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Abstract

In the theory of orthogonal arrays, an orthogonal array is called
schematic if its rows form an association scheme with respect to
Hamming distances. Which orthogonal arrays are schematic orthog-
onal arrays and how to classify them is an open problem proposed
by Hedayat et al.[12]. In this paper we study the Hamming distances
of the rows in orthogonal arrays and construct association schemes
according to the distances. The paper gives the partial solution of
the problem by Hedayat et. al. for symmetric and some asymmetric
orthogonal arrays of strength two.

key words: orthogonal array, Hamming distance, association scheme,
schematic orthogonal array.

1 Introduction

In the past decades, people mainly focused on the properties of columns of
orthogonal array because of the application. Only a few people considered
the relations of the rows in the orthogonal arrays. Delsarte [9] gave the
relations of rows in some orthogonal arrays first, Atsumi [4] also dealt with
relations of rows in the orthogonal array.

Some authors studied schematic orthogonal arrays. Yoshizawa 425
shown schematic orthogonal arrays in some cases. Hedayat etc. [12] studie
the orthogonal arrays in detail and proposed many open problems. One of
these problems is that in which orthogonal array the rows form an associa-
tion scheme and how to classify them. The paper deals with the schematic
orthogonal arrays with strength 2 and gives the construction of association
schemes with respect to Hamming distances of the rows in the orthogonal
arrays.
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2 The Hamming distances in symmetric or-
thogonal arrays of strength two

In the definition of orthogonal array by C. R. Rao [19], if t;, = --- =
tm = t, an orthogonal array can be denoted simply by OA(n,m,t,s). Suc
orthogonal arrays are called symmetric orthogonal arrays of strength s.
The orthogonal array OA(n,m,t, s) has the properties:

1. In each column, all the symbols occur equally often;

2. In any r columns (r < s), all the possible r-tuples of symbols occur
- equally often.

In practice, we usually take s = 2. In that case, we take Taguchi’s
notation L, (t™) for OA(n,m,t, s), here the strength s = 2 is omitted.

There are many ways to construct orthogonal arrays. The orthogonal
arrays constructed by Latin squares are expressed by Lz (t¢*!), those con-
structed by vector spaces over Galois fields are expressed by Lsn (™ )( where
m= t:_—"ll) and those constructed by Hadamard matrices Hy,, are expressed
by L4n(2*"~1). The different methods make different expressions. But they
are all saturated in the sense that they leave no degree of freedom for error
estimation in statistics. In L,(t™), it means

m(t—-1)=n—1. (2.1)
In asymmetric orthogonal array OA(N, t7*1t5'2 - - - £+, 2) it means
(t1=1)my+(t2—)ma+---+(tr—1)my =N - 1. (2.2)

In [15], there is a lemma describing the relations of rows in saturated
asymmetric orthogonal arrays, it is stated as follows.

Lemma 2.1 (Mukerjee and Jgg‘ Wu) Consider two distinct rows of a satu-
rated orthogonal array OA(n,t7*'t32,2). Fori=1,2, let A; be the number
of coincidences between these two rows arising from the t;-symbol columns.
Then A, and Ao are nonnegative integers satisfying A1 < my,Ag < ma,

tiA +tAg =my +me—1 (2.3)

In this lemma, let mg = 0, it becomes symmetric case.

If A denotes the number of coincidences between any two rows with ¢
symbols, then Hamming distance should be Dy, = m — A. From 2.1 and
2.3, we have

Dy=m-A=m- ==l et - = ¢,
There is one Hamming distance, so the saturated symmetric orthogonal
array is equidistant with respect to Hamming distance.

In Lin (t™) where m = £51,n > 2, Dy =t""'. In L4n (24 1), Dy =
2n.

But for unsaturated symmetric orthogonal array Ly (t*+1) (A > 2),
Mukerjee and Jeff Wu do not give the expression of Hamming distances of
the rows in the array.

The orthogonal array Ly (#***?!) is derived from difference matrices
based on the method of Bose and Bush [5]. The method is stated as follows.
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Theorem 2.1 (Bose and Bush) Let D(Xt, Mt,t) be a difference matriz over
an additive group G of order t, if every element in D is replaced by its
correspondence in the additive table of G, we obtain a At? x M\ matriz,
it is the orthogonal array Ly (t™), and its At2 rows can be divided into
At groups with t rows each, the t elements in each group are just all the
elements in G. By juztaposing another column
(0,0,-+-0,1,1,-++,1,-++, 6 —1,t = 1,--+,t = 1)/
we obtain the orthogonal array Ly (tA1?).

For difference matrices of A = 2, many authors gave the construction
Enei;)hods (Masuyama [17], for example Liu [14], Jungnickel[13] and Xiang
24]).

For A\ > 2, there is no general construction method so far, some differ-
iance matrices are found case by case. Jungnickel [13] gave the following
emma.

