ESSENTIAL NORM OF AN OPERATOR FROM THE WEIGHTED HILBERT-BERGMAN SPACE TO THE BLOCH-TYPE SPACE

STEVO STEVIĆ

Mathematical Institute of the Serbian Academy of Science, Knez Mihailova 36/III, 11000 Beograd, Serbia E-mail: sstevic@ptt.rs

Abstract

This note calculates the essential norm of a recently introduced integral-type operator from the Hilbert-Bergman weighted space $A^2_{\alpha}(\mathbb{B})$, $\alpha \geq -1$ to a Bloch-type space on the unit ball \mathbb{B} in \mathbb{C}^n .

1. Introduction and preliminaries

Let $\mathbb B$ be the open unit ball in $\mathbb C^n$, $S=\partial \mathbb B$ its boundary, dV(z) the Lebesguc measure on $\mathbb B$, $dV_{\alpha}(z)=c_{\alpha,n}(1-|z|^2)^{\alpha}dV(z)$, $\alpha>-1$ and where the constant $c_{\alpha,n}$ is chosen such that $V_{\alpha}(\mathbb B)=1$, $d\sigma$ the normalized rotation invariant measure on S and $H(\mathbb B)$ the class of all holomorphic functions on the unit ball. Let $z=(z_1,\ldots,z_n)$ and $w=(w_1,\ldots,w_n)$ be points in $\mathbb C^n$, $\langle z,w\rangle=\sum_{k=1}^n z_k\bar w_k$ and $|z|=\sqrt{\langle z,z\rangle}$. For $f\in H(\mathbb B)$ with the Taylor expansion $f(z)=\sum_{|\beta|\geq 0}a_{\beta}z^{\beta}$, let $\Re f(z)=\sum_{|\beta|\geq 0}|\beta|a_{\beta}z^{\beta}$ be the radial derivative of f, where $\beta=(\beta_1,\beta_2,\ldots,\beta_n)$ is a multi-index $|\beta|=\beta_1+\cdots+\beta_n$ and $z^{\beta}=z^{\beta_1}\cdots z^{\beta_n}$

is a multi-index, $|\beta| = \beta_1 + \dots + \beta_n$ and $z^{\beta} = z_1^{\beta_1} \dots z_n^{\beta_n}$. For p > 0 the Hardy space $H^p = H^p(\mathbb{B})$ consists of all $f \in H(\mathbb{B})$ such that

$$||f||_p^p = \sup_{0 \le r \le 1} \int_S |f(r\zeta)|^p d\sigma(\zeta) < \infty.$$

Recall that for $f \in H^p$ the radial limit $f^*(\zeta) = \lim_{r \to 1} f(r\zeta)$ exists a. e. on S. The weighted Bergman space $A^p_{\alpha} = A^p_{\alpha}(\mathbb{B}), \ p > 0, \ \alpha > -1$ consists of all $f \in H(\mathbb{B})$ such that

$$||f||_{A^p_\alpha}^p = \int_{\mathbb{R}} |f(z)|^p dV_\alpha(z) < \infty.$$

Since for every $f \in H^p$, $\lim_{\alpha \to -1+0} ||f||_{A^p_\alpha} = ||f||_p$, we will also use the notation A^p_{-1} for the Hardy space H^p .

A positive continuous function ϕ on [0,1) is called normal ([14]) if there is $\delta \in [0,1)$ and a and b, 0 < a < b such that

$$\phi(r)/(1-r)^{\alpha}$$
 is decreasing on $[\delta,1)$ and $\lim_{r\to 1}\phi(r)/(1-r)^{\alpha}=0;$ $\phi(r)/(1-r)^{\beta}$ is increasing on $[\delta,1)$ and $\lim_{r\to 1}\phi(r)/(1-r)^{\beta}=\infty.$

From now on if we say that a function $\mu : \mathbb{B} \to [0, \infty)$ is normal we will also assume that it is radial, that is, $\mu(z) = \mu(|z|), z \in \mathbb{B}$.

