m*n2+700mn* —130m* — 40m*n — 300mn2+

220n° ~310m?+95mn - 300n” - 194m+155n — 60

In particular, Sz(K™") = (1/15)(240n® + 1024n’ + 1070n* — 250n° — 515n°
+ 81n).

Finally, we compute the Szeged index of the graph Q™", Figure
4. Using a similar argument as above, one can see that 35z,(Q™™) = m +
3mn + 6m’n + 12m*n? + 6mn? + 4mn® + 2m’n’® + 6m’n? — 6m’n + 6m?n’
+2m’® and

4m®n® +12m°n® +120°m? + 12nm* + 24m’n? + m2n
14mn® - n* + 4m® +12m?n +2n* +n’> —4m-2n
6Sz,(Q™") =
4m*n® +12m’°n? +12n°m® - m* + 14nm® + 24m’n? m<n
+12mn® + 2m® +18m?n + 12mn® + 4n® + m* - 2m - 4n
We are now ready to state our final theorem as follows:

Theorem 4. The Szeged index of Q™" is computed as follows:
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12m’n® + 36m*n? + 36n°m? + 36nm’ + 72m*n? + 36mn* -2n* m=2n
+12m® + 36m’n + 48mn? + 4n° + 6m + 2n* —6m—4n

S2(Q*")=

|-

12m*n® + 36m*n? + 36n°m? - 2m* + 40nm’® + 72m?n? + 32mn®* m<n

+8m’ + 48m’n + 36mn?® + 8n* + 2m* + 6mn - 2m -8n
In particular, Sz(Q™") = (1/3)(6n® + 36n° + 71n* + 50n® + 4n” - 5n).

In the case that m = (n + 1)/2, we can deduce some of the results
in [19] by Theorems 1-4.
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Figure 1. The Graphs of I"". Figure 2. The Graphs of J™".
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Figure 3. The Graphs of K™, Figure 4. The Graphs of Q.
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