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Abstract

For any positive integer k there exists a smallest positive integer N, de-
pending on k, such that every 2-coloring of 1,2,...,/N contains a monochro-
matic solution of the equation z +y + kz = 3w. Based on computer checks,
Robertson and Myers in [5] conjectured values for N depending on the con-
gruence class of k (mod 9). In this note we establish the values of N and find
that in some cases they depend on the congruence class of k (mod 27).

Introduction

If N is a positive integer, let [1, N] denote the set {1,2,...,N}. A 2-coloring
of [1,N] is a function x : [1,N] — {0,1}. If ., ¢;x; = 0 is a homoge-
neous linear equation with integer coefficients then a solution a, ..., a,, is called
monochromatic if x(a;) = x(e;) forall1 < 4,7 < n.

It follows from a theorem of R. Rado {4] that if n > 3 and at least one ¢; > 0
and at least one ¢; < O then there exists an N such that every 2-coloring of 1, N]
admits a monochromatic solution. The smallest such N is called the 2-color Rado
number of the equation £*_, ¢;z; = 0 and denoted here by RR(¥X}., c;z; = 0).

It was shown in [3] that for every positive integer k,

RR(z +y+kz =w) =k*+ 5k +5.

In {5], Robertson and Myers showed that RR(z + y + kz = 2w) depends on
the congruence class of k& (mod 4), and determined its value for all k. Based on
computer calculations for k < 23, they conjectured values for RR(z + y + kz =
3w), depending on the congruence class of k£ (mod 9). (We remark that when
k = 17 their conjectured formula does not yield the computed value.) In this
paper we confirm their conjectures for ¥ = 0,1,5,6, or 7 (mod 9). We show
that for £k = 8 (mod 9) with k& > 8 the conjectured value is too high, and we
determine the correct value. For &k = 2, 3 or 4 (mod 9) we find that the true value
is given by one of three formulas, depending on the congruence class of k& (mod
27). So here the value of RR(z + y + kz = fw) depends on the congruence class
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of k (mod 23).This finding invalidates another conjecture in [5], to the effect that
RR(z + y + kz = fw) depends only on the congruence class of k (mod ¢2).

For the convenience of the reader we restate the values for RR(z + y + kz =
3w) conjectured in [5]:

Conjecture [5]: Fork > 5,

(|42 - k= E48k9 if g =0 (mod 9)

3 9
| kb4 |2 = Klidksa gk42 if k=1 (mod9)
llﬁsijz_&%l_sfkgLﬂc if k£ = 2 (mod9)
L&,';AJ'Z_l:wE if k=3 (mod9)

E 9
RR(z+y+kz=3w)={ [E]241= 240 itk =4 (mod9)
[E44)2 - &4 = B4TEH2  if k= 5 (mod 9)

9 9
l_ksﬂp__. k-'-g#z if k =6 (mod 9)
L%ﬁszf_%:%’k% if k = 7 (mod 9)

\ L%ﬁjz_1=kz#fﬁ! if k = 8 (mod 9).

The values of RR(z + y+kz = 3w) for k = 2, 3 and 8 were computed in [5]

to be 4, 5, and 15, respectively. Our formulas yield the values for all other positive
k.

Theorem If k is a positive integer and &k # 2, 3, 8 then

(48649 jf k= 0 (mod 9)
Eadbtd  if k=1 (mod 9)
E+7k+12  f k= 5 (mod 9)
E46k+9  if f = 6 (mod 9)
E45k+6  f k = 7 (mod 9)
E46k+14 i = 8 (mod 9).

RR(z+y+ kz = 3w) = <

\

If k = 2 (mod 9) then

ATH1OkHIL if = 2 (mod 27)
RR(z+y+kz=3w)=q H£L+2 f k=11 (mod 27)
k74196440 if k = 20 (mod 27).