The class of all $f \in H(\mathbb{B})$ such that $B_{\mu}(f) = \sup_{z \in \mathbf{B}} \mu(z) |\Re f(z)| < \infty$, where μ is normal, is called the Bloch-type space and is denoted by $\mathcal{B}_{\mu} = \mathcal{B}_{\mu}(\mathbb{B})$. With the norm $||f||_{\mathcal{B}_{\mu}} = |f(0)| + \mathcal{B}_{\mu}(f)$, \mathcal{B}_{μ} becomes a Banach space.

In [18] (see also [19]) we extended a recently introduced product of integral and composition operators on $H(\mathbb{D})$ (see [11] and [12]) in the unit ball settings, by introducing the following operator on $H(\mathbb{B})$

$$P_{\varphi}^{g}(f)(z) = \int_{0}^{1} f(\varphi(tz))g(tz)\frac{dt}{t}, \quad f \in H(\mathbb{B}), \quad z \in \mathbb{B}, \tag{1}$$

where $g \in H(\mathbb{B})$, g(0) = 0 and φ is a holomorphic self-map of \mathbb{B} . For some results on related integral operators on spaces of holomorphic functions in \mathbb{C}^n , see [1]-[10], [13, 15, 16, 17, 20] and the references therein.

In this note we calculate the essential norm of the operator $P_{\varphi}^g: A_{\alpha}^2(\mathbb{B}) \to \mathcal{B}_{\mu}(\mathbb{B})$. The result partially solve an open problem posed in [18].

In the proof of the main result we need the following known lemmas.

Lemma 1. ([21]) Suppose $p \in (0, \infty)$ and $\alpha \geq -1$. Then for all $f \in A^p_{\alpha}(\mathbb{B})$ and $z \in \mathbb{B}$, the following inequality holds

$$|f(z)| \le \frac{\|f\|_{A^p_\alpha}}{(1-|z|^2)^{\frac{n+1+\alpha}{p}}}. (2)$$

Lemma 2. ([21]) Suppose $0 , <math>\alpha > -1$, then

$$||f||_{A_{\alpha}^{p}}^{p} \approx |f(0)|^{p} + \int_{\mathbb{R}} |\nabla f(z)|^{p} (1 - |z|^{2})^{p+\alpha} dV(z),$$

for every $f \in A^p_\alpha$.

Lemma 3. ([18]) Let $f, g \in H(\mathbb{B})$ and g(0) = 0. Then $\Re P_{\varphi}^{g}(f)(z) = f(\varphi(z))g(z)$.

Throughout the paper C denotes a positive constant not necessarily the same at each occurrence. The notation $A \approx B$ means that there is a positive constant C such that $A/C \leq B \leq CA$.

2. Essential norm of
$$P^g_{\omega}:A^2_{\alpha} o \mathcal{B}_{\mu}$$

Let X and Y be Banach spaces, and $L: X \to Y$ be a bounded linear operator. The essential norm of the operator, $||L||_{e,X\to Y}$, is defined as follows

$$||L||_{e,X\to Y} = \inf\{||L+K||_{X\to Y} : K \text{ is compact from } X \text{ to } Y\},\$$

where $\|\cdot\|_{X\to Y}$ denote the operator norm.

From this and since the set of compact operators is a closed subset of the set of bounded operators it follows that L is compact if and only if $||L||_{e,X\to Y}=0$. In [18], among others, we proved the following result.

Theorem A. Assume $p \in (1, \infty)$, $\alpha \ge -1$, $g \in H(\mathbb{B})$, g(0) = 0, μ is normal, φ is a holomorphic self-map of \mathbb{B} and $P_{\varphi}^g : A_{\alpha}^p \to \mathcal{B}_{\mu}$ is bounded. Then

$$\limsup_{|\varphi(z)| \to 1} \frac{\mu(z)|g(z)|}{(1 - |\varphi(z)|^2)^{\frac{n+1+\alpha}{p}}} \le \|P_{\varphi}^g\|_{e, A_{\alpha}^p \to \mathcal{B}_{\mu}} \le 2 \limsup_{|\varphi(z)| \to 1} \frac{\mu(z)|g(z)|}{(1 - |\varphi(z)|^2)^{\frac{n+1+\alpha}{p}}}. \quad (3)$$

Motivated by Theorem A, in [18] we posed the following open problem.

Open problem. Find the exact value of the essential norm of $P^g_{\omega}: A^p_{\alpha} \to \mathcal{B}_{\mu}$.

