Note on the nullity of bicyclic graphs *

Guoping Wang^{1,2}, Fei Zhu¹ and Hong Bian¹
¹Department of Mathematics, Xinjiang Normal University,
Urumqi, Xinjiang 830054, P.R.China
²Department of Mathematics, Jiangsu Teachers University of Technology,
Changzhou, Jiangsu 213001, P.R.China

Abstract. The nullity of a graph is the multiplicity of the eigenvalue zero in its spectrum. In this paper, we give formulae to calculate the nullity of n-vertex bicyclic graphs by means of the maximum matching number.

Key words: Bicyclic graphs; Nullity

1. Introduction

Let G be a simple undirected graph on n vertices. The adjacency matrix A(G) of graph G, having vertex set $V(G) = [v_1, \dots, v_n]$ is the $n \times n$ symmetric matrix $[a_{ij}]$, such that $[a_{ij}] = 1$, if v_i and v_j are adjacent and 0, otherwise. The eigenvalues $\lambda_1, \dots, \lambda_n$ of A(G) are said to be the eigenvalues of G, and to form the spectrum of G. The number of zero eigenvalues in the spectrum of G is called its nullity and is denoted by $\eta(G)$. Let r(A(G)) be the rank of A(G). Then $\eta(G) = n - r(A(G))$.

Collatz and Sinogowitz [1] first posed the problem of characterizing all graphs which satisfy $\eta(G) > 0$. This question is of great interest in chemistry, because, as has been shown in [6], for a bipartite graph G (corresponding to an alternant hydrocarbon), if $\eta(G) > 0$, then it indicates that the molecule which such a graph represents is unstable. Some results on the nullity of graphs in general are known (See [2], [3], [4],[5] and [7]).

Connected graphs in which the number of edges equals the number of vertices plus one are called bicyclic graphs. Define a b-graph to be a graph

^{*}supported by science foundation of Xinjiang normal university. Email: xj.wgp@163.com

consisting either of two vertex-disjoint cycles C^1 and C^2 and a path P joining them having only its end-vertices u and v in common with the cycles, or two cycles C^1 and C^2 with exactly one vertex v in common. The former is sometimes called b_1 -graph and the latter b_2 -graph. Define a θ -graph to be a graph consisting of two given vertices u and v joined by three paths P^1 , P^2 and P^3 with any two of these paths having only the given vertices in common. See Fig. 1, where u and v are called paste vertices.

Figure 1

Obviously, a bicyclic graph is a b-graph or a θ -graph with trees attached. In this paper, we give formulae to calculate the nullity of n-vertex bicyclic graphs by means of the maximum matching number. Following the methods employed in [7], we denote by m(G) the maximum matching number of a graph G.

2. Main results

In this section we will first give some preliminary lemmas and then gradually obtain our main results.

Let G be a graph and $v_i \in V(G)$ $(1 \le i \le k)$. Then we write $G - \{v_1, \dots, v_k\}$ for the subgraph of G obtained from G by removing the vertices v_1, \dots, v_k and all edges incident to any of them. If $e_i \in E(G)$

 $(1 \le i \le \ell)$ then define $G - \{e_1, \dots, e_\ell\}$ to be the subgraph of G obtained from G by removing the edges e_1, \dots, e_ℓ . A vertex of a graph is called a *pendant vertex* if its degree is 1.

Lemma 1. [2] Suppose that v is a pendant vertex of G and u is adjacent to v. Then $\eta(G) = \eta(G - \{u, v\})$.

The following result is trivial, but we will use it repeatedly.

Lemma 2. Suppose $G = \bigcup_{i=1}^{\ell} G_i$, where G_1, \dots, G_{ℓ} are connected components of G. Then $\eta(G) = \sum_{i=1}^{\ell} \eta(G_i)$.

Suppose that G_0 is an n-vertex graph with a pendant vertex u_0 and that v_0 is adjacent to u_0 . Let $G_{i+1} = G_i - \{u_i, v_i\}$, where u_i is a pendant vertex of G_i and v_i is adjacent to u_i (i = 0, 1, ...). Then obviously there exists some integer ℓ such that $G_{\ell+1}$ has no pendant vertex. (Specifically, if G_0 is an edge, then $G_{\ell+1}$ will be an empty set.) The process of getting $G_{\ell+1}$ from G_0 is called a pendant edge deleting (PED for short) of G_0 . By Lemma 1, $\eta(G_0) = \eta(G_{\ell+1})$. G_0 is a PED-graph if $G_{\ell+1}$ only contains isolated vertices. For instance, a tree is a PED-graph. Since v_i is always covered by any maximum matching of G_i , if G_0 is a PED-graph, then by Lemmas 1 and 2, $\eta(G_0) = n - 2m(G_0)$.

Lemma 3. [2] A path with four vertices of degree 2 in a graph G can be replaced by an edge without changing $\eta(G)$.

Let C_n be a cycle on n vertices. Then $\eta(C_n)=2$ if $n\equiv 0 \pmod{4}$ and $\eta(C_n)=0$ otherwise.

