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Abstract
We correct and improve results from a recent paper by G. Ren and U.
Kahler, which characterizes the Bloch, the little Bloch and Besov space
of harmonic functions on the unit ball B C R".

1. INTRODUCTION

Throughout this paper B(a,r) = {z € R" |}z — a| < r} denotes the open
ball centered at a of radius r, where |z| denotes the norm of r € R™, B the
open unit ball in R*, rB = B(0,r), S = 8B = {z € R"||z] = 1} is the
boundary of B, S, = {z € R" | |z| = r}, dV the Lebesgue measure on R",
dVi(z) = (1 — |z|?)*dV(z), d7(x) = dV_np(z), do the surface measure on S, and
H(B) the set of all harmonic functions on B (see, e.g., [2]-(7], (10]-[15]. [18]-[20]).

Let Z} be the set of all ordered n-tuples of nonnegative integers, and for
eachy=(n,...,m) €L, let [yl =m + -+ 2 and v = 3! - 3,!. For a

171y
harmonic function u we denote Ou= —,?

3_6""—
The harmonic a-Bloch space BH®(B), & > 0 consists of u € H(B) such that
sup (1 - |2[*)*|Vu(z)| < oo,
{zj<1

and the harmonic little a-Bloch space BHG(B) consists of all u € H(B) such
that limyz—; (1 — |z|2)*|Vu(z)| = 0.

The harmonic Besov space B, (sec (8] for analytic) consists of all u € H(B)
such that

/ (1 - |z]?)P|Vu(z)|Pdr(z) < oo.
B

In paper [11] the authors anticipated and formulated the following result:
Theorem A. Assume that u € H(B). Then the following statements are true.
(a) v e BH'(B) if and only if

u(x) - u(y
sup (1 _ !x|2)l/2 1 - |y| )l/2| ( ) ( )l
T.y€EB,x#Y |z — yi
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(b) v € BH}(B) if and only if

li 1— 2221 - 21/2|_1_£E_)_L(y)|=0.
poaim (1= 12575 - )

lz -yl
(c) If pe (2(n—1),00). Then u € B, if and only if
[ [a-tprra-wprt = @y, o)

Our aim here is to improve and correct Theorem A. Namely, in [11] is used
the technique related to hyper-harmonic functions, which is not quite suitable for
harmonic functions. For example, in the proof of Theorem A (a) ([11, Theorem
3.1)), it is claimed that for § € (0,1) fixed, if » is harmonic, from [9, p. 504] it
follows that there is a positive constant C such that

(1 - |eP)|Vu(z)| < C /E ), (2)

where E(z,d) is the image of the ball B(0,4) mapped by

_le=afa-(1-leP)(z - a)
A L

a,z € R", (3)

the involutive Mobius transformation of B such that ¢(0) = lim._.0 po(z) = a
(see [1] for more details on the topic). However, paper [9] is devoted to the
space of holomorphic functions on C", so that these Mobius transformations
are not the same as those in the real n-dimensional space R". Hence, the paper
[11] confuses these two classes of M6bius transformations. In fact, inequality (2)
can be obtained from a similar estimate for harmonic functions on Euclidean
balls and by using Mébius transformations. To avoid such confusion, it is more
convenient to use Euclidean balls only, as we do in our Theorem 1. Further,
there is a gap in the proof of Lemma 4.2 in [11], so that the proof is not complete.
Namely, the function h(p) = (o*~V/?M,(p, |V f])/(1—p) is replaced in a Hardy
inequality and obtained the integral

/ |V f(a)|PdVaqi(z) instead of the requested / IV f(e)|PdVpia(z),
B B

which is not appropriate for proving Theorem 4.1 in [11].

