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Abstract

The k-restricted total domination number of a graph G is the
smallest integer ¢, such that given any subset U of k vertices of
G, there exists a total dominating set of G of cardinality at most
tx containing U. Hence, the k-restricted total domination number
of a graph G measures how many vertices are necessary to totally
dominate a graph if an arbitrary set of k vertices are specified to be
in the set. When k = 0, the k-restricted total domination number
is the total domination number. For 1 < k& < n, we show that
t < 4(n + k)/7 for all connected graphs of order n and minimum
degree at least two and we characterize the graphs achieving equality.
These results extend earlier results of the author (J. Graph Theory 35
(2000), 21-45). Using these results we show that if G is a connected
graph of order n with the sum of the degrees of any two adjacent
vertices at least four, then v7:(G) < 4n/7 unless G € {Cs,Cs, Cs,
Cio}.
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1 Introduction

In this paper we continue the study of restricted dominating sets started by
Sanchis [10]: the restricted version of a parameter considers the case when
certain vertices are specified to be in the set. We establish a sharp bound
for the case of total domination.

Total domination in graphs was introduced by Cockayne, Dawes, and
Hedetniemi [4] and is now well studied in graph theory (see, for example,
(1] and [9]). A total dominating set (TDS) of a graph G with no isolated
vertex is a set S of vertices of G' such that every vertex is adjacent to a
vertex in S (other than itself). The total domination number of G, denoted
by 1:(G), is the minimum cardinality of a TDS. A TDS of G of cardinality
~:(G) is called a v;(G)-set.

In this paper we study restricted total domination in graphs where we
restrict the total dominating sets to contain any given subset of vertices.
Let U be a subset of vertices of a graph G. The restricted total domina-
tion number r(G,U,v;:) of U is the minimum cardinality of a TDS of G
containing U. A smallest possible TDS of G containing all the vertices
in U, we call a v(G,U)-set. The k-restricted total domination number of
G is the smallest integer 71 (G,7:) such that (G,U,v:) < (G, ;) for all
subsets U of G of cardinality k. Note that when k& = 0, the k-restricted
total domination number is the total domination number.

The concept of restricted domination in graphs, where we restrict the
dominating sets to contain any given subset of vertices, was introduced by
Sanchis in [10] and studied further in (7, 11]. Restricted total domination
in graphs was introduced and studied in [8]. For more on domination, see
the book {5].

For notation and graph theory terminology we in general follow [3].
Specifically, let G = (V, E) be a graph with vertex set V of order n and
edge set E of size g, and let v be a vertex in V. The open neighbor-
hood of v is N(v) = {u € V|uv € E} and the closed neighborhood of v
is N[v] = {v} U N(v). For a set S of vertices, the open neighborhood of
S is defined by N(S) = UyesN(v), and the closed neighborhood of S by
N[S] = N(S)US. For sets S,T C V, the set S totally dominates T if
T C N(S). In particular, if T' = V, then S is a TDS of G. The subgraph of
G induced by the vertices in S is denoted by G[S]. The minimum degree
among the vertices of G is denoted by 6(G). The distance d(v, S) of a ver-
tex v from a set S of vertices is the minimum distance from v to a vertex
of S. The girth of G is the length of a shortest cycle in G.
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A cycle on n vertices is denoted by Cy, and a path on n vertices by P,.
Form > 3 and n > 1, we denote by Ly, , the graph of order m +n obtained
by joining with an edge a vertex in Cy, to an end-vertex of P,. The graph
Lumn is called a key. For integers m,n > 3, we define a dumb-bell Dy(m,n)
to be the graph of order m + n obtained from the cycles C;, and C, by
joining a vertex of Cp, to a vertex of Cy,, and we define a daisy D(m,n) to
be the graph of order m + n — 1 obtained from the cycles Cp,, and C,, by
identifying a set of two vertices, one from each cycle, into one vertex. In
this paper, we define

_4n+k)

F(n,k) = — and H(n,k) =

We let £ =, y mean z = y (mod ).

n+k+1
—

2 Main Results

A bound on the total domination number of a connected graph with mini-
mum degree at least two is established in [6).

Theorem 1 ([6]) If G is a connected graph of order n with §(G) > 2 and
G ¢ {C3,Cs, Cs, Cro}, then 1:(G) < 4n/T.

An upper bound on the restricted total domination number of a con-
nected graph with minimum degree at least two in terms of its size is
established in [8].

Theorem 2 ([8]) For 1 < k < n, if G is a connected graph of order n and
size ¢ with 6(G) > 2, then

g+k+1

(G, 1) < 5

In this paper we have three immediate aims: First to extend the bound
for the total domination number obtained in Theorem 1 to the restricted
total domination number. Secondly to improve on the bound in Theorem 2
for dense graphs (or rather for graphs that are not very sparse). Thirdly
to establish a sharp upper bound on the total domination number of a
connected graph with the sum of the degrees of any two of its adjacent
vertices at least four, in terms of its order.
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To achieve our aims, we will need the following terminology. For £ > 1
an integer, we will refer to a graph G as a %-k-minimal graph if G is
edge-minimal with respect to satisfying the following three conditions:

() 6(G) 2 2,
(ii) G is connected, and
(iii) 7 (G, v) > 4(n + k)/7,

where n is the order of G.

Next we define a family of %-k-minimal graphs. For this purpose, we
define a unit to be a graph that is isomorphic to a cycle Cg or to a key
Lg,1. There are two types of units and we call a unit type (a) or type (b)
according to whether it is a cycle or a key, respectively.

In each unit, we define a link vertex (vertices) of the unit as follows. In
a type (a) unit, we select two vertices at distance two apart in the unit and
we call these two vertices the link vertices of the unit. In a type (b) unit
we call the vertex of degree one the link vertex of the unit. In a type (a)
unit, we call the vertex adjacent to the two link vertices the pivot vertex
of the unit.

Figure 1 illustrated the two types of units. The link vertices in the
type (a) unit in Figure 1 are labelled v and v with the pivot vertex indicated
by the large darkened vertex, while the link vertex in the type (b) unit is
labelled v.

v

u
(i) Type (a) unit (ii) Type (b) unit
Figure 1: The two types of units.

For nonnegative integers a and b with a > 1, let G, denote the family of
all connected graphs G that are obtained from the disjoint union of a units
of type (a) and b units of type (b) (called the units of G) by addinga+b-1
edges in such a way that every added edge joins two link vertices and is a
bridge of G (which we call a link edge of G). Let ¢ = {G | G € G, for
some integer a > 1}. A graph in the family G with a = 2 and b = 2 is shown
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in Figure 2 (the pivot vertices are indicated in the figure by the two large
darkened vertices, while the set of link-vertices is given by {u,v,w, z,y, 2}).

u w T z

Figure 2: A graph in the family G.

The following result, a proof of which is presented in Section 5, establishes
properties about graphs in the family G.

Theorem 3 Let G € G have order n. For 1 < k < n, let U be a subset
of k vertices of G. Then, r(G,U,v.) < F(n,k) with equality if and only if
there is o selection of units and link vertices of G so that the resulting set of
pivot vertices is precisely the set U. Furthermore, if r(G,U,v) = F(n,k),
then for any vertez v of G there is a v:(G,U)-set containing v.

The following result, a proof of which is presented in Section 6, charac-
terizes %-k—minimal graphs.

Theorem 4 For k > 1, a graph G is a %-k-mim‘mal graph if and only if
G € G.

Since the restricted total domination number of a graph cannot decrease
if edges are removed, we can use Theorems 3 and 4 to prove our main
result which establishes an upper bound on the restricted total domination
number of a connected graph with minimum degree at least two in terms
of its order. For integers k > 1, let G; denote the family of all graphs that
can be obtained from a graph G € Gi by adding any number of new edges,
including the possibility of none, joining link vertices of G. We shall prove
(see Section 7):

Theorem 5 For 1 < k < n, if G is a connected graph of order n with
8(G) 2 2, then 1(G, ) < F(n, k) with equality if and only if G € Gf.

Remark 1. Since the vertex set of a (nontrivial) connected graph G of
order n is a TDS of G, the restricted total domination number of G is
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at most n, i.e., 7¢(G,v) < n. Hence the result in Theorem 5 is only
meaningful if £ < 3n/4.

Remark 2. By Theorem 1, the upper bound of Theorem 5 does not neces-
sarily hold if G is a disconnected graph, unless we insist that no component
is a cycle of length 3, 5, 6 or 10 or that the subset U of k vertices of G
contains at least one vertex from each component.

Remark 3. The result for the restricted total domination number ob-
tained in Theorem 5 extends the result for the total domination number
obtained in Theorem 1. Furthermore, the bound in Theorem 5 improves on
the bound in Theorem 2 for dense graphs, namely those connected graphs
of size ¢ and order n satisfying ¢ > (8n + &k — 7)/7.

Using Theorems 1 and 5, we can readily achieve our third aim. (For a
proof of Theorem 6 see Section 8.)

Theorem 6 IfG is a connected graph of order n such that degu+degv > 4
for every two adjacent vertices u and v of G, then v(G) < 4n/7 unless
G € {031 CS; CG; ClO}'

3 Total Domination in Graphs

The total domination number of a cycle C, or a path P, on n > 3 vertices
is easy to compute.

Theorem 7 [6] For n > 3, ye(Pn) = 7:(Cn) = |n/2] + [n/4] - [n/4].
Furthermore, if n =4 2 or if n =4 3, then there is a v:(Py,)-set that contains
one of its end-vertices. If n =4 2, then there is a v;(Cp)-set that contains
any two specified vertices of the cycle.

The total domination number of a key L, ,, of order (and size) m+n was
determined in [6]. As a consequence of this result, we have the following
upper bound on v;(Lny,»).

Theorem 8 ([6]) For m > 3 and n > 1, v(Lm,n) < (m +n + 2)/2 with
equality if and only if m =4 2 and n =4 0.

The decision problem to determine the total domination number of a
graph is known to be NP-complete. Hence it is of interest to determine
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upper bounds on the total domination number of a graph. Cockayne et
al. [4] obtained the following upper bound on the total domination number
of a connected graph in terms of the order of the graph.

Theorem 9 ([4]) If G is a connected graph of order n > 3, then v(G) <
2n/3.