If k = 3 (mod 9) then
3k%+16k433  jf k = 3 (mod 27)

27
RR(z+y+kz=3w)={ 3E+16k+20 f) = 19 (mod 27)
W+16k+42  if = 21 (mod 27).
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If k = 4 (mod 9) then

SEH1%kH8  if k= 4 (mod 27)

RR(x+y+kz=3w)={ 3413426 ff = 13 (mod 27)
SEHILENT if | = 92 (mod 27).

We prove the theorem by proving in Section 1 that the asserted values are
lower bounds for the true values, and in Section 2 that they are upper bounds.

For ease of exposition we refer to the two colors as red and blue. We some-
times write 7 € Ror j € B to indicate that j is colored red or blue, respectively.

1. Lower Bounds

To show that our asserted values M for RR(z + y + kz = 3w) are lower
bounds for the true values we must show that in every case there is a 2-coloring
of [1, M — 1] that contains no monochromatic solution to « + y + kz = 3w. The
colorings we use depend on the congruence class of £ (mod 9). The arguments in
this section do not require the restriction & ¢ {2, 3, 8}.

k =0,1, or 8 (mod 9):

Ifk = 0 (mod 9) then M—1 = £2£5% and we color [1, &] red and [ &3, E245k]
blue. From = + y + kz = 3w we obtain w > &2 for every solution, so w € B
and all monochromatic solutions are blue. But if z,y, z are in B then 3w >
(E23)(k+2)sow > ”—2"’3"—"‘6 > M — 1, which is impossible.

Ifk = 1 (mod9) then M — 1 = ¥£8k=5 and we color [1, £51] red and
(k2 K+dk=3) plye. If k = 8 (mod 9) then M — 1 = E'46k+5 5nd we color
[1, %+1) red and [&}4, £48k45) plue, The arguments to show that these colorings
work are virtually identical to that for k = 0 (mod 9).

k =5,6,0r7 (mod 9):

2 o
If k = 5(mod 9) then M — 1= 537542 and we color (1, &) red, &34,
2 A . .

K 48k=1] blue, and | k? +6k+8 "2+;’°—+ 3] red. Then for any solution with z, y, z all
blue, 3w > (%)(k + 2) so w must be red. Thus every monochromatic solution
is red.

For every such solution, w > hg"’f—s- (since w > %2 as above). We must
have z < &1, 50 if both z and y are < &£ then

k2 + 6k +8 k+1
-—’“g—i—ssws(%)(km)
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and therefore 6k + 8 < 3k + 2. Since this is impossible, at least one of z or y, say
2
z, must be at least £+8k+8
Since y + kz = 3w — z,

k2 +6k+8\ Kk2+7k+3 k2 + 7k k2
3 +6k+8\ K +7k+ <ytkz<3 +7k+3Y\ +6k+8,
9 9 9 9
ie., ) )
2k% + 11k + 21 <yihr< 2k? + 15k + 1
9 9
If 2 > 217 then y < 204 15k41 _ 27417k . =2kt1 < 0 which is impossible.

Soz < —'t— and therefore y > 2&% ““‘*‘21 — 2248k _ 3k421 5 kL Since we
are assuming y € R, this implies y > ——“‘8"—'*8.
] 2 2 .
Write z = K48kt o - K46ktb o) = Eibkic with g,b,c € 8,k + 3].
Since z + y + kz = 3w, k must divide 3¢ — a — b. But

18—2k<3¢c—a—-b<3k-7
and therefore 3¢=¢=% must be in [—1,2]. Since z = +—H—L——-& and k = 5 (mod
9), this implies that z is not an integer. So there are no monochromauc solutions.
For k = 6 (mod 9) we color [1, &] red, [££2, K456-3) pjue, and [KZ+Bkt6
"2+6’°] red. For k = 7 (mod 9) we color [1, 5] red, [££2, W] blue, and
[Eitdktd K245k=3) red Arguments essentially the same as that for k = 5 (mod
9) show that these colorings work.

k =2,3,0r4 (mod9):

If k = 20 (mod 27) we color (1,51 red, (k4 E2+6k+2] pye ang

2

[Elt6hill 3E+19k+13) reqd, As in the case k = 5 (mod 9) we see that every
monochromatic solution must be rezd.

