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Abstract. The nullity of a graph is the multiplicity of the eigenvalue
zero in its spectrum. In this paper, we give formulae to calculate the nullity
of n-vertex bicyclic graphs by means of the maximum matching number.
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1. Introduction

Let G be a simple undirected graph on n vertices. The adjacency matriz
A(G) of graph G, having vertex set V(G) =[v, -+ ,v,] is the n X n sym-
metric matrix [a;], such that [ai;]= 1, if v; and v; are adjacent and 0,
otherwise. The eigenvalues A;,--- , A, of A(G) are said to be the eigenval-
ues of G, and to form the spectrum of G. The number of zero eigenvalues in
the spectrum of G is called its nullity and is denoted by 7(G). Let r(A(G))
be the rank of A(G). Then 7(G) = n — r(A(G)).

Collatz and Sinogowitz [1] first posed the problem of characterizing
all graphs which satisfy n(G) > 0. This question is of great interest in
chemistry, because, as has been shown in (6}, for a bipartite graph G (cor-
responding to an alternant hydrocarbon), if 7(G) > 0, then it indicates
that the molecule which such a graph represents is unstable. Some results
on the nullity of graphs in general are known (See [2], [3], [4],[5] and [7]).

Connected graphs in which the number of edges equals the number of
vertices plus one are called bicyclic graphs. Define a b-graph to be a graph
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consisting either of two vertex-disjoint cycles C! and C? and a path P
joining them having only its end-vertices « and v in common with the
cycles, or two cycles C! and C? with exactly one vertex v in common. The
former is sometimes called b;-graph and the latter bp-graph. Define a 6-
graph to be a graph consisting of two given vertices u and v joined by three
paths P!, P2 and P? with any two of these paths having only the given
vertices in common. See Fig. 1, where v and v are called paste vertices.
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Figure 1

Obviously, a bicyclic graph is a b-graph or a 6-graph with trees attached.
In this paper, we give formulae to calculate the nullity of n-vertex bicyclic
graphs by means of the maximum matching number. Following the meth-
ods employed in [7], we denote by m(G) the maximum matching number
of a graph G.

2. Main results

In this section we will first give some preliminary lemmas and then gradu-
ally obtain our main results.

Let G be a graph and v; € V(G) (1 < ¢ < k). Then we write
G - {vy,--- , vk} for the subgraph of G obtained from G by removing the
vertices vy,--- ,vx and all edges incident to any of them. If e; € E(G)
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(1 < i < ¢) then define G — {e1,--- ,e¢} to be the subgraph of G obtained
from G by removing the edges e;,--- ,es. A vertex of a graph is called a
pendant vertez if its degree is 1.

Lemma 1. [2] Suppose that v is a pendant vertex of G and u is adjacent
to v. Then n(G) = (G — {u,v}).

The following result is trivial, but we will use it repeatedly.

)
Lemma 2. Suppose G = |J G;, where Gy, ,G¢ are connected compo-
i=1

nents of G. Then n(G) = i 7(Gi).
i=1

Suppose that Gp is an n-vertex graph with a pendant vertex uo and
that vp is adjacent to ug. Let Gip1 = Gi — {u;, v}, where u; is a pendant
vertex of G; and v; is adjacent to u; (¢ = 0,1,...). Then obviously there
exists some integer £ such that G4+ has no pendant vertex. (Specifically,
if Gy is an edge, then G¢41 will be an empty set.) The process of getting
Ge41 from Gy is called a pendant edge deleting (PED for short) of Go. By
Lemma 1, 7(Go) = n(Ge+1). Go is a PED-graph if Geyy only contains
isolated vertices. For instance, a tree is a PED-graph. Since v; is always
covered by any maximum matching of G;, if Gy is a PED-graph, then by
Lemmas 1 and 2, 7(Go) = n — 2m(Gbo).

Lemma 3. [2] A path with four vertices of degree 2 in a graph G can be
replaced by an edge without changing n(G).

Let C,, be a cycle on n vertices. Then 9(C,) = 2 if n = 0(mod4) and
7(Cr) = 0 otherwise.

Lemma 4. If G is either a b-graph or a 9-graph, then n(G) < 3.

Proof. By lemma 3 we only need to observe the b;-graphs and the
6-graphs on at most 11 vertices and bo-graphs on at most 7 vertices (See
Fig. 1). By MATLAB we can verify that the result holds. O

Suppose that H is a graph without any pendant vertex and that u; €
V(H) (1 <% < k). Suppose that F' is a forest with components T3, ..., Tk
disjoint with H and that v; € V(T;) (1 < i < k). Then we denote by H - F
the graph obtained by identifying «; and v; (1 < ¢ < k), where wq,...,ug
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are called overlapped vertices of H - F and k is the overlapped number,
denoted by O(H - F). A vertex in {uy,--- ,ux} is called reserved if it is
undeleted after a PED of H - F. In fact, a reserved vertex is such that is
mismatched by some maximum matching from F. We denote by o(H - F)
the number of all reserved vertices of H - F. Clearly, o(H - F) <O(H - F).

Theorem 5. Suppose that H - F is a bicyclic graph on n vertices, where
H is either a b-graph or a 0-graph on 9 vertices and F is o forest. If
olH-F)=0O(H-F), thenn(H-F) <n-2m(F)—-9+3.