Lemma 4. If G is either a b-graph or a θ -graph, then $\eta(G) \leq 3$.

Proof. By lemma 3 we only need to observe the b_1 -graphs and the θ -graphs on at most 11 vertices and b_2 -graphs on at most 7 vertices (See Fig. 1). By MATLAB we can verify that the result holds. \square

Suppose that H is a graph without any pendant vertex and that $u_i \in V(H)$ $(1 \le i \le k)$. Suppose that F is a forest with components T_1, \ldots, T_k disjoint with H and that $v_i \in V(T_i)$ $(1 \le i \le k)$. Then we denote by $H \cdot F$ the graph obtained by identifying u_i and v_i $(1 \le i \le k)$, where u_1, \ldots, u_k

are called overlapped vertices of $H \cdot F$ and k is the overlapped number, denoted by $\Box(H \cdot F)$. A vertex in $\{u_1, \dots, u_k\}$ is called reserved if it is undeleted after a PED of $H \cdot F$. In fact, a reserved vertex is such that is mismatched by some maximum matching from F. We denote by $\diamond(H \cdot F)$ the number of all reserved vertices of $H \cdot F$. Clearly, $\diamond(H \cdot F) \leq \Box(H \cdot F)$.

Theorem 5. Suppose that $H \cdot F$ is a bicyclic graph on n vertices, where H is either a b-graph or a θ -graph on ϑ vertices and F is a forest. If $\diamond (H \cdot F) = \Box (H \cdot F)$, then $\eta(H \cdot F) \leq n - 2m(F) - \vartheta + 3$.

Proof. Since $\diamond(H\cdot F)=\Box(H\cdot F)$, we obtain a subgraph which consists of H and $n-2m(F)-\vartheta$ isolated vertices after a PED of $H\cdot F$. By Lemmas 1 and 2, $\eta(H\cdot F)=n-2m(F)-\vartheta+\eta(H)$. It follows from Lemma 4 that the result is true. \Box

Theorem 6. Suppose that $B_1 \cdot F$ is a bicyclic graph on n vertices, where B_1 is a b_1 -graph with two cycles C^1 and C^2 of length ℓ_1 and ℓ_2 respectively and a path P (See Fig. 1: b_1 -graph), and that F is a forest. Suppose that C^i contains r_i overlapped vertices and s_i reserved vertices (i = 1, 2) and that P contains r_3 overlapped vertices and s_3 reserved vertices. Let $m = m(B_1 \cdot F)$.

- (1.) If $s_1 < r_1$ and $s_2 < r_2$, then $\eta(B_1 \cdot F) = n 2m$;
- (2.) If $s_1 < r_1$ and $s_2 = r_2$, then

$$\eta(B_1 \cdot F) = \left\{ \begin{array}{ll} n-2m+2, & \text{if } \ell_2 \equiv 0 (mod \ 4); \\ n-2m, & \text{if } \ell_2 \not\equiv 0 (mod \ 4) \text{ and } \ell_2 \text{ is even;} \\ n-2m-1, & \text{if } \ell_2 \text{ is odd.} \end{array} \right.$$

(3.) If $s_1 = r_1$, $s_2 = r_2$ and $s_3 < r_3$, then

$$\eta(B_1 \cdot F) = \left\{ \begin{array}{ll} n - 2m + 4, & \text{if $\ell_1, \ell_2 \equiv 0 (mod \ 4)$;} \\ n - 2m + 2, & \text{if $\ell_1 \equiv 0 (mod \ 4)$, $\ell_2 \not\equiv 0 (mod \ 4)$ and ℓ_2 is even;} \\ n - 2m + 1, & \text{if $\ell_1 \equiv 0 (mod \ 4)$ and ℓ_2 is odd;} \\ n - 2m, & \text{if $\ell_1, \ell_2 \not\equiv 0 (mod \ 4)$ and ℓ_1, ℓ_2 are even;} \\ n - 2m - 1, & \text{if $\ell_1 \not\equiv 0 (mod \ 4)$ and ℓ_2 is odd;} \\ n - 2m - 2, & \text{if ℓ_1, ℓ_2 are odd.} \end{array} \right.$$

Proof. Suppose that $s_1 < r_1$ and $s_2 < r_2$. Then $B_1 \cdot F$ is a PED-graph, and so $\eta(B_1 \cdot F) = n - 2m$.

Suppose that $s_1 < r_1$ and $s_2 = r_2$. Because $s_2 = r_2$ implies that $s_3 < r_3$ and the paste vertex v can not be deleted after a PED of $B_1 \cdot F$, we get a

subgraph consisting of the cycle C^2 and $n - \ell_2 - 2m(G')$ isolated vertices, where G' is the subgraph $B_1 \cdot F - E(C^2)$ of $B_1 \cdot F$. Hence $\eta(B_1 \cdot F) = n - \ell_2 - 2m(G') + \eta(C^2)$ by Lemmas 1 and 2. Note that if $\ell_2 \equiv 0 \pmod{4}$ then $\eta(C^2) = 2$ and $\ell_2 = 2m(C^2)$; if ℓ_2 is even and $\ell_2 \not\equiv 0 \pmod{4}$ then $\eta(C^2) = 0$ and $\ell_2 = 2m(C^2)$ and if ℓ_2 is odd then $\eta(C^2) = 0$ and $\ell_2 = 2m(C^2) + 1$. It follows that (2) is true.