For every such solution, w > £+8k+11 (again since w > ££2). Asfork =5

. 2
(mod 9) we argue that at least one of z or y, say z, is at least k—'t%'ﬁL“-. We then
2 2 3 2

have 3 (k +69k+ll) _ 3k +21)gk+1a <y+kz<3 (3k’+;s7)k+13) _ k2+69k+11’ so

6k? + 35k + 86 6k% + 39k + 6
—————— kz < ——mo—.
27 SyFREs 27
If z > 2kH14 thep y < SAT400k+6 _ 207414k = =3k+6 < 0, which is impossible.

2 3
Soz < 2’°+5 and thereforey > & "’35""‘86 g5k — 206186 o k4l Thys
Pkl
y2 —35—.

122



Write o = A36hta o — K248ktb o)) o Kibkte with g b,c € (11, ££12).
Sincez +y+ kz= 3w k must divide 3¢ — a — b. Since

73 -2k

<3-a-b<k-9

it follows that3c—a — b = 0. Butz = —"’ﬁ—%t and therefore z = k%ﬁ is not
an integer, because k£ = 2 (mod 9). Thus there are no monochromatic solutions.

The arguments for & = 2 or 11 (mod 27) are vnrtually the same, assuming
that k > 11 so that £28k+11 5 ng greater than 37 +19k+4 o IT410k=5  Tpjg
assumption is permnss:ble since a computer check reported in [5] estabhshes the
asserted value when k = 11. .

If k = 3 (mod 9) we color [1, £] red, [543, ££5k43] plye, and [M
M — 1] red, where M is the asserted value dependmg on the congruence class of
k (mod 27). If k = 4 (mod 9) we color [1, £51] red, [&$2, E244k=5] plue, and

[Lgk"’—, M — 1] red. The arguments are much the same as for k = 2 (mod 9).

2. Upper Bounds

To show that our asserted values M for RR(z + y + k2 = 3w) are upper
bounds for the true values we must show for each M that every 2-coloring of the
interval [1, M] admits a monochromatic solution to z +y -+ kz = 3w. In each case
we will assume that a 2-coloring of [1, M] that does not admit a monochromatic
solution has been given, letting R and B be the associated sets of red and blue
numbers, and then derive a contradiction. We will also assume that 1 € R, which
is no loss of generality because interchanging the sets of red and blue numbers
does not affect the existence of a monochromatic solution. Finally, since for k <
23 and not equal to 2, 3, or 8 our values of RR(x + y + kz = 3w) agree with
those established by computer in [5], we assume that k > 23 for the remainder of
this section.

The following result will be of use in every case. Quadruples always represent
solutions to x + y + kz = 3w.

Lemma. If M is one of our asserted values and a 2-coloring of [1, M] admits
no monochromatic solution to x + y + k2 = 3w and 1 € R with respect to that
2-coloring, then 1,2, ...,5 + 4 € Rand k,2k, ..., jk € B whenever j is a positive
integer such that jk < M.

Proof. Note that, since k > 23, jk < M implies j + 4 < k for each of our
asserted values M so that the sets {1,2, ..., + 4} and {k, 2k, ..., jk} are disjoint.

