Dominating cycles in graphs with high connectivity

Masao Tsugaki

Department of Mathematical Information Science, Science University of Tokyo 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan e-mail: tsugaki@hotmail.com

Tomoki Yamashita

College of Liberal Arts and Sciences, Kitasato University 1-15-1, Kitasato, Sagamihara 228-8555, Japan e-mail: tomoki@kitasato-u.ac.jp

Abstract

Let G be a graph and let $\sigma_k(G)$ be the minimum degree sum of an independent set of k vertices. For $S \subset V(G)$ with $|S| \geq k$, let $\Delta_k(S)$ denote the maximum value among the degree sums of the subset of k vertices in S. A cycle C of a graph G is said to be a dominating cycle if $V(G \setminus C)$ is an independent set. In [2], Bondy showed that if G is a 2-connected graph with $\sigma_3(G) \geq |V(G)| + 2$, then any longest cycle of G is a dominating cycle. In this paper, we improve it as follows: if G is a 2-connected graph with $\Delta_3(S) \geq |V(G)| + 2$ for every independent set S of order $\kappa(G) + 1$, then any longest cycle of G is a dominating cycle.

Keywords: degree sum, longest cycle, dominating cycle

1 Introduction

In this paper, we consider only finite undirected graphs without loops or multiple edges. We denote the degree of a vertex x in a graph G by $d_G(x)$. Let $\delta(G)$, $\alpha(G)$ and $\kappa(G)$ be the minimum degree, the independence number and the connectivity of a graph G, respectively. If $\alpha(G) \geq k$, we define

$$\sigma_k(G) = \min\{\sum_{x \in X} d_G(x) \colon X \text{ is an independent set of } G \text{ with } |X| = k\};$$

if
$$\alpha(G) < k$$
, we set $\sigma_k(G) = +\infty$. For $S \subset V(G)$ with $|S| \ge k$, let $\Delta_k(S) = \max\{\sum_{x \in X} d_G(x) : X \subset S, |X| = k\}$. If $\alpha(G) \ge r$, we define

$$\sigma_k^r(G) = \min\{\Delta_k(S) \colon S \text{ is an independent set of } G \text{ with } |S| = r\};$$

if $\alpha(G) < r$, we set $\sigma_k^r(G) = +\infty$. Note $\sigma_k(G) = \sigma_k^k(G)$. If no ambiguity can arise, we often simply write δ , κ and σ_k^r instead of $\delta(G)$, $\kappa(G)$ and $\sigma_k^r(G)$, respectively.

The following is a classical result due to Dirac (1953) in hamiltonian graph theory.

Theorem 1 (Dirac [5]) Let G be a graph of order $n \geq 3$. If $\delta \geq n/2$, then G is hamiltonian.

In 1960, Ore introduced a degree sum condition for a graph to be hamiltonian.

Theorem 2 (Ore [7]) Let G be a graph of order $n \geq 3$. If $\sigma_2 \geq n$, then G is hamiltonian.

In [9], the second author gave a degree sum condition for a graph with high connectivity.

Theorem 3 Let G be a connected graph on n vertices. If $\sigma_2^{\kappa(G)+1} \geq n$, then G is hamiltonian.

A cycle C of a graph G is said to be a dominating cycle if $V(G \setminus C)$ is an independent set. In 1971, Nash-Williams gave a minimum degree condition for a dominating cycle.

Theorem 4 (Nash-Williams [6]) Let G be a 2-connected graph on n vertices. If $\delta \geq (n+2)/3$, then any longest cycle of G is a dominating cycle.

In 1980, Bondy gave a degree sum condition.

Theorem 5 (Bondy [2]) Let G be a 2-connected graph on n vertices. If $\sigma_3 \geq n+2$, then any longest cycle is a dominating cycle.

In 2005, Lu, Liu and Tian showed the extension of Theorem 5.

Theorem 6 (Lu et al. [8]) Let G be a 3-connected graph on n vertices. If $\sigma_4 \geq \frac{4}{3}n + \frac{5}{3}$, then any longest cycle is a dominating cycle.

In this paper, we prove the following result.

Theorem 7 Let G be a 2-connected graph on n vertices. If $\sigma_3^{\kappa(G)+1} \ge n+2$, then any longest cycle of G is a dominating cycle.

