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Abstract: The Padmakar-Ivan (PI) index is a Wiener-Szeged-like topological
index which reflects certain structural features of organic molecules. In this
paper we study the PI index of gated amalgam.
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1. Introduction

Wiener index (W) and Szeged index (Sz) are introduced to reflect certain
structural features of organic molecules [1-6]. [7, 8] introduced another index
called Padmaker-Ivan (PI) index. PI index is a very useful number in chemistry,
as demonstrated in literature [8-16]. In [8] authors studied the applications of PI
index to QSRP/QSAR. It turned out that the PI index has a similar
discriminating function as Wiener index and Szeged index, sometimes it gave
better results. Hence, PI index as a topological index is worth studying. In [9]
authors pointed out that PI index is superior to °X, %X and logP indices for
modeling Tadpole narcosis. In [10] the authors reported quantitative structure —
toxicity relationship (QSTR) study using the PI index. They have used 41
monosubstituted nitrobenzene for this purpose. The results have shown that the
PI index alone is not an appropriate index for modeling toxicity of nitrobenzene
derivatives. Combining PI index with other distance-based topological indices
resulted in statistically significant models and excellent results were obtained in
pentaparametric models. For the previous results about PI index, please see [17,
18, 19].
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Let G be a simple connected graph. The PI index of graph G is defined as
follows:

PI=PI(G) = [n,(e|G)+n,(e|G)],

where for edge e = uv n.,(e|G) is the number of edges of G lying closer to u
than v, n.(e|G) is the number of edges of G lying closer to v than u and
summation goes over all edges of G. The edges which are equidistant from u
and v are not considered for the calculation of PI index [18]. In the following
we write n., instead of n.,(¢|G) for short.

The organization of the paper is as follows: in section 2 we present some
preliminaries, in section 3 we present our main result—Theorem 3.1 which
provides a general technique to use mathematical induction.

2. Preliminaries
For basic definitions cited in this paper, please see [20, 21] for further
details.
Definition 2.1. The interval I(u, v) between vertices u and v of a connected
graph G is the set of vertices of all shortest paths between u and v in G. A

subgraph H of G is a convex subgraph if for any vertices u,veV(H) we
have I(u,v)c V(H). A subgraph H of graph G is called gated subgraph in
G if for every x € V((G) there exists a vertex u in H such that u € I(x,v)
for all veV(H). If for some x such a vertex u in V(H) exists, it must be

unique. It is called the gate of x in H and we denote it g, (x). The

intersection of gated subgraphs is a gated subgraph and a gated subgraph is
always convex subgraph [22, 23].

Definition 2.2. Let G, and G, be gated subgraphs of graph G such that

G UG,=G and G 1G,#¢ . If there are no edges between
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V(G)\V(G,) andV(G,)\V(G)), G is called a gated amalgam of G,
and G, [23].
Definition 2.3. Let G be the gated amalgam of G, and G,, H =G,1 G,.
Define  gate map g V(G)->V(H) as follows:

forVxeV(G,),g,(x)=g,(x),i=1,2.

Definition 2.4. Let G be the gated amalgam of G, and G,, H=G,I G,,

let g:V(G)—>V(H) and g,:V(G,)>V(H) be the gate maps
respectively.

For xye E(G)—E(H), let u=g/(x), v=g/(y), define [ as
follows: (1) If d(x,8,(x))=d(»,8(¥)) and g (x)# g(y), define
l,=(n, in G)—(n, inH;Q)If d(x,8(x))= d(y,g,(y)) and
8 (%) =g/(y), define 1, =0;(3)If d(x,g,(x))=d(p,8(y)), define
Ly = E(Gy) |- E(H)|.

For xye E(G,)—E(H), let u=g,(x), v=_g,(y), define m, as
follows: (1) If d(x,g,(x))=d(»,8,(y)) and g,(x)# &,(y), define
m,=(n, in G) — (n, in H; ) If d(x,8,(x))=d(y,8,(»))

and g,(x)=g,(y), define m,=0; 3)If d(x,8,(x)#d(y,8,(¥),
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define m_, = E(G))|—| E(H)|.

Where (7, in G,) means the number of edges of G, which are not

equidistant fromuand v in G,,i=1,2;So does (#,, inH).
3. Main Results

Theorem 3.1. Let G be the gated amalgam of G, and G,, H=G|1 G,,

g V(G)—>V(H) and g,:V(G,) >V(H) be the gate maps

respectively. Then
PI(G) = PI(G,))+ PI(G,)—PI(H)

o Ly 3 om,
xyel(G))-E(H) xyef(Gy)-E(H)

where |, and m,, are defined in Definition 2.4.

Proof. Claim 1: H is a connected subgraph of G
In fact, by Definition 2.1 and Definition 2.2 we know that H is a gated
subgraph of G. By Definition 2.1 H is a convex subgraph of G. For

Yu,veV(H), since we suppose G is a connected graph in this paper, there
exists one of the shortest (u, v)—paths P in G. Because H is a convex subgraph
of G, by Definition 2.1 we have V' (P)c V(H). Hence, P is contained in H.
Claim | follows.

Case 1. xye E(H).