Suppose a 2-coloring satisfying the hypotheses of the Lemma has been given.
First we show that 2 € R. If 2 € B then the solution (2,k + 1,2, k 4 1) would
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show that £ + 1 € R, for otherwise it would be an all blue solution. Similarly,
(k+1,k+ 2,1,k + 1) would show that k + 2 € B and (3, 3,3, + 2) would
show that 3 € R and (2k, 2k, 2, 2k) would show that 2k € R, so we would get
(2k, 3,1,k + 1) as an all red solution, which is a contradiction. Thus 2 € R.
Now suppose j is a positive integer such that jk < M. If2 < i< j,i € R,
and ( — 1)k € B then i,tk < M and (ik, ik, %, k) and (ik, (¢ — 1)k,i + 1,ik)
show that ik € Bandi+ 1 € R. Since 2 € R and (k, k, 1, k) shows that k € B,
it follows that 1,2,...,5 + 1 € Rand k, 2k, ..., jk € B. To conclude the proof it
suffices to deal with the case j > 2, for then since 3k < M the result for j = 3
yields the result for j < 2. Butif j > 2 the solutions ((j—1)k, (j — 1)k, j +2, 7k),
(G =Dk, (G —2)k,7+3,5k),and ((7 — 2)k, (7 — 2)k, j + 4, jk) show that we
alsohavej + 2,7+ 3,7+4€R. ]

In most of the following cases, the full strength of the Lemma will not be
needed. In fact it is only in the the case k = 21 (mod 27) that we will use all of
the red numbers that the Lemma provides.

k =0,1, or 8 (mod 9):

If k = 0(mod 9) then M = E—i-g-ﬁﬁ. We see from the Lemma that 1,2, ..., £+
4 € Rand that k, 2k, ... "2 € B. Thus, since k > 23, we have 1,2,3 € R and
Kotk ok c g 50(1 2 1,5+1)and (3,3,1, 5 +2) showthat £ +1,5 +2 ¢
Band(§+1,§+2,§ + 1, EBk40) gives & +‘9’k"'9 €R. .

Next we show £ € Rand % € B. Were £ € Bthen (%,%, & +1, K£35%)

31373
2 2
and(’g, k& L"—) would show that &35& £42k ¢ Rand(——g';—‘lﬁ,%'—k, L

1, 45k would show that £44k ¢ B and so we would have the all blue solution

(k, & &, k2 +4k) Thus £ € R That 2 € B then follows from (';., Z L%

Nowweshowthat— -2€ Rand K "4"’ € B. From (k, k k 3 -2, kg ) we see
that £ — 2 € Rand &5 L “”“ € Bbecauseof(’;, kE-o kz““’

Fmally, we show that(’” sk 4k 21, 4)5 an all blue solution: (2, £ -
2,1,4 )shows that 4 € B, ('° +5k49 £ 12,2k 41, —"i"‘"—) shows that 2& 2"
1 € B,and (% > ,23'”, 29k 41, & ;5") and(——'g—-'i, &g:’—k, £+, —‘s')'—) show that
kl;‘,'sk € Rand £ k43 ¢ B. Thus we have a contradiction.

Ifk=1(mod9)then M = k—z'"g"—“. We see from the Lemma that 1,2, ...,
ksl 4 4 ¢ Rand that k, 2k, ..., 2% € B. So (1,1,1, &2) and (2, 2,2, Z54)
;?ow that &2 2k4d ¢ Band (&2 k2 k2 Eidkid) ghows that Etiktd ¢

Next we show that =1 k=T k=16 ¢ B Now K+26+6 ¢ B pecause of

3
2 2
(& j:ZkiG K +2Lie kis 4 +dktd) 5o (&'c:iﬂ,k_-gz,k_g_l,%ﬁ) shows that
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ksl € R. On the other hand (k, k, £57, ¥=k) and (2k, 3k, & k=16 K2ok) show
that ’°~7, =16 ¢ R (recall k > 23).

Fmally, (k :3k+47 k9|£7 2k;77 k2+3iﬂ) ’ (k;;;l) %$ k%l; k- gk—z) and
(5518, 1, 557, =813y ghow that (A=8k=13 2647 2kt7 A4k=2) js ap g)]
blue solution.