Theorem 7 is best possible in a sense. Let $k \geq 2$ be an integer. Consider the graph $G_1 = K_k + (k+1)K_2$. Then $\kappa(G_1) = k$ and $\sigma_3^{k+1}(G_1) = |V(G_1)| + 1$, but no longest cycle of G_1 is a dominating cycle.

On the other hand, Theorem 7 implies Theorems 5 and 6. If $\sigma_3 \geq n+2$, then $\sigma_3^{\kappa(G)+1} \geq \sigma_3 \geq n+2$. If $\sigma_4 \geq \lceil \frac{4}{3}n+\frac{5}{3} \rceil$, then $\sigma_3^{\kappa+1} \geq \sigma_3^4 \geq \frac{3}{4}\sigma_4 \geq n+\frac{5}{4}$ and so $\sigma_3^{\kappa+1} \geq n+2$ since $\sigma_3^{\kappa+1}$ is an integer. Actually Theorem 7 is strictly stronger than Theorems 5 and 6. There exist many graphs which satisfy the condition of Theorem 7 not that of Theorems 5 and 6. For example, let $k \geq 3$, $m \geq 3$ and let $G_2 = K_k + (K_1 \cup (k-1)K_2 \cup K_m)$. Then $\sigma_3^{k+1}(G_2) = 3k + m + 1 = |V(G_2)| + 2$ and so any longest cycle of G_2 is dominating, but G_2 does not satisfy the condition of Theorems 5 and 6, since $\sigma_3(G_2) = 3k + 2 < |V(G_2)| + 2$, $\sigma_4(G_2) = 4k + 3 < \frac{4}{3}|V(G_2)| + \frac{5}{3}$ if $k \geq 4$ and $\sigma_4(G_2) = m + 13 < \frac{4}{3}|V(G_2)| + \frac{5}{3}$ if k = 3.

2 Proof of Theorem 7

For standard graph-theoretic terminology not explained in this paper, we refer the reader to [3]. We denote by $N_G(x)$ the neighborhood of a vertex x in a graph G. For a subgraph H of G and a vertex $x \in V(G) \setminus V(H)$, we also

denote $N_H(x) := N_G(x) \cap V(H)$ and $d_H(x) := |N_H(x)|$. For $X \subset V(G)$, $N_G(X)$ denote the set of vertices in $G \setminus X$ which are adjacent to some vertex in X. Furthermore, for a subgraph H of G and $X \subset V(G) \setminus V(H)$, we sometimes write $N_H(X) := N_G(X) \cap V(H)$. If there is no fear of confusion, we often identify a subgraph H of a graph G with its vertex set V(H). For example, we often write $G \setminus H$ instead of $G \setminus V(H)$. We write a cycle G with a given orientation by G. For G is denoted by G a path from G to G on G. The reverse sequence of G is denoted by G and G is denoted by G is

Proof of Theorem 7. Let C be a longest cycle in G. If C is a dominating cycle, then there is nothing to prove, and so we may assume that there exists a component H of $G \setminus C$ with $|V(H)| \geq 2$. Let $N_C(H) = \{u_1, \ldots, u_k\}$. Note that $k \geq \kappa(G)$. Without loss of generality, we may assume that u_1, \ldots, u_k appear in this order along \overrightarrow{C} . Let $u_i' \in N_H(u_i)$ for $1 \leq i \leq k$. A vertex $u \in u_i^+ \overrightarrow{C} u_{i+1}^-$ is insertible if there exist vertices $v, v^+ \in u_{i+1} \overrightarrow{C} u_i$ such that $uv, uv^+ \in E(G)$; then $vv^+ \in E(C)$ is an insertion edge of u. Let $I(u) = \{e \in E(C) : e \text{ is an insertion edge of } u\}$.

Claim 1 There exists a non-insertible vertex in $u_i^+ \overrightarrow{C} u_{i+1}^-$ for $1 \le i \le k$.