Lemma 2.2 The transpose of difference matriz D()t, At,t) is also a dif-
ference matriz D(Xt, Mt, t).

According to Lemma 2.2, we have

Theorem 2.2 In orthogonal array Ly (t*+1), there are three Hamming
distances between rows: Dy, = M, Dy, = At —1),Dy, = At - 1)+ 1.

Proof. Lemma 2.2 means that the rows of the matrix form a difference
matrix as well, so in the difference of any two rows of D(At, At,t), there
are )\ 0’s. That means there are )\ corresponding symbols equal in the two
rows, so the Hamming distance of the two rows is

At — A= A(t-1).

By the constructing method of Theorem 2.1, after replacing symbols in
D()t, At, t) by their corresponding columns in the additive table, juxtapose
a column

(0,...,0,1,...,1,...,(,:_ 1),---,(t— 1))'.
There are three conditions for the Hamming distance of the array after
juxtaposition.

(1). For any two rows corresponding to the same row in D(At, At, 1), all
the symbols are different except the juxtaposed column, so the Hamming
distance of them is

Dy, = M,

(2). Take any two rows corresponding to different rows in D()t, At, t)
and corresponding to the same symbol in the juxtaposed column. One row
can be obtained by permutation of the other, the Hamming distance of
the original rows is A(t — 1), after permutation, it keeps unchanged. The
Hamming distance of them is

Dy, = At —-1).

(8). For any two rows corresponding to the different rows in D(At, At, t)
and different symbols in the juxtaposed column, the Hamming distance is
that in D(At, Xt,t) plus one, so

Dy, =At—-1)+1

Hence the theorem is proved.
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3 The Construction of Association Schemes

We define associate relations by Hamming distances of the rows. When the
relations satisfy some conditions, an association scheme is constructed.

For convenience in the construction, we give the definition of the asso-
ciation scheme first.

Definition 1 Given v symbols 1,2,---,v, o relation satisfying the follow-
ing conditions is said to be an association scheme with d classes:

(1) Any two symbols are either 1st, 2nd, ..., or d-th associate, the re-
lation is symmetrical, that is, if the symbol = is the i-th associale of the
symbol y, then y is the i-th associate of x.

(2) Each symbol z has n; i-th associates, the number n; is independent
of the symbol x.

(3) If any two symbols ¢ and y are i-th associates, then the number of
symbols that are both j-th associate of x and k-th associate of y is pj-k , and

it is independent of the pair of i-th associates x and y.

The numbers v,n;, (i = 1,2,---,d) and pi(i, 5,k = 1,2,---,d). are
called the parameters of the association scheme. It is easy to show that
Pjr = Pi; and they form d symmetric d X d matrices:

Pz=(p;k)1(?‘=1a2’ad) .
The two-associate-class association schemes related to statistics are
summarized by Raghavarao (18].

3.1 For Saturated Symmetric Orthogonal Arrays

The orthogonal arrays constructed from Latin squares, Hadamard matrices
and vector spaces over Galois fields are all saturated. There is only one
Hamming distance of the rows in these arrays. If we delete some columns
in the orthogonal array, the array becomes unsaturated, hence Hamming
distance has two or more values.

If we delete one column, the Hamming distance has two different values,
the rows are grouped according to the symbols in the deleted column. In
the same group any two rows have one distance and in the different groups,
any two rows have another distance. So the group divisible association
scheme is constructed, and it is not related to the strength s of the array.

But if we delete two or more columns from the array, the case depends
on the strength of the array. We give a lemma first.

Lemma 3.1 Let there be a d-class association scheme with parameters:
v, N1,7N2, - ‘,ndvp;’k (ivj:k =1,2,.-- ad)
If we repeat each symbol r times and define the new associate relations of
the repeated symbols as (d-+1)-th associates, then a (d+1)-class association
scheme is obtained with parameters:
v =ru,n] =rny,ny =Tng, -, ng, =T -1,
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and )
TP f LA kFd+1
i )0 ifi=j=d+1
Pik=Y r—1 ifi=j#d+landk=d+1
r—2 ifi=j=k=d+1

Proof. It is easy to see that if an associate relation is not newly defined in
the new scheme, the related parameters are multiplied by r because each
symbol repeats r times. For a pair of g(.i + 1)-th associates z,y, there will
not be a symbol that is both (d + 1)-th associate of = and k-th associate
ofy. Ifi=k, j = d+1, the r — 1 other symbols will be the (d + 1)-th
associates of = and i-th associates of y. If i,5,k = d + 1, the other r — 2
symbols will be the (d + 1)-th associates of both = and y. The lemma is

proved. i

Let there be an orthogonal array OA(n,m,t,s) with strength s. Each
r-tuple is ordered and can be looked as a point in R”. Then the " points
can be arranged into an r-dimensional supercube according to their coor-
dinates and the Hamming distances of them can be found. According to
Brouwer, Cohen and Neumaie ([7]PP.261), the t" points form a distance-
regular graph, named Hamming graph (lattice graph) and it is an associ-
ation scheme with respect to Hamming distance. So equivalently, all the
t" points form an 7-class association scheme with respect to Hamming dis-
tance.