If k = 8 (mod 9) then M = gi%. We see from the Lemma that
1,2,... 5L + 4 € R and that k,2k,..., &% € B. Thus, since k > 23,
1. 5 € Rand(221 —"'—)and(551—+—)showlhat B4 k10 ¢ B
Then (_+_ _+_ _+_ iﬁkil )and(k +6k+14 k+92a 2k-1—11 k2+6k+l4) give
k2+6ki1 € Rand ﬁli e B making (k, K "17" k41 "2'*") an all blue so-

luuon

k =5,6,0r7 (mod 9):

Ifk = 5 (mod 9) then M = f—"%’“"ﬂ. We see from the Lemma that

1,2,. —‘1‘— + 4 € R and that k, 2k, . —2-+— € B. Therefore, since k£ > 23,
(2,2, 1 —"‘—) and (4 4,2, 248y show that l" 2£+8 ¢ B. Then the solutions
(_.j"_ _+_ _‘L. .__'t.cikJ'_) and (_'I"_ J'_g. -,Ej'_ _ﬁlc_'Ll.) show that M'_

2
——ik'*i € R Thus (E+7k+12 & +7’°'“2 ﬁ'— , E246k48 ) is an all red solutlon

If k = 6 (mod 9) then M —‘M We see from the Lemma that 1,2,.

E£3 4+ 4 € Rand that k, 2, . —'g— € B. Thus, since k > 23, (1,2,1, L)
(3 3,1,%448), and (1 2,2, -—+—) show that &f3 k46 2kt3 ¢ B Then we have
(k33,543 k43 ——"'—"‘—k Sk )and(—"ﬁ —'t—2 3 &-'-t— —+—+—6k ) showing that -—+—+—5k
and —"ﬁ are red Hence (Kl+8k+9 '°2+6’°+9 ﬂﬁ , K25kt6 ) i an all red so-

lution.
If k = 7 (mod 9) then M = ﬁ*g—"ﬂ. We see from the Lemma that 1,2, ...,

££2 1 4 € Rand that k, 2k, . i € B. Therefore (1,1,1, &%) and (2,2, 2,
J'_) show that _‘L _+_ eB Then (_ig. Eﬂ .lﬂﬁ .’f__‘ii;“'l'_.) and (__+_
kt2 k42 —"‘—" +5k )show that &2 tktd "2“*5"*6 € R So we see that(—"'——"’—f;’c &
—zj%k"'—"‘, %’—2, k—'i“%ki) is an all red solutlon.

)

k =2,3,or4(mod9):

If k = 2 (mod 27) then M = Lz"ig—'“""—l. We see from the Lemma that

1,2,....,%522 1+ 4 € R and that k, 2k,. ;2'“ € B. Therefore, since k >
23, (2,2, 1 by (5,5,1, —+—) and(3 4 1, 5£7) show that 444 &+10 k47 ¢
B Then (._'Lo E‘.t_o ﬁ'_ M) and(_'!'_ _'fﬁ k+4 M)showthat

2
k +§k+11 M:Gk’f-?o c R TheSOIUIIOHS( i 4 1 10k+61)and(k:-516’ kig ,1’
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lk;t3 )ShOW that 10k+61 llk+32 € B SO( ij;ﬁ lll;+32 k i19ki3 )

shows that Q"—iwl € R Hence we have the all red soluuon (—j%’fil—,

k2+sk+2o k+7 3k’+19k+31)
) 27

k= 11 (mod 27) then M = 3+19k+22  Aq pefore 1,. % € R,
&3& € B, and k’+69k+11 € Rand so(k+7 .1, 10k+52) (k+7 k 71, 11k+14)
and (106£52 114 kid 37+19k+22) jead to the all red solutlon (—“'%""i
k246k4+11 k7 3k2i19ki22)

9 19 37 .