A large family of graphs attaining the bound in Theorem 9 can be es-
tablished using the following transformation of a graph. The 2-corona of
a graph H is the graph of order 3|V (H)| obtained from H by attaching a
path of length 2 to each vertex of H so that the resulting paths are vertex
disjoint. The 2-corona of a connected graph has total domination number
two-thirds its order. Brigham, Carrington, and Vitray [2] obtained the fol-
lowing characterization of connected graphs of order at least 3 with total
domination number exactly two-thirds their order.

Theorem 10 ([2]) Let G be a connected graph of order n > 3. Then
1(G) = 2n/3 if and only if G is C3, Cg or the 2-corona of some connected
graph.

If we restrict the minimum degree to be at least two, then the upper
bound in Theorem 9 can be improved. We will refer to a graph G as
an %-minimal graph if G is edge-minimal with respect to satisfying the
following three conditions: (i) 8(G) > 2, (ii) G is connected, and (iii)
Y (G) > 4n/7, where n is the order of G.

Let H be the family of graphs that can be obtained from a tree T of
order at least 2 by adding for each vertex v of T', a 6-cycle and joining v to
one vertex of this cycle. We refer to the tree T as the underlying tree of the
resulting graph. It is shown in [6] that # is a family of -minimal graphs.
A graph in the family # with underlying tree T & P, is shown in Figure 3.

SN

Figure 3: A graph in the family H of %-minimal graphs with underlying
tree Fy.
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Let H; be the graph obtained from a 6-cycle by adding a new vertex and
joining this vertex to two vertices at distance 2 apart on the cycle. The
graph H; is shown in Figure 4.

HI:

Figure 4: A graph H;.

Observation 11 IfG € HU{H,}, then G is a connected graph, 6(G) = 2,
7%(G) = 4n/7, and for any vertez v of G, there is a v,(G)-set containing v.

The following result characterizes $-minimal graphs.

Theorem 12 ([6]) A graph G is a é}-'mim’mal graph if and only if G €
{C3a Cs,Cs, C7,Ch0, Ci4, Hl} UH.

Theorem 1 is an immediate consequence of Theorem 12.

4 Known Results on Restricted Total Domi-
nation

For n/2 < k < n, it is shown in (8] that if G is a connected graph of
order n > 2, then r+(G,¥:) < n and the graphs attaining this bound are
characterized. For 1 < k < n/2, we have the following result which extends
the bounds for the total domination number obtained in Theorem 9 and
Theorem 10 to the restricted total domination number.

Theorem 13 ([8]) For 1 < k <n/2, if G = (V,E) is a connected graph of
order n > 3, then

(G, %) <

2(n+ k)
3

with equality if and only if G is obtained from a connected graph F of
order k + ¢, where £ > 1, by attaching a path of length 1 to k vertices of F
and by attaching a path of length 2 to each of the remaining ¢ vertices of F'
so that the resulting paths are vertex disjoint.
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In order to extend the bound for the total domination number obtained
in Theorem 1 to the restricted total domination number, we need to deter-
mine upper bounds for the restricted total domination numbers of simple
structures such as cycles, paths and keys. For this purpose, suppose U is a
subset of vertices of a cycle C. We say that two vertices z and y in U are
consecutive on C if there is an z—y path on C that contains no vertices
of U other than z and y.

Theorem 14 ([8]) For 1 < k < n, let U be a subset of k vertices of a cycle
Cn. Then,
T(Cna U’ 7!) S H(na k)

with equality if and only if

(i k=1andn=42, or

(ii) £ > 3 is odd and every two consecutive vertices x and y of U on
the cycle have € vertices between them (not including = and y) where
4 =4 1.

Let U be a subset of vertices of a path P. We say that two vertices z
and y in U are consecutive on P if the z—y path contains no vertices of U
other than z and y. The following two results establish upper bounds on
the restricted total domination number of a path.

Theorem 15 ([8]) For 1 < k < n, let U be a subset of k vertices of a u—
path P,. Then,
r(Pn, U, ) S H(n+1,k)

with strict inequality if d(u,U) =4 1,2 or d(v,U) =4 1,2.

Corollary 16 ([8]) For 1 < k < n, let U be a subset of k vertices of a u—v
path P,. If v ¢ U and r(Pn,U, 1) = H(n + 1,k), then r(P, — v,U,7) <
H(n-1,k). IfveU and r(P,,U,v) = H(n + 1,k), then there ezists a
set S' containing U such that |S’| < H(n — 1,k) and every vertez of P,
different from v is adjacent to some vertez of S'.

The following result establishes an upper bound on the restricted total
domination number of a key.
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Theorem 17 ([8]) For 1 < k < m+n, let U be a set of k vertices of L n.
Let v denote the end-vertex of Ly, n. Then,

(L, Uy 1) S Hm +n+ 1,k).

Furthermore, if r(Lym 5, U, 1) = H(m +n+1,k), then r(Limn —v,U, ) <
H(m 4+ n — 1,k) or there ezists a set S* containing U U {v} such that
|S*| < H(m+n—1,k) and every vertex of L, » different from v is adjacent
to some vertex of S*.

5 The family G

Note that it is possible for a graph in the family G to have a link vertex
that is incident with no link edge. For example, if G € G is the graph of
Figure 2, then in the graph (G — {uv,yz})U {uw, 2z} € G (as before, a = 2
and b = 2), each unit of type (a) has a link vertex incident with no link
edge.

If G € G has k units of type (a) and b units of type (b), then G has order
n = 6k + 7b and minimum degree at least two. Furthermore, if U is the set
of k pivot vertices of G, then r(G,U,v;) =4k +4b=4(n + k)/7 = F(n,k)
and for any vertex v of G, there is a (G, U)-set containing v. In particular,
G is a #-k-minimal graph.

As a consequence of Theorem 14, one can readily establish the following
observation about the restricted total domination number of a 6-cycle.

Observation 18 Let G = Cg¢. For 1 < k < 6, rp(G,m) < F(6,k) with
equality if and only if k = 1. Furthermore, if U is a subset of k vertices
of G, and v is any vertex of G, then there exists a TDS S of G containing
U U {v} such that |S| = F(6,k) if k =1 and |S| < F(6,k) if2< k<6
unless k = 2 and U U {v} consists of an independent set of three vertices,
in which case |S| = 5.

The following result is straightforward to verify. We omit the proof.

Observation 19 Let G = Lg). Then, 7:.(G) = 4 = F(7,0) and for
any vertex v of G, there is a v(G)-set that contains v. For 1 < k <7,
Te(G, ) < F(7,k).

We are now in a position to prove Theorem 3.
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5.1 Proof of Theorem 3

As observed earlier, if G € G has k units of type (a) and if U is the set of
k pivot vertices of G, then r(G,U,y:) = F(n, k) and for any vertex v of G,
there is a v, (G, U)-set containing v. This establishes the sufficiency.

To prove the necessity, we proceed by induction on the number a + b >
1 of units (with @ > 1 units of type (a) and b > 0 units of type (b)).
When e + b = 1, G = Cs and the statement holds by Observation 18.
This establishes our base case. Assume then that a + b > 2 and that the
statement holds for all graphs in G with fewer than a + b units. Let G € G
have a + b units.

Let T be the tree of order a + b whose vertices correspond to the units of
G, and where two vertices of T' are adjacent if and only if there is a (link)
edge joining the corresponding units of G. For each vertex w of T, let G,
be the unit of G corresponding to the vertex w. Among all end-vertices of
T, let v be one for which G, contains as few vertices of U as possible, and
let G' = G - V(G,). Further, let n' = [V(G")|, U' = UNV(G') and let
k' = |U'|. By our choice of the vertex v, 1 < k¥’ < n'.

Applying the inductive hypothesis to the graph G’, which hasa+b -1
units, we have r(G',U’,v;) < F(n', k') with equality if and only if there is
a selection of units and link vertices of G' so that the resulting set of pivot
vertices is precisely the set U’. Furthermore, if 7(G',U’,y:) = F(n', k'),
then for any vertex u of G' there is a y.(G', U’)-set containing u.

In what follows we shall adopt the following notation. If r(G',U’,v;) <
F(n', k'), we select the units, link vertices and link edges of G' as defined
in G (that is, the units of G different from G, are the units of G’, the
link vertices of G not in G, are the link vertices of G’, and the link edges
of G different from the link edge that is incident with a link vertex of G,
are the link edges of G'). If r(G',U’',v:) = F(n', k'), we select the units
and link vertices of G’ so that the resulting set of pivot vertices is precisely
the set U’ (such a selection of units and link vertices is possible by our
induction hypothesis). In both cases, we let G, be the unit of G’ that is
joined with an edge to G,, and we let S’ be a TDS of G' containing U’ with
|S’| = r(G',U’, 1) and we let S, = S'NV(G,). Welet U, = U NV(Gy),
and so |Uy| =k - k' and U = U, U U'. Further, we let U, = UNV(G,).

Suppose r{(G',U’,v:) = F(n',k"). Then, §' contains four vertices from
each type (a) and type (b) unit of G', and each type (a) unit contains one
vertex of U’ (namely the pivot vertex of the unit), while each type (b)
unit contains no vertex of U’. Thus we may assume that S’ is chosen so
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that the restriction of S’ to any unit of G' totally dominates that unit.
More precisely, in each type (a) unit of G', let S’ contain the pivot vertex
of the unit, its two neighbors (i.e., the two link vertices), and one vertex
in the unit at distance 2 from the pivot vertex. In each type (b) unit
of G, let S' contain the link vertex of the unit, its neighbor in the unit,
one vertex in the unit at distance 3 from the link vertex, and the vertex
in the unit at distance 4 from the link vertex. If G, = Lg, (and still
r(G'",U',v) = F(n',k')), let G, be obtained from the 6-cyclec,d,e, f,g, h,c
by adding the pendant edge cc’ to the vertex ¢ (and so, ¢ is the link vertex
of G, and U, = 0). Renaming vertices if necessary, we may assume e € S,
and so Sy = {¢,c,e, f}. If G, = Cs, let G, be given by c,d,e, f,g,h,c.
For our selection of link vertices of G', let d be the pivot vertex of G, (and
s0, ¢ and e are the link vertices of G, and U, = {d}). Renaming vertices
if necessary, we may assume that f € S, and so S, = {c,d,e, f}. (The
names of the vertices in G, are illustrated in Figure 5, where the pivot
vertex is indicated by the large darkened vertex.)