Another gap in (11] appears in the proof of Theorem 4.1. Namely, if we
assume that Lenima 4.2 in [11] is true, then we must note that in the proof of
the lemma is used the harmonicity of the function f which appear therein (see
incquality (4.3) in [11]). On the other hand, in the proof of Theorem 4.1 the
function f is replaced by f o v, which need not be a harmonic function for the



case of n > 3. Indeed, for the case of the conformal metric ds = p|dV(zx)|, the
Laplace-Beltrami operator is

Dof(z)=p"") % ( n-22f (x))
4 i=1 "

which for the weight p = 2/(1 — |z]?) becomes

_ 2y2
dafte) = LB (aga) 4 22225 Z 5@,

from which the claim easily follows.
Throughout the remainder of the paper, C will denote a constant not nec-
essarily the same at each occurrence.
2. AUXILIARY RESULTS

In this section we quote three auxiliary results which we use in the proofs of
the main results.

Lemma 1. Assume that 8 € (0,1). Then for every z,y > 0, the following
inequality holds
1 B8 1 1-8 5 1-p
: >(=) (— -8,
”y*(ﬁ) (l—ﬂ) oY

Proof. If, in Holder’s inequality
ab< aP/p+ ¥ /P,

where a,b > 0, p,p’ > 1 and 1/p + 1/p' = 1, we choose p = 1/8, a = (z/8)"
and y = (y/(1 — B))'~?, we obtain the desired inequality. O

Lemma 2. Assume that u € H(B) and p € (0,00). Then there is a positive
constant C independent of u such that

/ [u(x)[PdVa(x) < C (|u(0)|” +/ [Vu(z)|P(1 - IJEI)PdV;\(.’l‘)) . €))]
B B

For a proof of the result, see, for example, [7] and [18]. Closely related
results on the mixed norm spaces and weighted Bergian spaces of analytic or
harmonic functions of one or several variables can be found, for example, in
{2,3,6,9, 10, 12, 13, 16, 17, 19, 20, 21] (see, also, the references therein).

We say that a locally integrable function f on B posscsses the H L—property,
with a constant ¢ > 0 if

fla) < Ln / f(x)dV (x) whenever B(a,7) C B.
™ JBa.r)



For example, every subharmonic function ([4]) possesses the H L—property with
¢ = 1/v,. In [5] Fefferman and Stein proved that |u|”, p > 0, also possesses the
H L—property whenever u is a harmonic function in B.

Using Fefferman-Stein’s result it follows that the following result holds true:

Lemma 3. Let p € (0,00) and v be a multi-index. Suppose u is harmonic on a
proper open subset G of R". Then, we have

c
Mux)|P € oy
|87u(z)| dn+Ph\(z,8G) Jp(z,d(z,66)/2)

where d(x,dG) denotes the distance from z to the boundary 8G. The constant
C depends only on n,p and v.

fu()FdV(y) (z€G),

3. MAIN RESULTS

In this section we prove the main results in this paper. The first is an
extension of [11, Theorem 3.1] for the case of harmonic a-Bloch functions.

Theorem 1. Assume that u € H(B) and o < min{1/8,1/(1 — 8)}, for some
B € (0,1). Then the following statements hold true.

(e) u € BH*(B) if and only if

_ ulr)—u
sup  (1—[zf)0(1 - oo R =MWl o )
z,y€ B.x#y |z — yl

(b) v e BHF(B) if and only if

li 1 — [2[2)*B(1 = |y[2)21-) fu(z) — u(y)| =0 6
|m|-.|,,’,'e"13.r¢y( Jz[*)*(1 = |yI*) EE (6)

Proof. First, assume that u € BH®(B). Let I, ,(t) = tx + (1 — t)y. We have

1 1 n
o) -ty = [ Gluttey@it =[S Gme - m g eyt @

By the Cauchy-Schwarz inequality and the definition of a-Bloch function, we
have
dt

1 1
lu(z) - u(y)I <= - 9l /0 I(Vu)(l;c,y(t))ldtSllullsolm—ylfo e ©

Since 1 — [tz + (1 —t)y| 2 1~ t|z| — (1 = &)|y| = (1 ~ [=[) + (1 — e)(1 — |y]). by
Lemma 1, it follows that, for every t € [0,1], =,y € B and 3 € (0,1)

1 afd 1 «(1-8) 4
(3) (5) =00 =1 = e < (1= o). )



From (8) and (9), when z # y, we obtain

- aBrq a(1-8) |u( ) u(y)l B(l a(l ﬁ)a 1- a:@)
(1= =" (1 - Jyl) eoa S < Jlullge Foh(1 = g)aET (10)
Since a < min{1/8,1/(1 — B)}, it follows that the integral in (10) converges.
Taking the supremum in (10) over all z,y € B, = # y, we obtain that the
condition (5) holds.