Proof. Suppose not, that is, every vertex of $u_i^+ \overrightarrow{C} u_{i+1}^-$ is insertible. Let $u_i' P u_{i+1}'$ be a path in H. Set $C_0 := u_i \overleftarrow{C} u_{i+1} u_{i+1}' P u_i' u_i$ and $v_0 := u_i^+$. For $j \ge 1$, define the graph C_j such that

$$\begin{array}{lll} V(C_j) &:= & V(C_{j-1}) \cup V(v_{j-1} \overrightarrow{C} v_j^-) \ \ \text{and} \\ E(C_j) &:= & E(C_{j-1}) \setminus \{w_{j-1} w_{j-1}^+\} \cup E(w_{j-1} v_{j-1} \overrightarrow{C} v_j^- w_{j-1}^+), \end{array}$$

where $w_{j-1}w_{j-1}^+ \in I(v_{j-1})$ and $v_j^- \in v_{j-1}\overrightarrow{C}u_{i+1}^-$ such that (i) $w_{j-1}w_{j-1}^+ \in I(v_j^-)$ and (ii) $|v_{j-1}\overrightarrow{C}v_j^-|$ is as large as possible, subject to (i). By the choice of v_j , $w_jw_j^+ \neq w_hw_h^+$ for any h, $0 \leq h \leq j-1$. Hence we can easily see C_j is a cycle for any j. Since there exists r such that $v_r = u_{i+1}$, C_r is a longer cycle than C, a contradiction. \square

Let x_i be the first non-insertible vertex along $u_i^+ \overrightarrow{C} u_{i+1}^-$ for $1 \le i \le k$. Without loss of generality, we may assume that $d_G(x_1) = \max\{d_G(x_i): 1 \le i \le k\}$. Since $|V(H)| \ge 2$, we can choose $x_{k+1} \in V(H) \setminus \{u_1'\}$. Suppose $N_H(u_1) = \{u_1'\}$. Then $N_C(H \setminus u_1') \cup \{u_1'\}$ is a cut set, and so $|N_C(H \setminus u_1') \cup \{u_1'\}| \ge \kappa$. Let $X = \{x_i : u_i \in N_C(H \setminus u_1')\} \cup \{x_1, x_{k+1}\}$. Since $u_1 \notin N_C(H \setminus u_1')$, $|X| \ge \kappa + 1$. If $|N_H(u_1)| \ge 2$, then let $X := \{x_1, x_2, x_3, \ldots, x_{k+1}\}$. In either cases, X is an independent set by the following claim (see [1], [4]).

Claim 2 There exists no C-path joining a vertex of $u_i^+ \overrightarrow{C} x_i$ and a vertex of $u_i^+ \overrightarrow{C} x_j$ for $1 \le i \ne j \le k$.

Hence there exist $x_s, x_t \in X$ $(2 \le s < t \le k+1)$ such that

$$d_G(x_1) + d_G(x_s) + d_G(x_t) = \Delta_3(X) \ge |V(G)| + 2. \tag{1}$$

Later, we use the following claims.

Claim 3 For each $v \in \{u'_s, u'_t, x_{k+1}\}$, there exists $u''_1 \in N_H(u_1)$ such that $u''_1 \neq v$.

Proof. Let $v \in \{u'_s, u'_t, x_{k+1}\}$. Suppose $|N_H(u_1)| \geq 2$. Since $N_H(u_1) \setminus \{v\} \neq \emptyset$, there exists $u''_1 \in N_H(u_1)$ such that $u''_1 \neq v$. If $|N_H(u_1)| = 1$, then $u'_1 \neq u'_s, u'_t, x_{k+1}$ by the definition of X. Hence u'_1 is a desired vertex. \square

Claim 4 For $1 \le i \ne j \le k$, the following statements hold.

- (i) For any $u \in V(u_i^+ \overrightarrow{C} x_i)$ and $v \in V(u_j^+ \overrightarrow{C} x_j)$, $N_C(u)^- \cap N_C(v) \cap V(x_i^+ \overrightarrow{C} u_j) = \emptyset$.
- (ii) For any $w \in V(H)$, $N_G(x_i)^- \cap N_G(w) \cap V(x_i^+ \overrightarrow{C} u_i) = \emptyset$.
- (iii) If $u_i' \neq u_j'$, then $N_C(x_i)^- \cap N_C(x_j)^+ \cap V(x_i^+ \overrightarrow{C} u_j) = \emptyset$.
- (iv) If $w \in V(H) \setminus \{u_i'\}$, then $N_G(x_i)^- \cap N_G(w)^+ \cap V(x_i^+ \overrightarrow{C} u_i) = \emptyset$.