Figure 5: The unit G, of G'.

We consider two possibilities, depending on whether G, is a type (a) unit
or a type (b) unit.

Case 1. G, = Lg ;.

Then, n' = n — 7. By Observation 19, 7(Gy,, Uy, 1) < F(7,k — k'). If
r(Gy, Uy, ) < F(7,k = k') or 7(G',U', ) < F(n', k"), then 7(G,U,v) <
(Gy,Up,1t) + (G, U", %) < F(7,k - ¥') + F(n',k') = F(n,k). Hence
we may assume 7(G,,Uy,v) = F(7,k — k') and r(G",U’,v) = F(n', K').
Thus by Observation 19, U, = @, i.e,, k = k'. Let S, be a 1.(Gy)-set
of G, (of cardinality 4) containing the link vertex, z say, of G,. Thus,
|Sy| + 18| = F(n, k).

Suppose Gy, = Lg,,. Since G € G, the only possible vertices in G,
adjacent to z are ¢, ¢/, eor g. If cz € E(G), let S = S, U (S’ — {¢'}).
If ez € E(G), let S = S, U(S' — Sy) U {c,9,h}. If g2 € E(G), let S =
Sy U (S' — Sy) U {c,d,e}. In all three cases, S is a TDS of G containing
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U with |S| = F(n,k) — 1, a contradiction. Hence the link vertex z of G,
must be adjacent to the link vertex ¢’ of G,. The desired result now follows
readily: Take the units of G to be the unit G, and the units of G*, take the
link vertices of G to be the vertex z and the link vertices of G’, and take
the link edges of G to be the edge 2¢' and the link edges of G'. With this
selection of units and link vertices of G, the resulting set of pivot vertices
is precisely the set U.

Suppose Gy = Cs. If dz € E(G), let S = S, U (S’ - {c,e}) U {g}. If
fz € E(G),let S=5,U(S' - {e}). If gz € E(G), let S =S, V(S - {f}).
If hz € E(G), let S =8, U (S’ — {c}). In all four cases, S is a TDS of G
containing U with |S| = F(n, k) — 1, a contradiction. Hence the link vertex
z of G, must be adjacent to either ¢ or e, both of which are link vertices of
G'. The desired result now follows readily.

Case 2. G, = Cs.

Then, n' = n — 6. Let G, be the 6-cycle 1,2,3,4,5,6,1 and let the ver-
tex 1 be incident with the link edge of G joining G, to a vertex of G'. If
r(Gy, Uy, 1) < F(6,k—k'), then r(G,U, %) < r(Gy, Uy, ) +r(G",U',m) <
F(6,k—k')+F(n',k') = F(n, k). Hence we may assume that 7(G,, Uy, ;) >
F(6,k — k'), for otherwise »(G,U,v,) < F(n,k) as desired. Thus by Ob-
servation 18, we may assume that k — k' = |U,| < 1. If U, = @, let S,
be a 1,(G,)-set; otherwise if |U,| = 1, let S, be a minimum TDS of G,
containing the set U,. In either case, |S,| = 4 and we may choose S, to
contain the vertex 1.

Case 2.1. |U,| =1.

Then, k' = k-1 and |S,| = 4 = F(6,1). If »(G',U", %) < F(n',k - 1),
then r(G,U, 1) < 7(Gy,Us, ) + (G, U", 1) < F(6,1) + F(n',k - 1) =
F(n,k). Hence we may assume r(G',U’,v) = F(n',k') = F(n',k - 1).
Thus, |Sy| + |S'| = F(n, k).

Suppose G, = Lg,1. As shown in Case 1, the link vertex 1 of G, must be
adjacent to the link vertex ¢ of G,. If U, C {1,3,4},let $ = S'U {1, 3,4}.
KU, = {5},let S = S'U{1,4,5}. In both cases, S is a TDS of G containing
U with |S| = F(n, k) — 1, a contradiction. Hence U, C {2,6}. If U, = {2},
we select 3 as the other link vertex of G, while if U, = {6}, we select 5 as
the other link vertex of G,. The desired result now follows readily.

Suppose Gy, = Cg. If G' = Gy, then G € G consist of two type (a)
units and using Observation 18, the desired result follows readily. Hence
we may assume that G’ consists of at least two units. Since G € G the
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only possible vertices in G, adjacent to the vertex 1 are the vertices c, e
or g. If 1g € E(G), then S, U (S’ — {f}) is a TDS of G containing U with
|S| = F(n,k) — 1, a contradiction. Hence the link vertex 1 of G, must be
adjacent to either ¢ or e, both of which are link vertices of G'. Proceeding
now as in the previous paragraph, U, C {2,6} and the desired result follows
readily.

Case 2.2. U, = 0.
Then, k' = k and |S,| = 4.

Case 2.2.1. G, = Lg ;.

Suppose G, be obtained from the 6-cycle c,d,e, f,g,h,c by adding the
pendant edge cc’ to the vertex ¢ (and so, ¢’ is the link vertex of G,). Since
G € g, the only possible vertices in G, adjacent to the vertex 1 are ¢, ¢,
eor g. If G' = Gy, then G € G consist of a type (a) unit and a type (b)
unit, and using Observations 18 and 19, the desired result follows readily.
Hence we may assume that G’ consists of at least two units.

Suppose 1¢' € E(G). IfU,N{c,d,e, f,g,h} = 0, then S, can be chosen so
that S, = {c,c,e, f}. In particular, ¢' € §'. Thus, S'U{1,3,4} is a TDS of
G containing U of cardinality |S'| +3 < F(n',k)+3 < F(n',k) + F(6,0) =
F(n,k). On the other hand, suppose |{U, N {c,d,e, f,g,h}| > 1. We now
consider the graph H = G - {¢,d,e, f,g,h}. Then, H = G’ (we have
simply replaced the type (b) unit G, in G' by the type (b) unit obtained
from the 6-cycle G, by adding the vertex ¢’ and the edge 1¢’). Thus,
He g If|JUNV(H)| > 1, then proceeding in an identical manner as in
the first paragraph of Case 2 and as in Case 2.1, the desired result follows
readily. Suppose therefore that U N V(H) = @. Then since H is not a
cycle, it follows from Theorem 1, that vy.(H) < 4|V(H)|/7 = F(n — 6,0).
Let H, = G — V(H), and so H, is the 6-cycle ¢,d,e, f,g,h,c. Since U C
V(H,) and k > 1, Observation 18 implies that r(H,,U,~;) < F(6,k) with
equality if and only if K = 1. Thus, »(G,U, %) < r(H,,U,7) + %(H) <
F(6,k) + F(n—6,0) = F(n, k). Furthermore, if r(G,U, ) = F(n, k), then
H € H (i.e., H € G and every unit of H is a type (b) unit) and k = 1.
If U ¢ {d,h}, then we can extend a +,(H)-set that contains the vertex
¢' to a TDS of G containing U by adding three vertices of H,, and so
r(G,U,v) < n(H) + 3 = F(n,k) — 1, a contradiction. Hence, U C {d, h}
and the desired result follows readily. Thus if 1¢' € E(G), the desired result
follows.

Suppose 1¢ ¢ E(G) (and so, the vertex 1 is adjacent to ¢, e or g).
Let G* = G' — (V(Gy) — {¢'}) and let U* = UNV(G*) and |U*| = k*.
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Further let G = G — V(G*) and let U" = UNV(G") and |U"| = k".
Then, k = k* + k" and possibly k* = 0 or k” = 0 (but not both). Let
[V(G*)| = n*. Then, n* = n — 12. Since G’ is connected, so too is
G*. Further, since G is in the family G, so too is G*. Since G” € G
consists of two type (a) units, at least one of which contains no vertex of
U, it follows readily using Observation 18 that r(G",U", ) < F(12,k")
(if k" =0, then »(G",U", %) = %(G") = 6 < F(12,0)). If k* > 1, then
by the inductive hypothesis, 7(G*,U*, 1) < F(n*,k*), and so (G, U, %) <
r(G",U",q) + r(G*,U*, %) < F(12,k") + F(n*,k*) = F(n, k). Hence we
may assume k* = 0 (and so, k = k"), for otherwise r(G,U, ) < F(n, k).
Since G’ consists of at least two units, and since G,, is a type (b) unit, G*
is not a cycle. Hence, by Theorem 1, %.(G*) < 4n*/7 = F(n*,0). Thus,
r(G,U,w) <r(G",U", %) +7(G*) < F(12,k)+ F(n*,0) = F(n, k). Hence
if 1¢' ¢ E(G), the desired result follows.

Case 2.2.2. G, = Cs.

Suppose that G, is given by ¢, d, e, f,9, h,c. If G' = G, then G € G consist
of two type (a) units, and using Observation 18, the desired result follows
readily. Hence we may assume that G’ consists of at least two units. Among
all link edges of G’ incident with a link vertex of Gy, let e’ be chosen, if
possible, so that G — e’ does not contain a Cg-component with no vertex of
U. Renaming vertices if necessary, we may assume that ¢’ = cc'.

Let G; and G2 be the two components of G — ¢/, where ¢ € V(G).
Then, G; € G and G» € G. Since there is an edge joining the two 6-cycles
G, and G4, both G, and G, are type (a) units of G;. For i = 1,2, let
n; = |V(G;)| and let U; = UNV/(G;) and |U;| = k;. Then, n = n; +ny and
k = ky + ko. Possibly, k1 = 0 or k; = 0 (but not both).

We show first that r(G1,U1, %) < F(ni,k1). If ky = 0, then it follows
from Theorem 12 that 4;(G1) < 4n1/7 = F(ny,0). If k; > 1, then it follows
from the inductive hypothesis that since G has a type (a) unit, namely G,
that contains no vertex of U, r(G1,U1,7:) < F(ny, k1). Hence irrespective
of whether k) =0 or k; > 1, r(G1,U1, ) < F(ny, k).

