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Abstract

Let G be a graph and let o (G) be the minimum degree sum of an
independent set of k vertices. For § C V(G) with |S| > k, let Az(S)
denote the maximum value among the degree sums of the subset of
k vertices in S. A cycle C of a graph G is said to be a dominating
cycle if V(G \ C) is an independent set. In [2], Bondy showed that if
G is a 2-connected graph with ¢3(G) > |V(G)| + 2, then any longest
cycle of G is a dominating cycle. In this paper, we improve it as
follows: if G is a 2-connected graph with A3(S) > |V(G)| + 2 for
every independent set S of order £(G) + 1, then any longest cycle of
G is a dominating cycle.
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1 Introduction

In this paper, we consider only finite undirected graphs without loops or
multiple edges. We denote the degree of a vertex x in a graph G by dg(x).
Let §(G), a(G) and x(G) be the minimum degree, the independence number
and the connectivity of a graph G, respectively. If a(G) > k, we define

ok(G) = min{ Zd@(:c): X is an independent set of G with |X| = k};
z€X
if a(G) < k, we set 0x(G) = +oo. For S C V(G) with |S| > k, let
Ak(S) =max{} . x da(z) : X C §,|X| = k}. If o(G) > r, we define

01(G) = min{A(S): S is an independent set of G with |S| =r};

if a(G) < r, we set 0}(G) = +00. Note 0i(G) = of(G). If no ambiguity
can arise, we often simply write 4, x and o}, instead of 4(G), x(G) and
0r(G), respectively.

The following is a classical result due to Dirac (1953) in hamiltonian
graph theory.

Theorem 1 (Dirac [5]) Let G be a graph of order n > 3. If§ > n/2,
then G is hamiltonian.

In 1960, Ore introduced a degree sum condition for a graph to be hamil-
tonian.

Theorem 2 (Ore [7]) Let G be a graph of order n > 3. If 2 > n, then
G is hamiltonian.

In (9], the second author gave a degree sum condition for a graph with
high connectivity.

Theorem 3 Let G be a connected graph on n vertices. If ag(c)"'l >n,

then G is hamiltonian.

A cycle C of a graph G is said to be a dominating cycle if V(G\ C) is an
independent set. In 1971, Nash-Williams gave a minimum degree condition
for a dominating cycle.
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Theorem 4 (Nash-Williams [6]) Let G be a 2-connected graph on n
vertices. If § > (n + 2)/3, then any longest cycle of G is a dominating
cycle.

In 1980, Bondy gave a degree sum condition.

Theorem 5 (Bondy [2]) Let G be a 2-connected graph on n vertices. If
o3 > n + 2, then any longest cycle is a dominating cycle.

In 2005, Lu, Liu and Tian showed the extension of Theorem 5.

Theorem 6 (Lu et al. [8]) Let G be a 3-connected graph on n vertices.
If 04 > 4n+ &, then any longest cycle is a dominating cycle.

In this paper, we prove the following result.
Theorem 7 Let G be a 2-connected graph on n vertices. If o3 (@)+1 >
n + 2, then any longest cycle of G is a dominating cycle.

Theorem 7 is best possible in a sense. Let k > 2 be an integer. Consider
the graph G, = Ki + (k + 1)K2. Then x(G1) = k and o5*!(G;) =
|[V(G1)| + 1, but no longest cycle of G is a dominating cycle.

On the other hand, Theorem 7 implies Theorems 5 and 6. If 03 > n+2,
then a;(G)“ >o03>n+2 Ifoy > [%n-&- 2], then o5t > 04 > -43-04 > n+-§-
and so o5*! > n+2since o§+! is an integer. Actually Theorem 7 is strictly
stronger than Theorems 5 and 6. There exist many graphs which satisfy
the condition of Theorem 7 not that of Theorems 5 and 6. For example,
let k >3, m > 3and let Go = K+ (K1 U (k- 1)Ky U K,,). Then
o5*1(Gy) = 3k + m + 1 = |V(G2)| + 2 and so any longest cycle of Gz is
dominating, but G5 does not satisfy the condition of Theorems 5 and 6,
since 03(G2) = 3k +2 < |V(G2)| + 2, 04(G2) = 4k + 3 < §|V(G2)| + § if
k>4 and 04(G2) =m+13 < §|V(G2)| + § if k= 3.