Now, assume that (5) holds. By Cauchy’s cstimate ([4]) we have

C
[Vu(z)l < sup u(y) — u(z)l, (11)
1~ 2l yeBiz1-1e)/2)
for some positive constant C independent of u.
From (11) and since
1 3
lz -yl < 5~ o) 1=yl < 5(1 - |2]), (12)

when y € B(z, (1 — |z])/2), we have
1— 2yafBry _ 2ya(1-8)
(1= PP IVu@ISC  sup fule) - uly) D)
y€B(z,(1-1)/2) lz -yl
Taking the supremum in (13) over z € B, we obtain that u € BH". as desired.
(b) The proof of this part of the theorem is similar to the proof of Theoremn
3.2 in [11], hence, it will be omitted. O

Remark. Note that in the proof of necessity of Theorem 1 we only use the
fact u € C()(B), hence, the harmonicity does not play any important role in
the part of the proof. Note also that maxge(o.1) min{1/4,1/(1 — )} = 2 which
implies that a € (0, 2).

Now, we address the mistake made in the proof of Lemma 4.2 in [11]. Actu-
ally, they essentially wanted to prove a more direct inequality contained in the
following theorem (see the last inequality in (11, p. 753]).

Theorem 2. Assume that u € H(B) and p € (0,00). Then there is a positive
constant independent of u such that

/ le(@) —wOF 2y < / (1 = [eP)?| V() PdVa(z). (14)
B

|z|P

.(13)

Proof. Denote the first integral in (14) by /. Then, by Lemina 2 and some
simple estimates (see, (18, Lemma 4]), we have

I = / [w(z) — u(O)Ipan(:r) +/ Ju(x) — u(o)lpd\/},(a‘)
|zI<1/2 /2<]zl<1

e D

< C sup |Vu(x)|"+2”/ |w(zx) = u(0)|PdV,\(x)
lz|<1/2 B

< ¢ a-EPrVaE@prde. O
B



Although Theorem 2 surmounts the gap in [11, Lemma 4.2], we will not
prove Theorem 4.1 in [11], i.e., Theorem A (c). Hence the statement is left un-
confirmed and is a good conjecture for the experts in the research arca. Instead
of that we prove the following closely related result.

Theorem 3. Assume that u € H(B), o, € (0,1), a+ 8 =1 and p €
((n — 1)/B,00). Then u € B, if and only if

Sy g0~ o0 peps L= arpare). s)

Proof. By Lemma 3 applied to the function u(y) — u(z), and (12), we have

c
(-l Vu)lP S o /B(z‘,ﬁ.ﬂ)

ey 2y ) < WP
e P e e TR G

[u(z) — u(y) [PV (y)

Multiplying (16) by d7(z), then integrating over B, we obtain
[ - lerivue)rdrz)

$ O f [y loPF70 - P MO ),

from which it follows that (15) implies u € B,.
Let I be the integral in (15). Then from (12), by applying Lemma 3 to the
partial derivatives of u with a = 0, and some simple estimates, we have

(1 Jo2)r—m
I <c / ol () - w(y)l? /H (epm) o @)
< c / o (1 - )" Vu(y)Pdr(z)
yeB x—P
<cf / (o sy~ WPIVUOP a2

< ¢ a-wyreur [ e, VW)

< c /B (1 ~ )P IVu()Pdr(y),

where in the last inequality we have used the fact that the set A(y) C {y ||+ -
y| < 1 = |yl}. from which it follows that the quantity fxe, Al) dr(zx) is bounded



and where in the second inequality we have used the formula
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