Proof. The statements (i) and (ii) are proved in [1],[4], and so we omit the proofs. We show the statement (iii). Let $u_i'Pu_j'$ be a path in H. Suppose, to the contrary, that $a \in N_C(x_i)^- \cap N_C(x_j)^+ \cap V(x_i^+ \overrightarrow{C} u_j)$. Then

 $u_i \overleftarrow{C} x_j a^- \overleftarrow{C} x_i a^+ \overrightarrow{C} u_j u_j' P u_i' u_i$ is a cycle. By the statement (i), we may assume $a^- a, a a^+ \not\in I(u)$ for any $u \in V(u_i^+ \overrightarrow{C} x_i \cup u_j^+ \overrightarrow{C} x_j)$, then we can obtain a cycle C' containing $V(C) \setminus \{a\} \cup \{u_i', u_j'\}$. Then C' is a longer cycle than C since $u_i' \neq u_j'$. Hence we obtain the statement (iii). By the similar argument, we can prove the statement (iv).

Now we divide our argument into two cases.

Case 1. $x_t \neq x_{k+1}$.

Let $C_1 := u_1^+ \overrightarrow{C} x_1$, $C_2 := x_1^+ \overrightarrow{C} u_s$, $C_3 := u_s^+ \overrightarrow{C} x_s$, $C_4 := x_s^+ \overrightarrow{C} u_t$, $C_5 := u_t^+ \overrightarrow{C} x_t$, and $C_6 := x_t^+ \overrightarrow{C} u_1$. By Claim 2, $N_{C_1}(x_s) = \emptyset$ and $N_{C_1}(x_t) = \emptyset$. Clearly, $N_{C_1}(x_1) \subset V(C_1) \setminus \{x_1\}$. Therefore $d_{C_1}(x_1) + d_{C_1}(x_s) + d_{C_1}(x_t) \leq |V(C_1)| - 1$. Similarly, for i = 1, 3, 5, we have

$$d_{C_i}(x_1) + d_{C_i}(x_s) + d_{C_i}(x_t) \le |V(C_i)| - 1.$$
(2)

Clearly, $N_{C_2}(x_1)^- \cup N_{C_2}(x_s)^+ \cup N_{C_2}(x_t) \subset V(C_2) \cup \{x_1, u_s^+\}$. On the other hand, by Claim 4 (i), $N_{C_2}(x_1)^- \cap N_{C_2}(x_t) = \emptyset$ and $N_{C_2}(x_s)^+ \cap N_{C_2}(x_t) = \emptyset$. By Claims 3 and 4 (iii), $N_{C_2}(x_1)^- \cap N_{C_2}(x_s)^+ = \emptyset$. Similarly, by considering $N_{C_6}(x_t)^-$, $N_{C_6}(x_1)^+$ and $N_{C_6}(x_s)$, for i = 2, 6 we obtain

$$d_{C_i}(x_1) + d_{C_i}(x_s) + d_{C_i}(x_t) \le |V(C_i)| + 2.$$
(3)

If $u_s' \neq u_t'$, then we also have $d_{C_4}(x_1) + d_{C_4}(x_s) + d_{C_4}(x_t) \leq |V(C_4)| + 2$. However, it is possible that $u_s' = u_t'$, and so we especially prove the following claim.

Claim 5 $d_{C_4}(x_1) + d_{C_4}(x_s) + d_{C_4}(x_t) \le |V(C_4)| + 2$.

Proof. Assume that $N_{C_4}(x_1) = \emptyset$. Then $N_{C_4}(x_s) \cup N_{C_4}(x_t)^+ \subset V(C_4) \cup \{u_t^+\}$. This leads the desired inequality by Claim 4 (i). Hence $N_{C_4}(x_1) \neq \emptyset$, and let $N_{C_4}(x_1) := \{w_1, w_2, \ldots, w_r\}$. Without loss of generality, we may assume that w_1, \ldots, w_r appear in this order along \overrightarrow{C} . If $w_1 = x_s^+$, then $u_s \overrightarrow{C} x_1 x_s^+ \overrightarrow{C} u_1 u_1' P u_s' u_s$ is a cycle, and we can obtain a cycle containing $V(C) \setminus \{x_s\} \cup \{u_1', u_s'\}$, a contradiction. Therefore $w_1 \neq x_s^+$. Let $w_0 := x_s^+$ and $w_{r+1} := u_t^+$ and let $D_i := w_i \overrightarrow{C} w_{i+1}^-$ for each $i, 0 \leq i \leq r$. Then, by Claim 4 (i), $N_{D_i}(x_s) \cap N_{D_i}(x_t)^+ = \emptyset$ for each $i, 1 \leq i \leq r$. Since $N_{D_r}(x_s) \cup N_{D_r}(x_t)^+ \subset V(D_r) \cup \{u_t^+\}$, we obtain