2 Proof of Theorem 7

For standard graph-theoretic terminology not explained in this paper, we
refer the reader to [3]. We denote by Ng(z) the neighborhood of a vertex z
in a graph G. For a subgraph H of G and a vertex z € V(G)\V(H), we also
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denote Ny(z) := Ng(z) NV(H) and dy(z) := |Ng(z)|. For X C V(G),
Ng(X) denote the set of vertices in G\ X which are adjacent to some
vertex in X. Furthermore, for a subgraph H of G and X C V(G) \ V(H),
we sometimes write Ny(X) := Ng(X) N V(H). If there is no fear of
confusion, we often identify a subgraph H of a graph G with its vertex
set V(H). For example, we often write G \ H instead of G\ V(H). We
write a cycle C with a given orientation by C. For z,y € V(C), we
denote by :c?jy a path from z to y on . The reverse sequence of mﬁy
is denoted by yCz. For z € V(C), we denote the h-th successor and the
h-th predecessor of u on C by z** and z—", respectively. We abbreviate
zt! and 7! by 2+ and ™, respectively. A path P with endvertices z
and y is denotes by zPy. For a subgraph H of G, a path zPy is called an
H-path if V(zPy) N V(H) = {z,y}. For a cycle C and X C V(C), we
define X*:={z*:z€ X} and X~ :={z~:z € X}.

Proof of Theorem 7. Let C be a longest cycle in G. If C is a dominating
cycle, then there is nothing to prove, and so we may assume that there exists
a component H of G\ C with |V(H)| > 2. Let Nc(H) = {u1,...,ux}.
Note that £ > #(G). Without loss of generality, we may assume that
uy,... ,Uk appear in this order along T. Let u} € Nyg(u;) for1 <i < k.
A vertex u € u; _C"*u,-"_‘_1 is insertible if there exist vertices v,v* € u;41 Cu;
such that wv,uv™ € E(G); then vvt € E(C) is an insertion edge of u. Let
I(u) = {e € E(C) : e is an insertion edge of u}.

Claim 1 There exists a non-insertible vertex in u} Cuy, for 1 <i <k
i i1

Proof. Suppose not, that is, every vertex of u;" 61{ +1 is insertible. Let
uPu}, be a path in H. Set Co := ui‘au.-.,.luQHPugui and vp := u]. For
Jj 2 1, define the graph C; such that

V(Cj) = V(Cj—1)UV(v;-1Cv}) and

E(C;) E(Cj-1) \ {wjm1w}_;} U E(w;_yv;—1 Ty wi ),

where wj_1w]_; € I(v;—1) and v; € vj_lt'u;;,l such that (i) wj—yw}_, €
I(vy7) and (ii) Ivj_lavﬂ is as large as possible, subject to (i). By the
choice of v;, wjw} # wpwy for any h, 0 < h < j — 1. Hence we can easily
see Cj is a cycle for any j. Since there exists = such that v, = u;4, C; is
a longer cycle than C, a contradiction. g
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Let z; be the first non-insertible vertex along uf Cuj,, for 1 <i < k.
Without loss of generality, we may assume that dg(z1) = max{dg(z;) :
1 < i < k}. Since |V(H)| > 2, we can choose zxy1 € V(H) \ {u}}.

Suppose Nyg(u1) = {ui}. Then Ng(H \ %}) U {u}} is a cut set, and so
INc(H\u}) U {u{}| = . Let X = {z; : ui € Nc(H \ u})} U {z1,Zx41}.
Since u; € Nc(H \ u}), |X| 2 £+ 1. If [Ng(u1)] 2 2, then let X :=
{z1,z2,23,... ,Zk+1}. In either cases, X is an independent set by the
following claim (see [1],[4]).

Claim 2 There exists no C-path joining a vertex of 'u.;"-C"a:,- and a vertex
ofu;-"ﬁ:cj for1<i#j<k.

Hence there exist z,,2, € X (2 < s <t < k+ 1) such that
de(z1) + de(zs) + de(z:) = B3(X) 2 [V(C) +2. (1)

Later, we use the following claims.