If k2 > 1, then by the inductive hypothesis, (G2, Uz, ;) < F(na, k2),
whence r(G,U,v) < r(G1,U1,7) +7(G2, U2, 1) < F(ny, k1) + F(na, ko) =
F(n, k). Hence we may assume that ko = 0 (and so, k = k;), for otherwise
”.(Gv U77t) < F(Tl, k)

Suppose G is not a cycle. Then either G = Lg 1, in which case y(G2) =
4 = 4n,/7, or §(G2) > 2, in which case ¥, (G2) < 4n2/7 by Theorem 1.
In both cases, 7t(G'2) < F(n2s 0)' Hence) T(Ga U)’Yl) < T(Gl,Uly'Yt) +
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Y(G2) < F(ny,k) + F(n,,0) = F(n,k). Thus if G» is not a cycle, then
T(Gv U: 7!) < F(n7 k)'

Suppose, finally, that G» is a cycle. Then, Go = Cg and by our choice
of the link edge cc/, the removal of any link edge of G’ incident with a
link vertex of G, produces a Cg-component containing no vertex of U. It
follows that T is a star of order at least 3 each leaf of which corresponds
to a type (a) unit of G which contains no vertex of U. Thus, U = U,. We
may assume that e is the other link vertex of G, in G. A TDS S of G
containing U can now be constructed with |S| < F(n, k): For each unit G,
of G corresponding to a leaf w of T', let S contain the link vertex of G,
that is joined to G, and two other vertices, one at distance 2 and the other
at distance 3 from this link vertex in G,. Let S contain both link vertices
¢ and e (note that ¢’ € S), and depending on the value of k, 1 < k < 6,
additional vertices of G, can easily be chosen so that |S| < F(n,k). O

6 Proof of Theorem 4

The sufficiency follows from Theorem 3. To prove the necessary condition
of Theorem 4, we proceed by induction on the order n > 3 of a %-k—
minimal graph. Suppose 3 < n < 6. If G is not hamiltonian, then either
G € {K2;3,K24,D(3,3),D(3,4),D:(3,3)} or G is obtained from K, 3 by
subdividing one edge once. In all cases, it is straightforward to check that
re(G, %) < F(n,k), a contradiction. Hence, G is hamiltonian, and so C,
is a subgraph of G. It now follows readily from Theorem 14 and Obser-
vation 18 that G = Cg and k = 1, i.e., G € G. This establishes the base
cases.

Let n > 7 and assume the result is true for all $-k’-minimal graphs G’
of order n', where n’ < n and 1 < k' < n'. Since the restricted total
domination number of a graph cannot decrease if edges are removed, our
induction hypothesis implies that for all connected graphs G* of order n*,
where n* < n and 1 < k¥* < n*, with §(G*) > 2, that r¢(G*, 1) < 4(n* +
k*)/7.

For 1 < k <n,let G = (V,E) be a $-k-minimal graph of order n. Let U
be a set of k > 1 vertices in G for which 7(G,U, ;) = (G, 7)) > F(n,k).
If G = C, (and still n > 7), then by Theorem 14, r+(G,v) < F(n,k), a
contradiction. Hence, G is not a cycle.

If e is an edge of G, then »(G — e,U,v:) > r(G,U,v). Thus, by the
minimality of G, we have the following observation.
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Observation 20 Ife € E, then either e is a bridge of G or 6(G —e) = 1.
The next result is a consequence of the inductive hypothesis.

Observation 21 If G' is a connected subgraph of G of order n' < n with
0(G") > 2, then, for 1 < k' < n', either G' € G or ris (G', ) < F(n', k').

The following three lemmas, proofs of which are given in Subsection 6.1,
will be useful in what follows.

Lemma 22 Fori=1,2, let G; be a connected graph of order n; < n and let
v; € V(G;). Further, let U; C V(G;) where k; = |U;| and ko > 1 (possibly,
ki = 0). Let G' be a graph obtained from G, U G2 by adding the edge
12 and possibly other edges joining G1 and G2. Suppose there exists an
{(G1,U1,v:)-set that contains vy and suppose Go € G and r(G2,Usz, ) =
F(ng,ks). By Theorem 3, there is a selection of units and link vertices of G
so that the resulting set of pivot vertices is precisely the set Us. If vs is not
a link vertex of Go, then r(G',U1UUs,v) < #(G1, U1, ) +7(G2, Uz, 1) —1.

Lemma 23 If z,z,,22,%3,%4,y is an induced path in G every internal
vertez of which has degree two in G, then |U N {x1, 22, 3, z4}| 2 1.

Lemma 24 If z,x1,22,y is an induced path in G every internal verter of
which has degree two in G, then U N {z;,22}| < 1.

Since G is not a cycle, G contains at least one vertex of degree at least 3.
Let S = {v € V | deg v > 3}. Each vertex of V — S therefore has degree 2.
For each v € S, we define the 2-graph of v to be the component of G —
(S — {v}) that contains v. So each vertex of the 2-graph of v has degree 2
in G, except for v. Furthermore, the 2-graph of v consists of edge-disjoint
cycles through v, which we call 2-graph cycles, and paths emanating from
v, which we call 2-graph paths.

Using the inductive hypothesis, and the structure and properties of graphs
in the families # and G established earlier, we shall prove the following
lemma, a proof of which is given in Subsection 6.2.

Lemma 25 If S is not an independent set, then G € Gy.
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By Lemma 25, we may assume that S is an independent set, for
otherwise G € G,. With this assumption we shall prove the following
lemma, a proof of which is given in Subsection 6.3.

Lemma 26 There is at least one 2-graph cycle in G.

By Lemma 26, G contains a 2-graph cycle. Among all 2-graph cycles of
G, let C be chosen to contain as few vertices of U as possible. Let H be
the (connected) graph obtained from G by deleting all the vertices of C
except for the vertex of C that belongs to S. We shall prove the following
two lemmas, proofs of which are given in Subsections 6.4 and 6.5.

Lemma 27 If§6(H) > 2, then G € .
Lemma 28 If§(H) = 1, then G € Gi.

It follows from Lemmas 27 and 28 that G € Gx. This completes the proof
of Theorem 4.

6.1 Proof of Lemmas 22, 23 and 24
6.1.1 Proof of Lemma 22

Fori=1,2, let S; be an r(G;,U;, 7:)-set where S; contains v; and where S,
is chosen as follows: In each type (a) unit, let So contain the pivot vertex
of the unit, its two neighbors (i.e., the two link vertices), and one vertex in
the unit at distance 2 from the pivot vertex. In each type (b) unit, let S,
contain the link vertex of the unit, its neighbor in the unit, one vertex in
the unit at distance 3 from the link vertex, and the vertex in the unit at
distance 4 from the link vertex. Let F denote the unit of G, containing v,
and let T = So NV (F).

Suppose that F is a type (a) unit. If ve is the pivot vertex of F, then let
T’ consist of v,, one vertex in F at distance 2 from vs, and the vertex in F
at distance 3 from v,. If vy is not the pivot vertex, then let T/ consist of vy,
the pivot vertex of F', and a neighbor of the pivot vertex in F that is not
adjacent to vs. On the other hand, if F is a type (b) unit, then let T consist
of vg, one vertex at distance 2 from v, on the 6-cycle in F, and the vertex
at distance 3 from v, on this 6-cycle. Then in all cases, S; U (S —T)UT" is
a TDS of G' of cardinality |S1| +|S2| — 1 = 7(G1, U1, ) + (G2, Uz, v:) — 1
that contains U; U U;. The desired result follows. O
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6.1.2 Proof of Lemma 23

Suppose that U N {z;, 22, z3,24} = 0. Let F' = (G - {1, 22,73, 24}) + 2.
Then, F' is a connected graph with §(F') > 2. By the inductive hypothesis,
r(F',\Umw) < F(n - 4,k). Let T' be a r(F',U,y)-set. If z,y € T, let
T=TU{z1,z4}. fz €T andy ¢ T', let T =T' U {x3,24}. 2z ¢ T"
andy € T, let T = T'U {z1,22}. Ifz,y ¢ T', let T = T' U {zq,23}.
Then: T(GaU,'Yt) S lTl = T(FlsU)'Yt) +2 < F(n —4ak) +2< F(n7k)1 a
contradiction. O

6.1.3 Proof of Lemma 24

Suppose that z,,z, € U. Let F' = (G — {z,,22}) + zy, and let U’ =
U—{z1,22}. Then, F' is a connected graph with §(F') > 2. Since G isnot a
cycle, neither is F’. If k = 2, then U’ = @, and by Theorem 1, »(F',U’, v} =
Y (F') < 4V(F")|/7 = F(n — 2,k — 2). If k > 3, then by the inductive
hypothesis, r(F',U’',v) < F(n — 2,k — 2). In both cases, r(F',U’,y) <
F(n -2,k —2). Let T' be a r(F',U’,y)-set. Then, r(G,U,v:) < |T'| +
{z1,22}| < F(n — 2,k — 2) + 2 < F(n,k), a contradiction. O

6.2 Proof of Lemma 25

Let e = uv be an edge, where u,v € S. By Observation 20, e must be a
bridge of G. Let G, = (W1, E1) and G2 = (V», E») be the two components
of G — e where u € V;. For i = 1,2, let |V;| = n;, and so n = n; + ns.
Further, for i = 1,2, let U; = UNV(G;) and let k; = |U;|. Each G; satisfies
6(G;) > 2 and is connected. Hence, by Observation 21, for ¢ = 1,2, if
ki > 1, then 7, (Gi, 1) < F(ny, ki)

Claim 29 Ifk; > 1 and k; > 1, then G € Gy.

Proof. Since k; > land k2 > 1, (G, U, ) < 7(G1,Ur, 1)+7(G2, Uz, 1) <
F(ny, k1) + F(no, k) = F(n,k). Since r(G,U,v) > F(n,k), we must
have equality throughout this inequality chain. In particular for i = 1,2,
r(G;,Ui, 1) = F(ni, ki), and so by Observation 21, G; € Gy,. Fori = 1,2,
choose the units of G; and select the link vertices of G; so that U; is precisely
the resulting set of pivot vertices of G; (this is possible by Theorem 3). It
now follows readily by Lemma 22 that v must be a link vertex of G; and v
a link vertex of G5, whence G € G;. O
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By Claim 29, we may assume that k; =0,andsok =k, > land U = Uy,
for otherwise G € G,. By Observation 21, Gy € Gk, or 7(Ga,Uz, 1) <
F(ny,k;). Let S2 be a minimum TDS of G, containing Us U {v}. Then,
|S2| = r(G2,U U {v},1), and so, by the inductive hypothesis, |Sz] <
F(ng, k + 1).