$$d_{D_r}(x_s) + d_{D_r}(x_t) \le |V(D_r)| + 1.$$

By Claim 4 (i), $w_{i+1} \notin N_{D_i}(x_t)^+$ for every $i, 0 \le i \le r-1$. Therefore $N_{D_0}(x_s) \cup N_{D_0}(x_t)^+ \subset V(D_0)$, and so we get

$$d_{D_0}(x_s) + d_{D_0}(x_t) \le |V(D_0)|.$$

Since x_1 is a non-insertible vertex, $|V(D_i)| \ge 2$ for all $i, 1 \le i \le r-1$. Let $I_2 := \{i : 1 \le i \le r-1, |V(D_i)| = 2\}$ and $I_3 := \{i : 1 \le i \le r-1, |V(D_i)| \ge 3\}$. By Claim 4 (i), $w_i^+ \notin N_{D_i}(x_s)$ for $i \in I_2$. By Claims 4 (i) and (iii), $w_{i+1}^{-2}, w_{i+1}^- \notin N_{D_i}(x_t)$ for $i \in I_2$. Hence $d_{D_i}(x_s) + d_{D_i}(x_t) \le 1 = |V(D_i)| - 1$ for all $i \in I_2$.

By Claims 4 (i) and (iii), $w_i^+, w_i^{+2} \notin N_{D_i}(x_s)$ for $i \in I_3$. Since x_t is a non-insertible vertex, $\{w_i^+, w_i^{+2}\} \not\subset N_{D_i}(x_t)^+$ for $i \in I_3$. For each $i \in I_3$, we define

$$w_{i}^{*} = \begin{cases} w_{i}^{+} & \text{if } w_{i}^{+} \notin N_{D_{i}}(x_{t})^{+}, \\ w_{i}^{+2} & \text{if } w_{i}^{+} \in N_{D_{i}}(x_{t})^{+}. \end{cases}$$

Then $N_{D_i}(x_s) \cup N_{D_i}(x_t)^+ \subset V(D_i) \setminus \{w_i^*\}$ and so $d_{D_i}(x_s) + d_{D_i}(x_t) \leq |V(D_i)| - 1$ for all $i \in I_3$. Therefore, for all $i, 1 \leq i \leq r - 1$, we get

$$d_{D_i}(x_s) + d_{D_i}(x_t) \le |V(D_i)| - 1.$$

Thus we have

$$d_{C_4}(x_s) + d_{C_4}(x_t) \leq |V(D_0)| + \sum_{i=1}^{r-1} (|V(D_i)| - 1) + |V(D_r)| + 1$$
$$= |V(C_4)| - r + 2.$$

From $d_{C_4}(x_1) = r$, we obtain the desired inequality. \square

By Claim 2, $N_{G\setminus C}(x_1)$, $N_{G\setminus C}(x_s)$ and $N_{G\setminus C}(x_t)$ are pairwise disjoint. Since $|V(H)| \geq 2$ and $N_H(x_1) = N_H(x_s) = N_H(x_t) = \emptyset$, we obtain

$$d_{G\setminus C}(x_1) + d_{G\setminus C}(x_s) + d_{G\setminus C}(x_t) \leq |V(G\setminus C)| - |V(H)|$$

$$\leq |V(G\setminus C)| - 2.$$
(4)

By (2)-(4) and Claim 5, we have

$$d_G(x_1) + d_G(x_s) + d_G(x_t) \le |V(G)| + 1.$$

This contradicts (1) and completes the proof of Case 1.

Case 2. $x_t = x_{k+1}$.