Claim 3 For each v € {u},u},zx+1}, there exists u{ € Ny(u;) such that
"
u] #v.

Proof. Let v € {u),, v}, Tk+1}. Suppose [Ny (u1)| > 2. Since Ny (u1)\{v} #
@, there exists u! € Ng(u1) such that u{ # v. If |Ny(u1)| = 1, then
u} # ul,u},Tk41 by the definition of X. Hence u] is a desired vertex.

0O

Claim 4 For 1 <i # j < k, the following statements hold.

(i) For any u € V(ug"ﬁ.’ci) and v € V(u}'ﬁwj), Ng(u)™ N Ne(v) N
V(e Cu;) =0.

(i) For any w € V(H), Ng(z:)~ N Ng(w) NV (z} Cu;) = 0.
(iii) Ifu} # u, then No(z:)™ N Ne(z;)t NV (af Tuy) = 0.
(iv) Ifw € V(H)\ {«}}, then Ng(z:)~ N Ne(w)* NV (z} Cw;) = 0.

Proof. The statements (i) and (ii) are proved in [1],[4], and so we omit
the proofs. We show the statement (iii). Let u;Pu} be a path in H.
Suppose, to the contrary, that a € N (z:)” NNe(z;)t NV (=} 'C_'uj). Then
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ui(aa:ja“-C_zia*'auju;Pu;ui is a cycle. By the statement (i), we may
assume a~a,aat ¢ I(u) for any u € V(u} Caz; U u}'_da:,-), then we can
obtain a cycle C’ containing V(C) \ {a} U {u,u;}. Then C’ is a longer
cycle than C since u; # u}. Hence we obtain the statement (iii). By the
similar argument, we can prove the statement (iv). ]

Now we divide our argument into two cases.

Case 1. z; # Tg41-

Let C; := u'l"ﬁa:l, Cs = :z:'l"?u,,, C3:= uj’ama, Cy:= zj‘t’ug, Cs :=
u} Cxy, and Cs := z} Cuy. By Claim 2, Ng, (z,) = 0 and N, (z;) = 0.
Clearly, N¢, (z1) C V(C1)\ {z1}. Therefore d¢, (z1) + dc, (25) + dc, (2¢) <
|V(C1)| — 1. Similarly, for ¢ = 1, 3,5, we have

de,(z1) + de,(z5) + dey(z) < |V(Ci)| - 1. (2)

Clearly, Ng, (1)~ U Ng,(z,)* U Ne,(z:) € V(C2) U {z1,u}}. On the
other hand, by Claim 4 (i), Ng,(z1)~ N Ng,(z:) = @ and Ng,(zs)* N
Ng,(z:) = 9. By Claims 3 and 4 (iii), N, (z1)~ NNg,(zs)" = 0. Similarly,
by considering N¢g(z:)™, N, (a:l)"' and Ngg(z;), for i = 2,6 we obtain

dey (1) + dei(z,) + doy () < [V(Ci)l + 2. 3)

If u!, # u}, then we also have dg, (z1) +dc,(zs) +de, (z:) < |V(Cy)|+2.
However, it is possible that ), = u}, and so we especially prove the following
claim.

Claim 5 dc,(z1) + dc,(zs) + do, (z:) < [V(Ca)| + 2.

Proof. Assume that Ng,(z1) = 0. Then Ng,(z,) U Ne,(z:)* c V(Cy)U
{uf}. This leads the desired inequality by Claim 4 (i). Hence Ng,(z1) # 0,
and let Ng,(z1) := {wi,ws,... ,w,}. Without loss of generality, we may
assume that wy,...,w, appear in this order along C. Ifw = z}, then
u,‘,(-C—:z:l:z:;,"Z’ulu'lPu:,u‘.J is a cycle, and we can obtain a cycle containing
V(C)\ {zs} U {u], u.}, a contradiction. Therefore wy # z}. Let wp =z}
and wpyy = 'u;" and let D; := w;?w{_,_l for each ¢, 0 < 2 < . Then,
by Claim 4 (i), Np,(zs) N Np,(z:)* = 0 for each 4, 1 < i < r. Since
Np,(zs)UNp, (z:)* ¢ V(D,) U {u;}, we obtain

dp,(zs) + dp,(z:) < V(D) + L.