Here we partially solve the open problem by calculating the essential norm of the operator $P^g_{\omega}: A^2_{\alpha} \to \mathcal{B}_{\mu}$.

Theorem 1. Assume $\alpha \geq -1$, $g \in H(\mathbb{B})$, g(0) = 0, μ is normal, φ is a holomorphic self-map of \mathbb{B} and $P_{\varphi}^g : A_{\alpha}^2 \to \mathcal{B}_{\mu}$ is bounded. Then

$$\|P_{\varphi}^{g}\|_{e,A_{\alpha}^{2}\to\mathcal{B}_{\mu}} = \limsup_{|\varphi(z)|\to 1} \frac{\mu(z)|g(z)|}{(1-|\varphi(z)|^{2})^{\frac{n+1+\alpha}{2}}}.$$
 (4)

Proof. We follow the lines of the proof of Theorem 7.1 in [18]. A complete proof is given for the benefit of the reader. Assume that $(\varphi(z_k))_{k\in\mathbb{N}}$ is a sequence in \mathbb{B} such that $|\varphi(z_k)| \to 1$ as $k \to \infty$ (if such a sequence does not exist then $P_{\varphi}^g: A_{\varphi}^2 \to \mathcal{B}_{\mu}$ is compact and (4) is vacuously satisfied).

For $w \in \mathbb{B}$ fixed, set

$$f_w(z) = \frac{(1 - |w|^2)^{\frac{n+1+\alpha}{2}}}{(1 - \langle z, w \rangle)^{\frac{2(n+1+\alpha)}{2}}}, \quad z \in \mathbb{B}.$$
 (5)

It is known that $\|f_w\|_{A^2_\alpha}=1$, for each $w\in\mathbb{B}$. Note that the sequence $(f_{\varphi(z_k)})_{k\in\mathbb{N}}$ is such that $\|f_{\varphi(z_k)}\|_{A^2_\alpha}=1$, for each $k\in\mathbb{N}$, and it converges to zero uniformly on compacts of \mathbb{B} . From this and by Theorems 2.12 in [21] it follows that $f_{\varphi(z_k)}\to 0$ weakly in A^2_α , as $k\to\infty$. Hence, for every compact operator $K:A^2_\alpha\to\mathcal{B}_\mu$ we have that $\|Kf_{\varphi(z_k)}\|_{\mathcal{B}_\mu}\to 0$ as $k\to\infty$. Thus, for every such sequence and for every compact operator $K:A^2_\alpha\to\mathcal{B}_\mu$ we have that

$$\|P_{\varphi}^{g} + K\|_{A_{\alpha}^{2} \to \mathcal{B}_{\mu}} \geq \limsup_{k \to \infty} \frac{\|P_{\varphi}^{g} f_{\varphi(z_{k})}\|_{\mathcal{B}_{\mu}} - \|K f_{\varphi(z_{k})}\|_{\mathcal{B}_{\mu}}}{\|f_{\varphi(z_{k})}\|_{A_{\alpha}^{2}}}$$

$$= \limsup_{k \to \infty} \|P_{\varphi}^{g} f_{\varphi(z_{k})}\|_{\mathcal{B}_{\mu}}$$

$$\geq \limsup_{k \to \infty} \mu(z_{k})|g(z_{k})f_{\varphi(z_{k})}(\varphi(z_{k}))|$$

$$= \limsup_{n \to \infty} \frac{\mu(z_{k})|g(z_{k})|}{(1 - |\varphi(z_{k})|^{2})^{\frac{n+1+\alpha}{2}}}.$$
(6)

Taking the infimum in (6) over the set of all compact operators $K: A_{\alpha}^2 \to \mathcal{B}_{\mu}$ we obtain

$$\|P_{\varphi}^g\|_{c,A_{\alpha}^2 \to \mathcal{B}_{\mu}} \ge \limsup_{n \to \infty} \frac{\mu(z_k)|g(z_k)|}{\left(1 - |\varphi(z_k)|^2\right)^{\frac{n+1+\alpha}{2}}},$$

from which one inequality in (4) follows.