If 7:(G1) < 4n1/7, then 7(G,U, %) £ %(G1) + r(Ge, U, %) < 4n1 /7 +
F(ng, k) = F(n,k), a contradiction. Hence, y(G1) > 4n,/7. Since §(G;) >
2 and G, is connected, it follows that G, is a %-minimal graph. Hence,
by Theorem 12, Gl € {03,05,05,07,010,014,H1} U H. Since kl = 0,
Lemma 23 implies that G ¢ {C7,C10,Ci4}. The desired result of the
lemma now follows from Claims 30, 31, 32, and 33.

Claim 30 G, ¢ {C5,C5}.

Proof. If G; = Cj, then S; U {u} is a TDS of G containing U, and so
(G,U,1) < F(ng,k+1)+1 = F(n—3,k+1)+1 < F(n, k), a contradiction.
If Gi = Cs, let S; be the set of two vertices at distance 2 from u in
G,. Then, S; US; is a TDS of G containing U, and so r(G,U, 1) <
2+ F(ng,k+1) =2+ F(n—5,k+ 1) < F(n,k), a contradiction. O

Claim 31 G)_ 74 Hl.

Proof. Suppose G; = H;. Let z and y denote the two vertices of degree 3
in Gy, and let z, z;, 22, T3,y denote the x—y path of length 4 in G,. Let w
and z denote the two common neighbors of z and y in G;. If u = w, then
zw is a cycle edge and §(G —zw) > 2, contradicting Observation 20. Hence,
@ # w. Similarly, u # z. Now let S; consists of u, a vertex at distance 2
from u in G and a vertex at distance 3 from u in G;. Then S;US; is a TDS
of G containing U with |S)|+|S2| £ 3+ F(ng,k+1) =3+ F(n—7,k+1) <
F(n,k), and so 7(G,U, ;) < F(n,k), a contradiction. O

Claim 32 If G, = Cg, then G € Gi.

Proof. Let G; be the cycle u = uy,us,...,ug,u1. Let S; = {u,us,uq}.
Then, D = §; U S, is a TDS of G containing U. If |S2| < F(n, k) (in
particular if v belongs to a minimum TDS of G, that contains Us), then
|D| € 34 F(n2, k) =3+ F(n—6,k) < F(n,k), a contradiction. Hence,
|S2| > F(ng, k). In particular, v ¢ U.

Let H be the graph obtained from G5 by adding the path vy, v2, v3, v4,vs5
and joining v to v, and vs. Then, H is a connected graph of order n — 1
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with §(H) > 2 (and in which degy v > 4). By the inductive hypothesis,
r(H,UU{v},1t) < F(n-1,k+1) = F(n,k). Let T; be a minimum TDS
of H containing U U {v,}. Then, |T2| £ F(n,k). Let C denote the 6-cycle
v,v1,2,...,0s,v. Since (U U {v}) N V(C) = {v:}, we may assume that
T NV(C) = {v,v1,v3,v4}.

The set (T2 — {v1,v3,v4})US) is a TDS of G containing U of cardinality
|T2|. Hence if |T| < F(n,k), then 7(G,U, 1) < F(n,k), a contradiction.
Therefore, |T2| > F(n,k). Consequently, |T2| = F(n,k). In particular, it
follows that (H,U U {v:},%) = F(n — 1,k + 1), and so, by the inductive
hypothesis, H € Gy+;. Furthermore, we can choose the units of H and
select the link vertices of H so that U U {v,} is the resulting set of pivot
vertices of H. Thus the subgraph C is a type (a) unit of H with link vertices
v and ve. Replacing this type (a) unit of H with the type (b) unit obtained
from G, by adding v and the edge uv (and with resulting link vertex v),
and keeping all other units and link vertices of H unchanged, shows that
G € G, as desired. O

Claim 33 If G, € H, then G € G.

Proof. Since §(G1) > 2, it follows from the way in which the family H is
defined that G; consists of £ > 2 type (b) units and the underlying tree
of G, is precisely the subgraph of G; induced by the ¢ link vertices of
these type (b) units. Let S; be a 7:(G1)-set chosen as follows: For each
(type (b)) unit F of G, let S; NV (F) be a y,(F)-set (of cardinality 4) that
contains the link vertex of F' (and therefore also its neighbor). Let F, be
the (type (b)) unit of G, containing u.

Suppose u is not the link vertex of F,. Then replace the four vertices of
S1 in Fy, by u, a vertex at distance 2 from u on the 6-cycle in Fy, and the
vertex at distance 3 from u on the 6-cycle in F;,. Let S denote the resulting
adjusted set S; (note that the link vertex of F,, is dominated by S] since G,
contains at least two units). Then, S] U S, is a TDS of G containing U of
cardinality (}S1|—1)+|S2| = (F(n1,0)—1)+F(ne, k+1) = F(n,k+1)-1 <
F(n,k), a contradiction. Hence, u is the link vertex of F,.

If 7(G3,U,v) < Flna,k), then r(G,U,m) < %(G1) + (G2, Uyw) <
F(ny,0) + F(ng,k) = F(n,k), a contradiction. Hence, »(G2,U, ;) =
F(ng, k), and so, by Observation 21, G2 € Gi. By Theorem 3, there is
a selection of units and link vertices of G2 so that the resulting set of pivot
vertices is precisely the set UU. If v is not a link vertex of Gg, then, by
Lemma 221 T(Ga U) 'Yt) < T(Gl)Ulv'yt) + T(G2a U29’Yl) -1= F(n’ k) - 17 a
contradiction. Hence, v is a link vertex of G3. It follows that G € G;. O
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6.3 Proof of Lemma 26

Suppose, to the contrary, that G has no 2-graph cycle. Then, |S| > 2 and
for every w € S, the 2-graph of w consists of 2-graph paths.

Let w € S and let P, be a 2-graph path of w. By assumption, S is an
independent set, and so P,, has length at least one. Let P, be a w-v path
and let z be the neighbor of v not on P,. Then, 2 € S. Let P=P, —w
have order m > 1. If m = 1, then P is the trivial path consisting of the
vertex v. If m > 2, let P be a u—v path (and so u is the neighbor of w in
P,) given by © = uy,u2,...,Um = .

Let F = G - V(P) and let F have order n’. Then, n’ = n —m and
0(F) > 2. Possibly, F is disconnected in which case F has two components,
one containing w and the other z. Further since G has no 2-graph cycle,
neither of these two components of F is a cycle. Thus applying Theorem 1
and Observation 21 to the two components of F, r (F,y) < F(n', k') for
0 < k' < n'. On the other hand if F is connected, then by Observation 21,
e (Fyw) < F(n' k') for 1 < k' <n'.

Claim 34 IfUNV(P)=0, thenm =3 and w,2 ¢ U.

Proof. By Lemma 23,1 <m < 3.

Suppose m = 1. Then, r(F,U,1) < F(n — 1,k). If w or z belong to
a r(F,U,v)-set, then 7(G,U,v.) < F(n — 1,k), a contradiction. Hence
no r(F,U,~)-set contains w or z. Suppose that F is connected. By the
inductive hypothesis, F(n,k) < r(G,U,v) < 7(F,U U{w},1) < F(n —
1,k+1) = F(n, k). Hence we must have equality throughout this inequality
chain. In particular, r(F,U U {w},1:) = F(n — 1,k + 1), and so, by the
inductive hypothesis, F' € Gi+1. By Theorem 3, there is a selection of units
and link vertices of F' so that the resulting set of pivot vertices is precisely
the set U U {w}. In particular, w is a pivot vertex in a type (a) unit of F
and therefore has degree 2 in F' (and degree 3 in G). Since |U U {w}| > 2,
F consists of at least two type (a) units. Therefore at least one of the two
link vertices of F' adjacent to w has degree at least 3. This contradicts our
assumption that S is an independent set in G. If F is disconnected (with
two components, one containing w and the other z), then applying a similar
argument to the component of F containing w shows that either w has a
2-graph cycle in G (which contradicts our assumption that G has a 2-graph
cycle) or w is adjacent to some other vertex of S (which contradicts our
assumption that S is independent). Hence, m =2 or m = 3.

Suppose m = 2. Then, r(F,U,v:) < F(n — 2,k). If w or 2z belong to a
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r(F,U,v.)-set, then r(G,U,v,) < F(n—2,k)+1 < F(n, k), a contradiction.
Hence no r(F,U,~;)-set contains w or 2. Suppose F is connected. By
the inductive hypothesis, F(n,k) < r(G,U,y) < r(F,U U {w,z},%) <
F(n — 2,k +2) = F(n, k). Hence we must have equality throughout this
inequality chain. In particular, 7(F,U U {w,2},11) = F(n - 2,k + 2), and
so, by the inductive hypothesis, F' € Gri2. By Theorem 3, there is a
selection of units and link vertices of F' so that the resulting set of pivot
vertices is precisely the set U U {w, 2}. In particular, each of w and z is
a pivot vertex in a type (a) unit of F'. This contradicts our assumption
that S is an independent set in G. Similarly, if F is disconnected, we
produce a contradiction. Hence, m = 3. Further suppose w € U. Then,
(G Umn) < {vH +r(FU U {2}, 1) S1+ F(n -3,k +1) < F(n,k), a
contradiction. Hence, w ¢ U. Similarly, z ¢ U. O

In what follows, let U}, = UNV(P) and Us = U - U,. Further, let
k= |U1| and ky = |U2| (and so, k = k1 + k2).

Claim 35 UNS =0.

Proof. Suppose [UNS| > 1. Let w € UNS. We shall use the notation
introduced in the paragraph preceding Claim 34. By Claim 34, k; > 1.
Since w € Us, ko > 1.