Suppose that $s_1 = r_1$, $s_2 = r_2$ and $s_3 < r_3$. Because $s_1 = r_1$ and $s_2 = r_2$ imply that the paste vertices u and v can not be deleted after a PED of $B_1 \cdot F$, we get a subgraph which consists of C^1 , C^2 and $n - \ell_1 - \ell_2 - 2m(G'')$ isolated vertices, where G'' is the subgraph $B_1 \cdot F - E(C^1 \cup C^2)$ of $B_1 \cdot F$. By Lemmas 1 and 2, $\eta(B_1 \cdot F) = n - \ell_1 - \ell_2 - 2m(G'') + \eta(C^1) + \eta(C^2)$. A simple case argument shows that (3) is true. \square

Similar to the proof of Theorem 6, we can obtain

Theorem 7. Suppose that $B_2 \cdot F$ is a bicyclic graph on n vertices, where B_2 is a b_2 -graph with two cycles C^1 and C^2 of length ℓ_1 and ℓ_2 respectively (See Fig. 1: b_2 -graph), and that F is a forest. Suppose that C^i contains r_i overlapped vertices and s_i reserved vertices (i = 1, 2). Let $m = m(B_2 \cdot F)$.

- (1.) If $s_1 < r_1$ and $s_2 < r_2$, then $\eta(B_1 \cdot F) = n 2m$;
- (2.) If $s_1 < r_1$ and $s_2 = r_2$, then

$$\eta(B_1 \cdot F) = \left\{ egin{array}{ll} n-2m+2, & \mbox{if $\ell_2 \equiv 0 (mod \ 4)$;} \\ n-2m, & \mbox{if $\ell_2 \not \equiv 0 (mod \ 4)$ and ℓ_2 is even;} \\ n-2m-1, & \mbox{if ℓ_2 is odd.} \end{array}
ight.$$

Theorem 8. Suppose that $\Theta \cdot F$ is a bicyclic graph on n vertices, where Θ is a θ -graph with three paths P^1 , P^2 and P^3 of length ℓ_1 , ℓ_2 and ℓ_3 , respectively (See Fig. 1: θ -graph), and that F is a forest. Suppose that P^i contains r_i overlapped vertices and s_i reserved vertices (i = 1, 2, 3). Let $m = m(\Theta \cdot F)$.

- (1.) If $s_1 < r_1$ and $s_2 < r_2$, then $\eta(\Theta \cdot F) = n 2m$.
- (2.) If $s_1 < r_1$, $s_2 = r_2$ and $s_3 = r_3$, then

$$\eta(\Theta \cdot F) = \begin{cases} n - 2m, & \text{if } \ell_2 + \ell_3 \not\equiv 0 \pmod{4}; \\ n - 2m + 2, & \text{if } \ell_2 + \ell_3 \equiv 0 \pmod{4}; \\ n - 2m - 1, & \text{if } \ell_2 + \ell_3 \text{ is odd.} \end{cases}$$

Proof. Suppose that $s_1 < r_1$ and $s_2 < r_2$. Because this implies that $s_3 < r_3$, $\Theta \cdot F$ is a PED-graph, and so $\eta(\Theta \cdot F) = n - 2m$. Suppose that $s_1 < r_1$, $s_2 = r_2$ and $s_3 = r_3$. Then the paste vertices u and v can not be deleted after a PED of $\Theta \cdot F$. As in the proof of Theorem 6 (2.), we can show that (2.) is true. \square

3. Acknowledgment

We thank the referee very much for his (or her) careful reading of the original manuscript and valuable suggestions.

References

- L. Collatz, U. Sinogowitz, Spektren endlicher Grafen, Abh. Math. Sem. Univ. Hamburg 21 (1957) 63-77.
- [2] D. Cvetkovic, M. Doob, H. Sachs, Spectra of Graphs, Academic Press, New York, 1980
- [3] I. sciriha, On the construction of graphs of nullity one, Discrete Math., 181 (1998) 193-211.
- [4] I. sciriha and I. Gutman, On the nullity of line graphs of trees, Discrete Math., 232 (2001) 35-45.
- [5] I. sciriha, A characterization of singular graphs, Electronic Journal of Algebra (ELA), 16 (2007) 451-462.
- [6] H. C. Longuct-Higgins, Resonance structures and MO in unsaturated hydrocarbons, J. Chem. Phys. 18 (1950) 265-274.
- [7] X. Z. Tan and B. L. Liu, On the nullity of graphs, Linear Algebra Appl. 408 (2005) 212-220.