In the sequel we prove the reverse inequality. Assume that $(r_l)_{l\in\mathbb{N}}$ is a sequence which increasingly converges to 1. Consider the operators defined by

$$(P_{r_l\varphi}^g f)(z) = \int_0^1 g(tz) f(r_l \varphi(tz)) \frac{dt}{t}, \quad l \in \mathbb{N}.$$

It is easy to see that these operators are compact (see Theorem 5.1 in [18]).

Since $P_{\varphi}^g:A_{\alpha}^2\to \mathcal{B}_{\mu}$ is bounded then for $f(z)=1\in A_{\alpha}^2$, we have that $\|g\|_{H_{\mu}^{\infty}}:=\sup_{z\in \mathbb{B}}\mu(z)|g(z)|<\infty$. Let $\rho\in(0,1)$ be fixed. By Lemma 3, we have

$$\begin{split} \|P_{\varphi}^{g} - P_{r_{l}\varphi}^{g}\|_{A_{\alpha}^{2} \to \mathcal{B}_{\mu}} &= \sup_{\|f\|_{A_{\alpha}^{2}} \le 1} \sup_{z \in \mathbf{B}} \mu(z)|g(z)||f(\varphi(z)) - f(r_{l}\varphi(z))| \\ &\le \sup_{\|f\|_{A_{\alpha}^{2}} \le 1} \sup_{\|\varphi(z)| \le \rho} \mu(z)|g(z)||f(\varphi(z)) - f(r_{l}\varphi(z))| \\ &+ \sup_{\|f\|_{A_{\alpha}^{2}} \le 1} \sup_{\|\varphi(z)| > \rho} \mu(z)|g(z)||f(\varphi(z)) - f(r_{l}\varphi(z))| \\ &\le \|g\|_{H_{\mu}^{\infty}} \sup_{\|f\|_{A_{\alpha}^{2}} \le 1} \sup_{\|\varphi(z)| \le \rho} |f(\varphi(z)) - f(r_{l}\varphi(z))| \\ &+ \sup_{\|f\|_{A_{\alpha}^{2}} \le 1} \sup_{\|\varphi(z)| > \rho} \mu(z)|g(z)||f(\varphi(z)) - f(r_{l}\varphi(z))|(8) \end{split}$$

By using the polar coordinates and Parseval formula, we have

$$||f - f_r||_{A_{\alpha}^2}^2 = c_{\alpha,n} \int_{\mathbf{B}} \left| \sum_{\beta} a_{\beta} z^{\beta} (1 - r^{|\beta|}) \right|^2 (1 - |z|^2)^{\alpha} dV(z)$$

$$= c_{\alpha,n} V(B) \int_0^1 \sum_{\beta} |a_{\beta}|^2 \rho^{2|\beta| + 2n - 1} (1 - r^{|\beta|})^2 (1 - \rho^2)^{\alpha} d\rho$$

$$\leq c_{\alpha,n} V(B) \int_0^1 \sum_{\beta} |a_{\beta}|^2 \rho^{2|\beta| + 2n - 1} (1 - \rho^2)^{\alpha} d\rho = ||f||_{A_{\alpha}^2}^2.$$
(9)

Lemma 1 along with (9) and the fact that $f(z) - f(rz) \in A_{\alpha}^{2}$, implies that

$$|f(\varphi(z)) - f(r_l \varphi(z))| \le \frac{\|f\|_{A_\alpha^2}}{(1 - |\varphi(z)|^2)^{\frac{n+1+\alpha}{2}}}.$$
 (10)

Let $I_l := \sup_{\|f\|_{A^2_{\alpha}} \le 1} \sup_{|\varphi(z)| \le \rho} |f(\varphi(z)) - f(r_l \varphi(z))|$. If $\alpha > -1$, then by using the mean value theorem, the subharmonicity of the partial derivatives of f and Lemma 2, we have

$$I_{l} \leq \sup_{\|f\|_{A_{\alpha}^{2}} \leq 1} \sup_{|\varphi(z)| \leq \rho} (1 - r_{l}) |\varphi(z)| \sup_{|w| \leq \rho} |\nabla f(w)|$$

$$\leq C_{\rho} (1 - r_{l}) \sup_{\|f\|_{A_{\alpha}^{2}} \leq 1} \left(\int_{|w| \leq \frac{1+\rho}{2}} |\nabla f(w)|^{2} (1 - |w|^{2})^{2+\alpha} dV(w) \right)^{1/2}$$

$$\leq C_{\rho} (1 - r_{l}) \sup_{\|f\|_{A_{\alpha}^{2}} \leq 1} \left(\int_{\mathbb{B}} |f(w)|^{2} dV_{\alpha}(w) \right)^{1/2} \to 0, \text{ as } l \to \infty.$$

$$(12)$$

If $\alpha = -1$, then applying in (11) the known fact that for each compact $K \subset \mathbb{B}$, there is a positive constant C independent of f such that $\sup_{w \in K} |\nabla f(w)| \le C ||f||_2$ (see [21]), we obtain that (12) also holds in this case.