Let $C_1 := u_1^+ \overrightarrow{C} x_1$, $C_2 := x_1^+ \overrightarrow{C} u_s$, $C_3 := u_s^+ \overrightarrow{C} x_s$ and $C_4 := x_s^+ \overrightarrow{C} u_1$. By Claim 2, for i = 1, 3, we have

$$d_{C_i}(x_1) + d_{C_i}(x_s) + d_{C_i}(x_t) \le |V(C_i)| - 1.$$
(5)

By Claims 3 and 4, we obtain

$$d_{C_2}(x_1) + d_{C_2}(x_s) + d_{C_2}(x_t) \le |V(C_2)| + 2.$$
(6)

Since $N_C(x_{k+1}) \cap N_C(x_{k+1})^+ = \emptyset$, we can regard x_{k+1} as a non-insertible vertex. Suppose that $N_{C_4}(x_1) \neq \emptyset$. Let $N_{C_4}(x_1) := \{w_1, w_2, \dots, w_r\}$. Without loss of generality, we may assume that w_1, \dots, w_r appear in this order along \overrightarrow{C} . Using the same argument as the proof of Claim 5, we have $w_1 \neq x_s^+$. Let $w_0 := x_s^+$ and $w_{r+1} := u_1^+$ and let $D_i := w_i \overrightarrow{C} w_{i+1}^-$ for each i, $0 \leq i \leq r$. Then as in the proof of Claim 5, we can show that the following inequalities hold.

$$d_{D_0}(x_s) + d_{D_0}(x_t) \le |V(D_0)|,$$

$$d_{D_r}(x_s) + d_{D_r}(x_t) \le |V(D_r)| + 1,$$

and

$$d_{D_i}(x_s) + d_{D_i}(x_t) \le |V(D_i)| - 1$$
 for all $i, 1 \le i \le r - 1$,

and so we can obtain

$$d_{C_4}(x_1) + d_{C_4}(x_s) + d_{C_4}(x_t) \le |V(C_4)| + 2. \tag{7}$$

If $N_{C_4}(x_t) = \emptyset$, then we also obtain the above inequality, since $N_{C_4}(x_s) \cup N_{C_4}(x_t)^+ \subset V(C_4) \cup \{u_t^+\}$.

Clearly, $N_H(x_1) = N_H(x_s) = \emptyset$ and $N_H(x_t) \subset V(H) \setminus \{x_t\}$. By Claim 2, $N_{G \setminus C}(x_1)$, $N_{G \setminus C}(x_s)$ and $N_{G \setminus C}(x_t)$ are pairwise disjoint. Hence we obtain

$$d_{G\setminus C}(x_1) + d_{G\setminus C}(x_s) + d_{G\setminus C}(x_t) \leq |V(G\setminus C)| - |\{x_t\}|$$

$$= |V(G\setminus C)| - 1.$$
(8)

By (5)–(8), we have

$$d_G(x_1) + d_G(x_s) + d_G(x_t) \le |V(G)| + 1,$$

contradicting (1). This completes the proofs of Case 2 and Theorem 7. \Box

References

- A. Ainouche, An Improvement of Fraisse's Sufficient Condition for Hamiltonian Graphs, J. Graph Theory 16 (1992) 529-543.
- [2] J.A. Bondy, Longest paths and cycles in graphs with high degree, Research Report CORR 80-16, Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada (1980).
- [3] J.A. Bondy, Basic graph theory paths and cycles. Handbook of Combinatorics, Vol. I, Elsevier, Amsterdam (1995) 5–110.
- [4] H.J. Broersma and M. Lu, Cycles Through Particular Subgraphs of Claw-Free Graphs, J. Graph Theory 20 (1995) 459-465.
- [5] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81.
- [6] C.St.J.A. Nash-Williams, Edge-disjoint Hamiltonian circuits in graphs with vertices of large valency, Studies in Pure Mathematics (Presented to Richard Rado) (1971) 157–183.
- [7] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55.
- [8] M. Lu, H. Liu and F. Tian, Two Sufficient Conditions for Dominating cycles, J. Graph Theory 49 (2005) 134-150.
- [9] T. Yamashita, On degree sum conditions for long cycles and cycles through specified vertices, to appear in Discrete Math.