Suppose that m + k; < 8. Then it is straightforward (though tedious)
to show that »(G,U, ) < F(n,k). For example, consider the case when
m =5 and k; = 2. By Lemma 24, no two adjacent vertices of P are both
in U. If Uy = {uy,us} or Uy = {uy,uq}, then 7(G,U,v) < {u1,us,us}] +
r(F,Us,7) < 3+ F(n -5k —-2) < F(n,k). f Uy = {u1,us}, then
r(G,U,v) £ {ur,uq,us}| + r(F,Uz2,%) < F(n,k). If Uy = {u,us},
then 7(G,U,vt) < [{uz,us, us}| + r(F,U2, 1) < F(n,k). £ U1 = {ug,us}
or Uy = {us,us}, then 7(G,U,%) < |{u2,us,us}| + r(F,Uz2 U {2}, %) <
3+ F(n—-5,k-1) < F(n,k). In all cases, 7(G,U,w) < F(n, k).

Hence m + k; > 9 (for otherwise, (G,U, ) < F(n, k), a contradiction).
Let C be obtained from the 2-graph path P, by adding the edge vw. Thus,
C is the cycle w, uy, uz, .. ., Um, w of length m+1 and UNV(C) = U, U{w}.
By Theorem 14, 7(C,Uy U {w},v:) < Hm + 1,k +1) = (m+ k1 +3)/2.

Suppose r(C, U U{w}, 1) < (m+k1+2)/2. Let S be ar(C,UiU{w}, y1)-
set and let Sy be a 7(F,UaU {2}, ~:)-set. Then, S;NS; = {w} and S; US, is
a TDS of G containing U. Hence, r(G,U,v:) < [S1US2| = |S1]|+|S2|-1<
(m+ki+2)/24+r(FUsU{z},1) 1< (m+k +2)/2+ F(n—m,ks +
1) -1 = F(n,k) + (8 — m — ky)/14 < F(n,k), a contradiction. Hence,
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r(C,Uy U {w},t) = (m + k1 + 3)/2, and so, by Theorem 14, k; +1 >
3 is odd and every two consecutive vertices x and y of U on C have £
vertices between them (not including = and y) where £ =4 1. It therefore
follows from Lemma 23, that m = 2k, + 1 and Uy = {ug; | 1 <@ < K1}
Thus, 7(P,Uy, %) < 3k /2 = (m + k; — 1)/2. Consequently, 7(G,U, ;) <
T(PaUh'YC) +T(F’U27'Yl-) < (m + ki — 1)/2 + F(n -mk— kl) < F(n$ k)a
a contradiction. Hence, UNS =0. O

Claim 36 r(F,Uz,v,) < F(n',ks).

Proof. If F is disconnected or if F is connected and 1 < k; < n’, then, as
observed earlier (see the third paragraph of §6.3), the desired result follows.
Suppose, then, that F' is connected and k2 = 0. If F is not a cycle, then,
by Theorem 1, r(F,Us,v) = 1(F) < 40’ /7 = F(n', ko). If F is a cycle,
then it follows from Claim 34 that F = Cs (with w and 2z at distance 4
apart on this cycle), and so v,(F) = 4 < F(8,0) = F(n', k). Hence if F is
connected and ky = 0, then r(F,Us,,y;) < F(n',k2). O

Claim 37 If[UNV(P)| 2 1, then m =3 and UNV(P) = {u,v}.

Proof. By Lemma 24, no two adjacent vertices of P are both in U. By
Claim 35, w,z ¢ U.

Suppose that m + k; > 10. Let C be obtained from the 2-graph path
P, by adding the edge vw. Thus, C is the cycle w, u, ug, ..., Uy, W
of length m + 1 and U N V(C) = U,. By Theorem 14, r(C,U;, 1) <
H(m+1,k1) =(m+k1 +2)/2

Suppose r(C,U1,1:) < (m + k1 +1)/2. Let Sy be a r(C,Uy,v;)-set. By
Claim 36, r(F,Uz,v:) < F(n —m, k). Thus if w ¢ Sy, then r(G,U,v) <
1S1] +7(F,Uz, ) < (m +ky +1)/2 + F(n — m, k) = F(n, k) + (T —m -
k1)/14 < F(n,k). Hence, w € S;. Let Sz be a r(F,Uz U {w, z},v;)-set.
Then, $; N S2 = {w} and S; U S, is a TDS of G containing U. Hence,
'I'(G,U,’)’t) <|51US8:| = |S1| + |Sg| -1 < (m+k + 1)/2 + r(F,Uz; U
{w,z},%)-1 < (m+k1—1)/2+F(n—m, ky+2) = F(n, k)+(9—-m—k;)/14 <
F(n, k), a contradiction. Hence, »(C,U1,v:) = (m + k, +2)/2.

It follows from Theorem 14 and Lemma 23 that k; > 3is odd, m = 2k, —1
and Uy = {ugi-1 |1 < ¢ < k1}. Thus, 7(G,U,v) < |Ui| + [{ugi—2 |1 <3 <
(ky —1)/2} + 7(F,U2 U {2}, %) < k1 + (k1 = 1)/24+ F(n —m, k3 + 1) <
(m+k)/24+ F(n—-myky +1) = F(n,k) + 8 —m - k) < F(n,k), a
contradiction. Hence, m + k; < 9.
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The desired result now follows from the fact that if m # 3 or if m =
3 and k; = 1, then it is straightforward (though tedious) to show that
r(G,U,w) < F(n,k). For example, consider the case when m = 4. By
Lemma 24, either k; = 1 or ky = 2. If U; = {u}, then »(G,U,v) <
{u,ue}| + r(F,U2 U {z}, ) <2+ F(n —4,k) < F(n,k). If Uy = {uz} or
Ui = {us}, then r(G,U,v;) < |[{ug,us}{+7(F, Uz, 1) <24+ F(n—4,k-1) <
F(n,k). If Uy = {v}, then r(G,U, %) < [{us,v}| + r(F, Uz U {w}, 1) <
24+ F(n—4,k) < F(n, k). If Uy = {u,us}, then r(G,U,v) < [{u,us,us}| +
r(F,U2,m) < 3+F(n—-4,k-2) < F(n,k). IfU, = {u,v}, thenr(G,U,v;) <
Hu, v} +r(F, U2 U{w, 2}, 1) <2+ F(n—4,k) < F(n, k). If Uy = {ug,v},
then 7(G,U, ;) < [{uz,us, v} +7(F, U2, 7)) <3+ F(n—4,k—2) < F(n, k).
Hence if m = 4, then (G, U,v;) < F(n,k). O

By Claims 34, 35, and 37, U NS = 0 and every 2-graph path in G has
length 3 and either contains no vertex of U or exactly two vertices of U
(namely, the end-vertex of the 2-graph path and the vertex at distance 2
from it on this path). In particular, G has girth at least 8. Since k = |U| >
1, there must exist a 2-graph path that contains two vertices of U. Using
our notation introduced earlier, we may assume that P,:w,u, ug,v is such
a 2-graph path (and so u,v € U). As defined earlier, N(v) = {uz, 2} where
z€S.

Claim 38 |S]| > 3.

Proof. Suppose S = {w,z}. Let r (respectively, s) be the number of 2-
graph paths of w that contain (respectively, do not contain) vertices of U.
Then, deggw = r+s, k = 2r,n = 2+ 3(r+s) and G is obtained from K ;4
by subdividing each edge exactly once. Let D = U U N[w]U {z}. Then, D
is a TDS of G containing U of cardinality k+s+2 =2r+s+2 < F(n,k),
a contradiction. Hence, |S| > 3. O

By Claim 38, |S| > 3. Let G’ be the graph obtained from G — {w, u, us,
v, z} by adding as few edges as possibly joining vertices in (N (w)UN(z)) —
{u,v} so that G' is connected, 6(G’') > 2 and G’ has girth as large as
possible. Since G has girth at least 8, and since |S| > 3, it follows that G’
has girth at least 7, and so G' ¢ Gr—2. Hence, by the inductive hypothesis,
(G U - {u,v}, 1) < F(n—5,k—2). Let Sy, be ar(G',U - {u, v}, v)-set.
Then, S, U{u,v,w, 2} is a TDS of G containing U of cardinality |S,,|+4 <
F(n-5,k—2)+4 = F(n,k), a contradiction. This completes the proof of
Lemma 26.
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6.4 Proof of Lemma 27

Suppose C is a 2-graph cycle of w € S. Let P = C — w be a u—v path
on m > 2 vertices, and so H = G — V(P). Since §(H) > 2, we note that
deggw > 4. Let H have order h, and so n = h +m. Let U; contain the
vertices of U in P, and let U; = U — U;. Let |Uy| = k1, and let ky = k — k.
By Observation 21, if k; > 1, then either H € Gy, or ry, (H,v:) < F(h, ks).

Claim 39 k; > 1.

Proof. Suppose k; = 0, and so U = U and k = k;. By Lemma 23,
m < 5. If m = 2, then 7(G,U,v) < r(H,UU {w},3) < Flhk+1) <
F(h + 2,k) = F(n,k). If m = 3, then r(G,U,y:) < |{u}| +r(H,U U
{whn) <1+ F(n-3,k+1) < F(n,k). f m = 4, then #(G,U,v;) <
2+ r(H,U1) <2+ F(h,k) =2+ F(n — 4,k) < F(n,k). If m = 5, then
(G, Uyn) <2+ r(H,UU{w},7) <2+ F(n-5,k+1) < F(n,k). In all
cases, 7(G,U,v) < F(n, k), a contradiction. O

Claim 40 r(H,Us,y) < F(h, k2).

Proof. If ks > 1, then the desired result follows from the inductive hy-
pothesis. If k2 = 0, then since C is a 2-graph cycle of G that contains
as few vertices of U as possible, H is not a cycle, and so by Theorem 1,
T(H7 U2)’Yt) = 'Yt(H) S 4h/7 = F(h) k2)' O

Claim 41 Ifr(P,U,,v:) < H(m, k;), then r(G,U,v) < F(n,k).

Proof. If r(P,U\,v) < H(m,k), then, using Claim 40, 7(G,U,v,) <
T(P, U117t)+r(Ha U2v’yt) S (m+kl)/2+F(ha k2) = F(n’k)_(m+kl)/14 <
F(n,k). Hence we may assume 7(P,Uy, ;) = H(m, k).