Using (10) in (8), letting $l \to \infty$ in (7), using (12), and then letting $\rho \to 1$ the reverse inequality follows, finishing the proof of the theorem. \square

REFERENCES

- [1] D. C. Chang, S. Li and S. Stević, On some integral operators on the unit polydisk and the unit ball, *Taiwan. J. Math.* 11 (5) (2007), 1251-1286.
- [2] D. C. Chang and S. Stević, Estimates of an integral operator on function spaces, Taiwanese J. Math. 7 (3) (2003), 423-432.
- [3] Z. Hu, Extended Cesàro operators on mixed norm spaces, Proc. Amer. Math. Soc. 131 (7) (2003), 2171-2179.
- [4] Z. Hu, Extended Cesàro operators on the Bloch space in the unit ball of Cⁿ, Acta Math. Sci. Ser. B Engl. Ed. 23 (4) (2003), 561-566.
- [5] Z. Hu, Extended Cesàro operators on Bergman spaces, J. Math. Anal. Appl. 296 (2004), 435-454.
- [6] S. Li and S. Śtević, Integral type operators from mixed-norm spaces to α-Bloch spaces, Integral Transform. Spec. Funct. 18 (7) (2007), 485-493.
- [7] S. Li and S. Stević, Riemann-Stieltjes operators on Hardy spaces in the unit ball of Cⁿ, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), 621-628.
- [8] S. Li and S. Stević, Riemann-Stieltjes type integral operators on the unit ball in C", Complex Variables Elliptic Functions 52 (6) (2007), 495-517.
- [9] S. Li and S. Stević, Compactness of Riemann-Stieltjes operators between F(p,q,s) and α -Bloch spaces, *Publ. Math. Debrecen* 72 (1-2) (2008), 111-128.
- [10] S. Li and S. Stević, Generalized composition operators on Zygmund spaces and Bloch type spaces, J. Math. Anal. Appl. 338 (2008), 1282-1295.
- [11] S. Li and S. Stević, Products of composition and integral type operators from H[∞] to the Bloch space, Complex Variables Elliptic Functions 53 (5) (2008), 463-474.
- [12] S. Li and S. Stević, Products of Volterra type operator and composition operator from H[∞] and Bloch spaces to the Zygmund space, J. Math. Anal. Appl. 345 (2008), 40-52.
- [13] S. Li and S. Stević, Riemann-Stieltjes operators between mixed norm spaces, Indian J. Math. 50 (1) (2008), 177-188.
- [14] A. L. Shields and D. L. Williams, Bounded projections, duality, and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287-302.
- [15] S. Stević, On an integral operator on the unit ball in Cⁿ, J. Inequal. Appl. 1 (2005), 81-88.
- [16] S. Stević, Boundedness and compactness of an integral operator on a weighted space on the polydisc, Indian J. Pure Appl. Math. 37 (6) (2006), 343-355.
- [17] S. Stević, Boundedness and compactness of an integral operator on mixed norm spaces on the polydisc, Sibirsk. Mat. Zh. 48 (3) (2007), 694-706.
- [18] S. Stević, On a new integral-type operator from the weighted Bergman space to the Bloch-type space on the unit ball, *Discrete Dyn. Nat. Soc.* Vol. 2008, Article ID 154263, (2008), 14 pages.
- [19] S. Stević, On a new operator from H[∞] to the Bloch-type space on the unit ball, Util. Math. (to appear).
- [20] X. Tang, Extended Cesàro operators between Bloch-type spaces in the unit ball of Cⁿ, J. Math. Anal. Appl. 326 (2) (2007), 1199-1211.
- [21] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics, New York, Springer (2005).