<
<
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By Claim 4 (i), wi+1 & Np,(z:)T for every i, 0 < i < r — 1. Therefore
Np,(2:)U Np,(z:)* € V(Dy), and so we get

dDo(xs) + dDo(xt) < |V(D0)|'

Since z; is a non-insertible vertex, |[V(D;)] > 2 foralli,1 <i<r—1. Let
Li={i:1<i<r-1|V(D;)|=2}and I3:={i: 1 <i<r—1,|V(D))| =
3}. By Claim 4 (i), w} & Np,(z,) for i € I. By Claims 4 (i) and (iii),
wi}, wiy, € Np,(2:) for i € I. Hence dp, (z5)+dp,(z¢) < 1 = [V(D;)|-1
for all 7 € Is.

By Claims 4 (i) and (iii), w;,w}? € Np,(z.) for i € Is. Since z; is a
non-insertible vertex, {w;,w}?} ¢ Np,(z:)* for i € Is. For each i € I,
we define

. _ w:- ]fw:'- gNDi(xt)-'.a
wf? if wf € Np,(z:)™.

Then Np,(z,) U Np,(z:)* ¢ V(D;) \ {w}} and so dp,(z,) + dp,(z:) <
[V(D;)| — 1 for all 7 € I3. Therefore, for all 4,1 <:<r—1, we get

dp,(zs) + dp,(z:) < [V(D3)| - 1.

Thus we have

r—1
de,(zs) +dey(z) < V(Do) + D (IV(Di)l = 1) +|V(Dy)| +1
=1
= |[V(Cy)|—r+2
From d¢,(z1) = r, we obtain the desired inequality. O

By Claim 2, NG\C(‘”I), NG\C(xs) and NG\C(xt) are pairwise disjoint.
Since |V(H)| > 2 and Ng(z1) = Nu(zs) = Ny(z:) = 0, we obtain

V(G\O) - IV(H)|
V(G\CO)| -2 (4)

devc(z1) + devc(zs) + do\c(zt)

IAN A

By (2)-(4) and Claim 5, we have

da(z1) + de(zs) + da(z:) < [V(G)| +1.

119



This contradicts (1) and completes the proof of Case 1.
Case 2. z; = Tg41-

Let C; := 'ui"azl, Cy = zf‘t’us, Cs = u;,"-C-':z:.‘J and Cy = x;“aul.
By Claim 2, for z = 1,3, we have

de,(z1) + dei(zs) + de,(z:) < [V(CH)| - 1. (8)
By Claims 3 and 4, we obtain
de, (1) + doy(2s) + doy(z2) S |[V(Co)| + 2. (6)

Since Ng(zk+1) N Nc(a:k+1)+ = @, we can regard T4 as a non-insertible
vertex. Suppose that Ng,(z1) # 0. Let Ng¢,(z1) := {wi,w2,... ,wr}.
Without loss of generality, we may assume that w;,... ,w, appear in this
order along C. Using the same argument as the proof of Claim 5, we have
wy # z}. Let wg := z} and wy4 := uf and let D; := wiaw;‘_l for each 4,
0 < i < r. Then as in the proof of Claim 5, we can show that the following
inequalities hold.

dpe(zs) + dpy(z:) < [V(Do)l,

dp,(z,) +dp, (z:) < |V(Dr)l + 1,
and
dp,(xs) +dp,(z:) < |V(Ds)|—1foralld, 1<i<r—1,
and so we can obtain
doy (1) + doy(z2) + dey(ze) < [V(Ca)| +2. (1)

If Ng,(z:) = 0, then we also obtain the above inequality, since N¢,(zs) U
Ne,(z)* c V(Ca) U {uf}.
Clearly, Ny(z1) = Ny(zs) =0 and Ny(z:) C V(H)\ {z:}. By Claim 2,

Neg\¢(z1), Nevc(xs) and Ne\c(z:) are pairwise disjoint. Hence we obtain

do\c(1) +dovc(zs) + dave(z) < [V(G\C)| - [{z:}|
= |[V(G\O)| -1 (8)
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By (5)-(8), we have
da(z1) + da(zs) + delze) < [V(G)| +1,

contradicting (1). This completes the proofs of Case 2 and Theorem 7.
]
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