Suppose first that m + k; < 6. If ¥ = 1 (and so, m < 5), then, since
r(P,Uy,vt) = H(m, k), U; must consist of an end-vertex of P and either
m = 2 or m = 4. It follows that 7(G,U,v;) < r(H,Uz U {w}, %) + m/2 <
F(h,k) + m/2 = F(n,k) — m/14 < F(n,k). If k; = 2 (and so, m < 4),
then, since r(P,U1,v) = H(m, k1), Uy = {u,v} and m = 3. It follows
that T(G)Uy’ﬂ) < T(H,UZ U {w}”yt) +2 < F(h’k - 1) +2= F(nak) -
2/7 < F(n,k). Suppose k1 = 3 (and so, m = 3). Then using Claim 40,
G, Un) < r(HUy7)+3 < Flhk)+3=Fn-3,k-3)+3 =
F(n,k) — 3/7 < F(n,k). Hence if m + k; < 6, then »(G,U,y:) < F(n,k).
Thus we may assume that m + k; > 7. In particular, m > 4.
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USing Claim 40, T(G, U7 'yt) < T(P, Ula’yt) + T(H, Um’)’t) < H(m’ kl) +
F(h k) = Fnyk) + (T—-m ~k)/14. Um+k; > Torifm+k =7
and r(H,Uz,v:) < F(h,k2), then 7(G,U,v) < F(n,k). Suppose then
that m + k1 = 7 and r(H,Us2,v:) = F(h,ky). Since m + k; = 7 and
r(P,U1, 1) = H(m, k), it follows that either k; =1 and m =6 or k; = 2
and m = 5. If ky = 0, then r(H,Us, ) = w(H) = F(h,0) = 4h/7. As
observed earlier, H is not a cycle, and so by Theorem 12, H € H U {H,}.
If k» > 1, then H € G by Observation 21. Hence by Theorem 3 if ks > 1
or by Observation 11 if k; = 0, there exists a TDS D, of H containing
Uz U {w} of cardinality F(h, k2). It follows that D, can be extended to a
TDS of G containing U by adding three vertices of P, and so 7(G,U, 1) <
|D2| + 3 = F(h,k2) +3 < F(n, k). O

By Theorem 15, 7k, (Pm,7:) < H(m + 1, k;). Consequently, by Claim 41,
T(Pa Uly'Yt) = H(m + lakl)'

Ifky=landm <4orifk; =2and m < 3, then r(P,U1,v) < H(m, k),
a contradiction. If m = 4 and k; > 2, then, since (P, Uy, %) = H(m +
1,k,), we must have U; = {u,v}, and so »(G,U,v) < r(H,U2 U {w}, 1) +
2 < F(h,k—1) +2 < F(n,k), a contradiction. Hence, m > 5.

Claim 42 |UnN {u,v}| > 1.

Proof. Suppose u,v ¢ U. Suppose first that m + k; < 8. If k; = 1 and
m=>5ork; =2and5<m<6ork =3and m =25, then r(P,Us,7) <
H(m,k;), a contradiction. Hence k; = 1 and m = 6 or m = 7. In both
cases, 7(G,U,1:) < r(H,U U {w},n) +3 < F(h,k) +3 < F(n,k), a
contradiction. Hence, m + k; > 9. Since v ¢ U, Corollary 16 implies
that T(P—‘U;Ulaﬁyt) < H(m - l’kl)a and so T(G’ U:'Yt) < T(P -, Ula7t) +
r(H,U2U{w},w) < Hm—1,k1)+F(h,k2+1) = F(n, k)+(8—m—k1)/14 <
F(n, k), a contradiction. O

By Claim 42, we may assume v € U.

Corollary 16 implies there exists a set S’ containing U; such that |S'] <
H(m — 1,k)) and every vertex of P — v is adjacent to some vertex of S’.
Hence, r(G,U, 1) < |S'|+r(H, U2U{w}, 1) < H(m—1,k1)+F(h, k2 +1) =
F(n,k)+ (8—m—k)/14. T m+k; > 9, then r(G,U,y:) < F(n, k). Hence
we may assume 6 < m + k; < 8 (recall that m > 5).

Let the path P be given by v = v;,v2,...,n = u. Since r(P,Ui, 1) =
H(m + 1,k;), it follows that either (m,k) = (5,1) and Uy = {v} or
(m,ky) = (5,3) and Uy = {u,v,v3} or (m, k) = (6,2) and U; = {v,vs}.
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Claim 43 (m,k,) # (5,3).

Proof. Suppose that (m,k;) = (5,3), and so U; = {u,v,v3}. Then,
r(G,U,%) < |U1 U {oa}| + r(H, U2 U {w}, ) < 4+ F(n - 5,k —2) =
F(n,k). Hence we must have equality throughout this inequality chain. In
particular, r(H,U; U {w}, %) = F(n — 5,k — 2), and so, by the inductive
hypothesis, H € Gr—». By Theorem 3, there is a selection of units and link
vertices of H so that the resulting set of pivot vertices is precisely the set
Uz U {w}. In particular, w is a pivot vertex in a type (a) unit of H and
therefore has degree 2 in H (and so, deg; w = 4). If H consists of only one
unit, then H = Cg and k2 = 0, contradicting our choice of C. Hence, H
consists of at least two units. Therefore at least one of the two link vertices
of H adjacent to w has degree at least 3. This contradicts our assumption
that S is an independent set in G. Hence, (m,k;) # (5,3). O

Claim 44 (m,k;) # (6, 2).

Proof. Suppose that (m,k,) = (6,2), and so U; = {v,v3}. Let K =
(G - {u,vs}) + vqw. Then K is a connected graph of order n — 2 with
0(K) > 2. By the inductive hypothesis, r(F,U,v) < F(n—2,k). Let Sk be
a r(K,U,v,)-set. In particular, v,v3 € Sg. We may assume that v € Sk.
But then (G, U, ) < |(Sk — {v2}) U{va,w}| < F(n-2,k) +1 < F(n, k),
a contradiction. The desired result follows. O

By Claims 43 and 44, (m, k1) = (5,1) and U; = {v}. Hence, h =n —5
and kz =k-1

Claim 45 r(H, U U {w},v) = 4(h+ k) — 1)/7.

Proof. By induction, r(H,U; U {w},n) < F(h,ks + 1) = F(h,k). If
r(H,Uz U {w},m) < (4(h + k) — 2)/7, then (G,U, 1) < [{u,v,v2}| +
r(H,UU{w},:) £ 3+ (4(h+k)-2)/7 < F(n, k), a contradiction. Hence,

r(H, U2 U {w}, 1) > (4(h + k) — 1)/7.

Suppose r(H,Uz U {w},1t) = F(h, ks + 1) = F(h, k). By the inductive
hypothesis, H € Gix. By Theorem 3, there is a selection of units and link
vertices of H so that the resulting set of pivot vertices is precisely the set
U, U {w}. Proceeding now in a similar manner as in the proof of Claim 43,
we can show that w is adjacent to some other vertex of S, a contradiction.
The desired result follows. O
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By Claim 45, r(H, U U{w},:) = (4(h+ k) —1)/7. Let D be a minimum
TDS of H containing U, and, if possible, the vertex w. If w € D, then
(G, U,v) < 3+r(H,Uz2,m) < 3+F(n-5,k-1) < F(n,k), a contradiction.
Hence, w ¢ D, and so w belongs to no minimum TDS of H containing Us.
It follows that |D| = r(H,Us,v) = r(H,U2U{w}, 1) -1 =4(h+k—2)/7 =
F(n,k) - 4.

Since S is an independent set, each neighbor of w in H has degree 2 in G
and therefore degree 1 in H —w. Let H* be the graph obtained from H —w
by adding as few edges as possibly joining vertices in N(w) — {u,v} so that
H* is connected and, if possible, §(H*) > 2. Let |[V(H*)| = n* (= n — 6).

Claim 46 §6(H*) > 2.

Proof. Suppose that §(H*) = 1. Then there exists a vertex w* of degree
one in H*. By the way in which H* is defined, it follows that H = Kj.
Since w belongs to no minimum TDS of H containing Us, it follows that
Uy = V(H) - {w}. Hence, n =8 and k =3 and r(G,U, ;) < 6 < F(n,k),
a contradiction. Hence, 6(H*) > 2. O

By Claim 46, 6(H*) > 2. The desired result of Lemma 27 now follows
from Claims 47 and 48.

Claim 47 Ifk > 2, then G € Gi.

Proof. Then, k; = k—1 > 1. By the inductive hypothesis, 7(H*, Uz, 1) <
F(n*,k2) = F(n -6,k — 1) = F(n, k) — 4. X r(H*,Us, %) < F(n,k) - 4,
then 7(G,U, %) < {u,v,v2,w}| + r(H*,U2,%) < F(n, k), a contradiction.
Thus, r(H*,Us,1) = F(n,k) — 4, and so, by the inductive hypothesis,
H* € Gi,. Since ko =k — 1, H* € G—1. Hence, by Theorem 3, there is a
selection of units and link vertices of H* so that the resulting set of pivot
vertices is precisely the set Us.

We show now that each neighbor of w in H* is a link vertex of H*.
Suppose that z € N(w) NV (H) is not a link vertex of H*. Note that
{u,v,v2,w} is a r(C,U;,v:)-set that contains w. It now follows from
Lemma 22 (with G, = C, G2 = H*, v; = w and v = z) that r(G,U,y;) <
T(C7Ul:7t) +T(H‘:U2’7t) -1=4+ (F(n,k) - 4) -1= F(n’k) -1,a
contradiction. Hence each neighbor of w in H* is a link vertex of H*.
Therefore, G € Gi.. O
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Claim 48 Ifk =1, then G € Gi.

Proof. Since k=1, UNV(H*) = . Since H* contains a vertex of S, H*
cannot be a cycle. Hence, by Theorem 1, v;(H*) < 4n*/7 = F(n —6,0). If
’7!(H') < F(n-ﬁa 0)’ then T(Gv U97£) < I{u,v,vg,w}|+'y¢(H‘) < 4+F(n_
6,0) = F(n,1) = F(n, k), a contradiction. Thus, yw(H*) = F(n —6,0). It
follows from the way in which H* is constructed that H* is a %-minimal
graph. Hence, by Theorem 12, H* € HU {H,}.