Since (1, in H ) is counted twice by (7, in G,) and (n,, in G,), by
the definition of P1 index we have

(n,inG)=(n,, in G)
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+(n,, in Gy) — (n, inH),

which are terms of PI(G,)+ PI(G,)— PI(H) respectively.

Case2. xy e E(G))—-E(H).

Subcase 2.1. Suppose d(x,g,(x))=d(y,£,(y)) and g,(x)# g,(»).

Claim2: g,(x)g,(y)e E(H).

Otherwise, by Claim 1 there exists one of the shortest

(& (x),g,(y)— paths P =wu,.u, in H, where n23 ,

u, =u=g/(x), u, =v=_g(y). By Definition 2.1 and Definition 2.2 H is
a gated subgraph of G. By Definition 2.1 H is a convex subgraph of G, we

have V(R)cV(H) . Hence, F is also one of the shortest
(g(x),g,())— paths in G Let P, =xux,.x, be the shortest
(x,g(x))—pathinG, B =yy,..y, betheshortest (y,g,(y))—pathin

G where x, =x,x, =g,(x), =¥, ¥, =20).

Let P,={xy}UPR, BL=RUP,. Because |E(P)|HE(R)| we
have

| E(F) |<| E(F)],

Thus, g,(x) is nota gate from xto g,(y), which is a contradiction. Claim

2 follows.
By Claim 2 and the definition of PI index we have
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(n,inG)=(n, in G)
+(n,, in G,) — (n,, inH)
=(n, in G)+ I,
which are terms of PI(G,)+ Z [,, respectively.
xyeE(G)-E(H)
Subcase 2.2. Suppose  d(x,g,(x))=d(y,g,(y)) and g, (x)=g,(»).
Thus, all edges in E(G,) are equidistant from g;(x) (or g,(¥)),
hence, all edges of E(G,) are equidistant from x and y. Thus, we have

(n, inG)=(n, in G)

=(n

xy

in G+ [,

which are terms of PI(G,)+ Z l,, respectively.

xyeE(G)-E(H)

Subcase 2.3 Suppose d(x,g,(x)) =d(y,g,(»)).

Claim 3: g,(x)=g,(y).

Otherwise, suppose g,(x)# g,(y) . Without loss of generality, let
dix,g,(x))<d(y,g(y)) . Let F, be one of the shortest
(x,g,(x))—pathinGand P, beone of the shortest (y,g,(y))—pathsinG.

Denote F,=FU{xy}, B =RUP , where F is the shortest

(g,(x),g(y)— path in H, n=2 , defined in Claim 2. Because
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d(x,(x)) <d(»,8(y)) wehave
| ECR) 1< E(B)|.

However, F, does not pass through g,(»). That is, g,() is not the

gate of y, which is a contradiction. Claim 3 follows.

By Claim 3 all edges in E(G,)—E(H) are equidistant from g,(x) (or

g, (). Since d(x,8,(x)) #d(y,8,(»)), all edges in E(G,)—E(H)

are not equidistant from x and y. By the definition of Pl index we have

(n, nG)=(n, in G)+|E(G,)|-|E(H)|
=(n,, in G)+ 1,

which are terms of PI(G,)+ Z I_, respectively.

R
xyeli(G))-E(H)
Similarly, we can discuss Case 3:

Case3. xy e E(G,)-E(H).

The theorem follows.
By Theorem 3.1 the following theorem is obvious.
Theorem 3.2. Let G be the graph obtained by identifying of a vertex of graphs

G, and G,, let the identified vertex be w. Then
PI(G) = PI(G))+ PI(G,)
+| T E@G)I+IT || E(G) s
where
T ={xy e E(G)|d(x,w)#d(y,w)},i=1,2.

Remark: Theorem 3.1 provides a technique to prove theorems about Pl
indices by mathematical induction. In the following we use two examples to

141



show that Theorem 3.1 with mathematical induction is a general method to
prove theorems about PI indices, for the original proofs, please see [17].

Define polyphenylene with h hexagons as follows, denote it PO,

PO,

Figure 1. Polyphenylene
Theorem 3.3(17). PI(PO,)=49h* =2Th+2.
Proof. By mathematical induction.
(1). Whenh=1, PO, isa6-cycle, Theorem 3.3 follows clearly.

(2). Suppose
PI(PO,_) =49(h—1)* =27(h—1) +2

holds, #=2. Let G=PO,, G, beasfollowsand G, = PO, _,.
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Figure 2. G, in the proof of Theorem 3.3.

By the definition of PI index, it is easy to see that

PI(G)=36.
Obviously, we have

I T; l‘_‘ 7,

| T, |=7Th-8.

By Theorem 3.2 Theorem 3.3 follows.

Consider a polyacene having h hexagons as follows, denote it L, .

Figure 3. Polyacene
Theorem 3.4{17]. PI(L,) = 24h’.
Proof. By mathematical induction.

(1). Whenh=1, L, isa hexagon, Theorem 3.4 follows clearly.

(2). Suppose ©>2 and PI(L, ) =24(h—1)* holds.

Let G, be the left hexagon of L,, G, be L, , and H be K.

Theorem 3.1 Theorem 3.4 follows.
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