Proof. Since o(H - F) = O(H - F), we obtain a subgraph which
consists of H and n — 2m(F) — ¥ isolated vertices after a PED of H - F.
By Lemmas 1 and 2, n(H - F) = n - 2m(F) — 9 + n(H). It follows from
Lemma 4 that the result is true. O

Theorem 6. Suppose that By - F is a bicyclic graph on n vertices, where
B is a by-graph with two cycles C' and C? of length ¢, and €5 respectively
and a path P (See Fig. 1: by-graph), and that F is a forest. Suppose
that Ct contains r; overlapped vertices and s; reserved vertices (i = 1,2)
and that P contains T3 overlapped vertices and s3 reserved vertices. Let
m=m(B; - F).

(1) If s1 <11 and sy < ra, then n(B; - F) =n —2m;
(2.) If s1 <7y and s3 = T2, then

n—2m+2, if & = 0(mod 4);
7(By-F)={ n—-2m, if €2 # 0(mod 4) and &3 is even;
n—2m-—1, if €2 is odd.

(3.) If 31 =71, 52 =72 and s3 < 13, then

n—2m+4, if €1, 4, = 0(mod 4);
n—2m+2, if¥f; =0(mod 4),¢2 #0(mod 4) and &3 is even;
(B,-F) = n—-2m+1, if €4 = 0(mod 4) and ¢3 is odd;
MEVE) =9 5 2m, if £4,€2 # O(mod 4) and ¢,¢> are even;
n—2m-1, if £1 3 0(mod 4) and £3 is odd;
n—2m-—2, if £1, €3 are odd.

Proof. Suppose that s; < 1 and s2 < 2. Then B, -F is a PED-graph,
and so p(B; - F) =n —2m.

Suppose that s; < r; and sy = r2. Because s; = 73 implies that s3 <3
and the paste vertex v can not be deleted after a PED of B; - F, we get a
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subgraph consisting of the cycle C? and n — £2 — 2m(G’) isolated vertices,
where G’ is the subgraph B; - F — E(C?) of B, - F. Hence (B, - F) =
n—Ll—2m(G")+7(C?) by Lemmas 1 and 2. Note that if &5 = 0(mod4) then
n(C?) = 2 and &, = 2m(C?); if £ is even and £, # O(mod4) then n(C2) =0
and ¢, = 2m(C?) and if ¢ is odd then 7(C?) =0 and ¢, = 2m(C?) +1. It
follows that (2) is true.

Suppose that s; =71, 82 = 72 and 83 < r3. Because 8; = r; and 83 = g
imply that the paste vertices u and v can not be deleted after a PED of
B, - F, we get a subgraph which consists of C!, C? and n—¢; — £, - 2m(G")
isolated vertices, where G"' is the subgraph B; - F — E(C'UC?) of B; - F.
By Lemmas 1 and 2, p(B; - F) = n — &1 — €3 — 2m(G") + n(C?) + n(C?).
A simple case argument shows that (3) is true. 0

Similar to the proof of Theorem 6, we can obtain

Theorem 7. Suppose that By - F is a bicyclic graph on n vertices, where

B is a by-graph with two cycles C' and C? of length £, and £z respectively

(See Fig. 1: ba-graph), and that F is a forest. Suppose that C* contains r;

overlapped vertices and s; reserved vertices (i = 1,2). Let m = m(Bz - F).
(1.) If s1 <7, and sg < 72, then np(B1 - F) =n — 2m;

(2.) If 53 < r1 and s3 =72, then

n—2m+2, if o = 0(mod 4);
9By -F)={ n-—2m, if €3 # O(mod 4) and &3 is even;
n—2m-1, if € is odd.

Theorem 8. Suppose that © - F' is a bicyclic graph on n vertices, where
© is a O-graph with three paths P', P? and P® of length £y, £z and 03,
respectively (See Fig. 1: 0-graph), and that F is a forest. Suppose that P*
contains r; overlapped vertices and s; reserved vertices (i = 1,2,3). Let
m=m(©-F).

(1.) If s1 <1 and s3 <72, thenn(© - F) =n — 2m.

(2.) If 51 <Ti, Sg=T2 and 83 =73, then

n—2m, if bo + €3 # O(mod 4);
9O -F)={ n-2m+2, ifly+¥3=0(mod 4);
n—2m-—1, if o + 3 is odd.

Proof. Suppose that s; < r; and sp < ro. Because this implies that
83 < 73, © - F is a PED-graph, and so n(© - F) = n — 2m. Suppose that
81 < 11, sg = 79 and s3 = r3. Then the paste vertices u and v can not be
deleted after a PED of © - F. As in the proof of Theorem 6 (2.), we can
show that (2.) is true. O

133



3. Acknowledgment

We thank the referee very much for his (or her) careful reading of the
original manuscript and valuable suggestions.

References

[1] L. Collatz, U. Sinogowitz, Spektren endlicher Grafen, Abh. Math. Sem.
Univ. Hamburg 21 (1957) 63-77.

[2] D. Cvetkovic, M. Doob, H. Sachs, Spectra of Graphs, Academic Press,
New York, 1980

[3] I. sciriha, On the construction of graphs of nullity one, Discrete Math.,
181 (1998) 193-211.

(4] L sciriha and I. Gutman, On the nullity of line graphs of trees, Discrete
Math., 232 (2001) 35-45.

[5] I. sciriha, A characterization of singular graphs, Electronic Journal of
Algebra (ELA), 16 (2007) 451-462.

(6] H. C. Longuct-Higgins, Resonance structures and MO in unsaturated
hydrocarbons, J. Chem. Phys. 18 (1950) 265-274.

[7} X. Z. Tan and B. L. Liu, On the nullity of graphs, Linear Algebra
Appl. 408 (2005) 212-220.

134