If H* = H; (and so n = 13), then since S is independent and degy w > 2,
the vertex w would belongs to a +;(H)-set. This contradicts our earlier ob-
servation (see the paragraph following Claim 45) that the vertex w belongs
to no y;(H)-set (in our case, U, = 0). Hence, H* € H.

Since 6(H*) > 2, H* consists of at least two type (b) units and the under-
lying tree of H* is precisely the subgraph of H* induced by the link vertices
of these type (b) units. Let S* be a -y, (H*)-set chosen as follows: For each
(type (b)) unit F of H*, let S* N V(F) be a v, (F)-set (of cardinality 4)
that contains the link vertex of F' (and therefore also its neighbor).

We show next that each neighbor of w in H* is a link vertex of H*. Let
y € N(w) NV(H) and let F, be the (type (b)) unit of H* containing y.
Suppose y is not the link vertex of F},. Then replace the four vertices of S* in
F, by y, a vertex at distance 2 from y on the 6-cycle in F,, and the vertex at
distance 3 from y on the 6-cycle in Fj,. Let D* denote the resulting adjusted
set S* (note that the link vertex of F, is dominated by D* since H* contains
at least two units). Then, D* U {u,v,v2,w} is a TDS of G containing U of
cardinality (|S*|-1)+4 = (F(n—6,0)-1)+F(6,1) = F(n,k)—1 < F(n,k),
a contradiction. Hence, y is the link vertex of F. Therefore each neighbor
of win H* is a link vertex of H*. It follows that G € G;. O

6.5 Proof of Lemma 28

Suppose C is a 2-graph cycle of w € S. Since §(H) = 1, we note that
degzw = 3. Let z be the vertex of G of degree at least three that is at
minimum distance from w. Since S is an independent set, d(w,2) =r+1 >
2. Let v denote the vertex adjacent to z on the w-z path and let u denote
the neighbor of w on this path (if 7 = 1, then u = v). Then G — vz consists
of two components, one of which is a key L,  which contains v as its end-
vertex and the other, which we call F, is a connected graph with §(F) > 2
containing z. Let F’ have order p. Let U; contain the vertices of U in Ly,
and let Up = U — U;. Let |Uy| = ki, and let k; = k — k;. Since G has
order n,n=m+r7r + p.
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Claim 49 ’I‘(F, U2,’)’t) < F(p, kg)

Proof. If k; > 1, then the desired result follows by the inductive hy-
pothesis. Hence we may assume that k2 = 0. Suppose that F = C,.
Then, G is obtained from the disjoint union, Cp U Cp, of Cp, and C,
by joining a vertex of Cy, to a vertex of Cp and subdividing this edge r
times. Hence, G has order n = m + r + p and size n + 1. By Theorem 2,
r(G,U, ) < (n+k+2)/2. Hence if n+ k > 14, then r(G,U,v:) < F(n, k),
a contradiction. Thus, n + k& < 14. Since the 2-graph cycle C was chosen
to contain as few vertices of U as possible, it follows that all vertices of U
belong to the u—v path P,.. Furthermore by Lemma 24, no two adjacent
vertices of this path P, are both in U. By Lemma 23, m < 6 and p < 6.
Since n + k < 14, it is now straightforward (though tedious) to show that
r(G,U,w) < F(n,k), a contradiction. Hence, F is not a cycle, and so by
Theorem 1, 7(F, U, %) = %(F) < 4p/7 = F(p, k). O

Claim 50 Ifky > 1, thenm +r+k 2> 09.

Proof. Suppose that m + r + k; < 8. Then it is straightforward (though
tedious) to show that either r(Lny,,, U1, 1) < (m + 7 + k1)/2 or there
exists a set D containing U; U {v} such that |D| < (m +r + k1 — 1)/2
and every vertex of L,, , — v is adjacent to some (other) vertex of D. In
the former case, by Claim 49, 7(G,U,v) < r(Lm,r, U1, 1) + 7(F, U2, 11) <
(m+r+ki1)/2+F(p,k2) = F(n,k)—(m+r+k;)/14 < F(n, k). In the latter
case, 7(G,U,v) < |D|+r(F,U2U{z}, ") < (m+r+ki-1)/2+F(p, k2+1) =
F(n,k)+(1-m—-r—k)/14 < F(n, k). In both cases, r(G,U,v:) < F(n, k)
a contradiction. The desired result follows. O

Claim 51 Ifk; > 1, then r(Lymr,Ur, ) < H(m + 1, k1).

Proof. By Claim 50, m + r + k1 > 9. By Theorem 17, r(Lpm,», U1, 1) <
H(m 4+ 1,ky). Suppose that *(Ly,r,Ur,11) = H(m + 17 + 1,k;). Then
by Theorem 17, (L, — v, U, 1) < H(m +n —1,k;) or there exists a set
D containing U, U {v} such that |D| < H(m + r — 1,k;) and every vertex
of L, » — v is adjacent to some vertex of D. Suppose r(Lp,, — v, U1, 1) <
H(m+r_ 11 kl) Thena T(G’ U:'Yt) S T(me_v’ Ul:'Yt)'l'r(F, U2U{Z}, 'Yt) S
(m+r+k-1)/2+ F(p,ko+1)=F(n,k)+ (1-m—-r—k,)/14 < F(n, k),
a contradiction. On the other hand, if there exists a set D containing
Ui U {v} such that |D| < H(m +r — 1,%;) and every vertex of L, , — v is
adjacent to some vertex of D, then 7(G,U,v;) < |D| +r(F,U2U{z},%) <
(m+r+k —1)/2 + F(p,ks + 1) < F(n,k), a contradiction. Hence,
T(Lm,r, Un, ) S H(m+7,k). O
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Claim 52 k, = 0.

Proof. Suppose that k; > 1. By Claim 50, m +r + k; > 9 and by
Claim 51, 7(Lom,», U1, 1t} < H(m+7,ky). Hence, by Claim 49, (G, U, 1) <
(L, UL, 1) + r(F,Us,yt) < (m+r+k + 1)/2+ F(p, ko) = F(n,k) +
(7-m —r —k1)/14 < F(n, k), a contradiction. O

By Claim 52, k; = 0. Thus k; = k£ > 1 and so, by Observation 21,
r(F,U,v;) < F(p, k) with equality if and only if F € Gj.

Claim 53 m =6 andr = 1.

Proof. By Lemma 23, m < 6 and r < 3. If (m,7) € {(6,3),(6,2),(5,3)},
then, by Theorem 8, v(Lm,r) < (m + r + 1)/2, whence r(G,U,y;) <
Y (L) +7(F,U,v) < (m+r+1)/2+F(p, k) = F(n,k)+(7T-m—7)/14 <
F(n,k), a contradiction. Hence, m +r < 7. Suppose m + r < 6. Then
it is straightforward to check (or see [6]), that y;(Lm,r) < (m +r)/2, and
so (G, U, 1) < 1e(Lm,r) +7(FU, 1) < (m+71)/2+ F(p, k) < F(n, k), a
contradiction. Thus, m +r = 7. If r > 2, then (G, U, %) < n(Lmr —
v) +r(F,UU{z},1) <3+ F(p,k + 1) < F(n,k), a contradiction. Hence,
m=6andr=1.0

By Claim 53, m = 6 and r = 1. Now, F(n,k) < r(G,U,v) < v(Ls,1) +
r(F,U,v) < 4+ F(p,k) = F(n, k). Consequently, we must have equality
throughout this inequality chain. In particular, r(F,U,v;) = F(p, k), and
so F € G. Hence, by Theorem 3, there is a selection of units and link

vertices of F' so that the resulting set of pivot vertices is precisely the set
U.

If z is not a link vertex of F, then it follows from Lemma 22 (with
G, = Lg, and G2 = F) that r(G,U,v) < r(Le,1, U1, 7)) +7r(F, Uz, 1) -1 =
4 + F(p,k) -~ 1 = F(n,k) — 1, a contradiction. Hence z is a link vertex of
F, and so G € Gi. This completes the proof of Lemma 28.

7 Proof of Theorem 5

Since the restricted total domination number of a graph cannot decrease
if edges are removed, the upper bound of Theorem § is an immediate con-
sequence of Theorems 3 and 4. The family of graphs achieving equality
in the upper bound of Theorem 5 is also an immediate consequence of
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Theorems 3 and 4 and the observation that for any graph G € G; with
U as its set of k pivot vertices and for any edge e in the complement G
of G, (G +e,U,v) < r(G,U,) if e does not join two link vertices and
™G +e,U,v:) = r(G,U,~;) otherwise.

8 Proof of Theorem 6

If §(G) > 2, then the result follows from Theorem 1. Hence we may assume
that §(G) = 1. Let L denote the set of vertices of degree one in G and
let U denote the set of all vertices of G adjacent to at least one vertex in
L. Let |L| = ¢ and |U| = k. By assumption, k > 1. Since the sum of the
degrees of any two distinct adjacent vertices in G is at least 4, each vertex
of U has degree at least three in G.

Let G’ = G — L. Then, G’ is a connected graph of order n' = n — .
Since each vertex in U is adjacent to at least one vertex in L, £ > k and so
n' <n-k If G'= K, then n >4, G is a star, and v(G) = 2 < 4n/7.
Hence we may assume that n' > 2, and so 6(G’) > 1.

Suppose §(G') > 2. Then, by Theorem 5, 7(G',U,v:) < 4(n' + k)/7 <
4n/7 and the desired result follows since :(G) < r(G’', U, 7:).

Suppose §(G’) = 1. Each vertex u of degree one in G’ belongs to the
set U and is adjacent to degu — 1 > 2 vertices of degree one in G. For
each such vertex u of degree one in G’, we add one of its neighbors in L
to G’ and join it to u and all the neighbors of u in G’. Let G* denote the
resulting graph of order n*. By construction, G* is a connected graph with
8(G*) > 2. Further, each vertex of U in G* is adjacent to at least one vertex
of L-V(G*),and son* < n—k. By Theorem 5, 7(G*,U, ;) < 4(n*+k)/7 <
4n /7 and the desired result follows since (G) < r(G*,U,v). O
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