If k = 20 (mod 27) then M = &2"‘;?"—“0. Asbefore 1,..., 5434 ¢ B ki ¢

k24+6k+20 k425 10k4-70 k+25 k425 11k+50
B, and £+8:+20 ¢ R and so (%£2,5,1, 10470 (k420 k428 q 11k450),
(10k+70 11k+50 k+4 3k°
3

and , "’19"+4°) provide us with the all red solution
( +6kiz ;tek;tzo _k_ﬂ 3k2+19ki4 ).

If k= 3 (mod 27) then M = 3+16k+33  We see from the Lemma that
1,2,.., — + 4 € R and that k, 2%, .. ‘3’° € B. Therefore, since k& > 23,
(1,2,1, —SL), (4,5,1,%52), and (6,6, 1, k*;”) show that &£3 k49 k+12 ¢ p
and (B2 k412 k43 EC4Sk+21) shows that —‘*‘—k2+59'° 2l ¢ R. Then (&£3, &£

2 2
kj:33, k +59kj;12) shows that k iSkilZ € Rand (k+24 , 6, 1, 10/;-;78 )’ (k-ié24 , k;S,

2 . .
1, 116421 anq (10AE78, “k“l, ki3 3k +16k+33) provide the all red solution

27 3
(k2+5ki12 k245k+21 k+6 3k%+ +16k+33)
9 ] ) 179 27 21 e e
If k = 12 (mod 27) then M = 3E+I8k+24 - Ag before 1, ..., 5432 ¢ R,

2
kf3 ¢ B, and E48kH12 ¢ Rgo (AL1S 3 1, 106442y (ktls k+lo 1, Llks30)
10k+42 11k4-30 k+3 3k%+16k+24 k2 45k412 k2+5k+12 k+6
angi( SE o Tar g, gy ) show that (SRS, B, 22,
8k~ +16k+24 ) 5 an all red solution.

If k = 21 (mod 27) then M = ¥L+16k+42  Ag pefore 1,2,..., 543 ¢ R,
k_-:;;_s € B, and k‘isgk+21 € Rso (k-;s 6 1, 10k+60)’ (k+33’ "*533,1, 111;47-66),

27 9
10460 11k+66 k+3 3k2+16k442 : k% 45k421
and (55, 25522, 5, 57 ) provide the all red solution (=52,
k’+5k+21 k+6 3k2+16k+42)
* 9

If k = 4 (mod 27) then M = 8k'+13k+8  We see from the Lemma that
1,2,... %4 4 4 € Rand that k,2k, ..., 5% ¢ B. Therefore (1,1,1, ky2)

2
shows that k2 ¢ B, (&2, 542 k2 k K +dk+4) gives +4k44 ¢ R and hence
k414 10k+32 kot ke 4 11 Lok+32 11k-8 k2 3413k
(62,1, 557 (557 1 =8), and (105#32 Lik-8 k42, +2)
k2+4k+4 i4k+4 k+5 3k’+13k+8)
9 .9 oo —ar )

Iead to the all red solutnon (

If Kk = 13 (mod 27) then M = &g”ﬁ. As before 1,2,..., 532 ¢ R
and kaﬁ € B. Thus (2,3,1,"—;‘;—5) and (4,4, 1,%) give 5%'—5-, 5—':','—8- € B and
(k%S’ kLSS’ lw;_z k2:|:4k113) gives k’i4ki13 € Rand hence("’““ 5,1, wkisg)

2
(k-sl;5’ k-;lll , 1, llk+19) and (10k+59 lll;+19’ k-:{3-2, 3k +13k+26) yleld the all red
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solution (E2t4k+13 K +dk+13 kis 3k°+13k+26)

If k = 22 (mod 27) then M = 32+18k+1T Aqpefore 1, ..., ££32 ¢ R, k42 ¢
B, and k2+gk+4’ k2+49k+13 € R. Therefore (ki9§,3, 1,10k432y " (kiS kild g
Lk419) and (106432 LIk419 k42, 32 +18k+17) provide us with the all red so-
lution (’“2*“3#, ﬁﬂ;i:_lé, kts 3k2;t;?kil7).
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