In any r columns, each r-tuples appears equally often, so by Lemma
3.1, these tuples form an association scheme. Since

DH(a,fterdeleting) = DH(arra'y) - DH(deleted)-
In case s = 2, we have:

Theorem 3.1 In a saturated symmetric orthogonal array OA(n,m,t,2),
if we delete any 2 columns, the rows of the array after deletion form an
association scheme with respect to Hamming distances.

Notice that the construction method is independent of the deleted col-
umn, so we can obtain the association scheme by deleting any 2 columns.
The construction is shown in the following example.

Example

The following table is orthogonal array Le7(3!3) (transposed):
T TIVTITTII1I11222222222333333333
21111222333111222333111222333
31111222333222333111333111222
41111222333333111222222333111
51123123123123123123123123123
6 1123123123231231231231231231
71123123123312312312312312312
8 1123231312123231312123231312
9 1123231312231312123312123231
10(123231312312123231231312123
111123312231123312231123312231
121123312231231123312312231123
13]123312231312231123231123312
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Deleting the first two columns, by the discussion above, a 3-class association
scheme is obtained with parameters:
v=27, m1 =2, ng =12, n3g =12,

1 0 0O 020 00 2
P = 12 0 |,P= 3 6 |,A= 6 6
12 6 3

The association scheme table is Table 1:

Table 1: The association scheme obtained from Lo7(3!3) after deleting two
columns

ist 2nd asso. 3rd asso.
1 23 456789101112192021 13 14 15 16 17 18 22 23 25 25 26 27
2 13 456789101112192021 13 14 15 16 17 18 22 23 25 25 26 27
3 12 456789101112192021 13 14 15 16 17 18 22 23 25 25 26 27
4 56 123789131415222324 10 11 12 16 17 18 19 20 21 25 26 27
5 46 123789131415222324 1011 12 16 17 18 19 20 21 25 26 27
6 45 1237891314152223 24 10 11 12 16 17 18 19 20 21 25 26 27
7 89 1234561617 18 25 26 27 10 11 12 13 14 1519 20 21 22 23 24
8 79 12345616 17 18 25 26 27 10 11 12 13 14 15 19 20 21 22 23 24
9 78 1234561617 18 25 26 27 10 11 12 13 14 15 19 20 21 22 23 24
10111121 1231314151617 18 19 20 21 456789 222324252627
11 11012 (1231314151617 18192021 456789222324 2526 27
12 11011 | 1231314151617 1819 20 21 4567892223 24252627
13 11415 | 4561011 12 16 17 18 22 23 24 123789192021 252627
14 | 1315 | 45610111216 17 18 2223 24 123789192021 252627
15 | 1314 | 45610111216 17 18 22 23 24 123789192021 252627
16 | 1718 | 789101112 13 14 15 25 26 27 123456192021222324
17 1 1618 | 789101112 13 14 15 25 26 27 123456 192021222324
18 11617 | 789101112 13 14 15 25 26 27 123456192021222324
19 | 2021 | 1231011122223 2425 26 27 45678913141516 1718
20 | 2122 | 1231011122223 24 25 26 27 456789131415 16 17 18
21 11920 | 1231011122223 24 25 26 27 45678913141516 17 18
22 | 2324 | 4561314151920 21 25 26 27 12378910111216 1718
23 12224 | 45613141519 20 21 25 26 27 123789101112161718
24 |1 2223 1 45613141519 20 21 25 26 27 1237891011121617 18
25 | 2627 | 789161718 1920 21 22 23 24 123456101112131415
26 | 2527 | 789161718 19 20 21 22 23 24 123456101112131415
27 ) 2526 | 7891617 18 19 20 21 22 23 24 123456101112131415

It is the No. 384 association scheme for 27 at the website:

http://kissme.shinshu-u.ac.jp/as/.

3.2 For Unsaturated Symmetric Orthogonal Arrays

There are some orthogonal arrays Ly (t**+1) (A > 2) constructed from
difference matrices D?)\t, At,t) by Bose and Bush. From Theorem 2.2,

it is seen that in orthogonal array Ly (t*t*1), there are three Hamming
distances. Therefore we have:
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Theorem 3.2 From orthogonal array Lyg:(t*t*!), a three-class associa-
tion scheme can be constructed with parameters
ny=t—1, ng=(A= 1), ng=At(t—1),

t—2 0 0
P = (M-t 0 ,
Xt(t — 1)
0 t-1 0 00 ¢t—1
Py = (A-2t 0 Py = 0 (A—1)
A(t—1) Mt — 2)

Proof. By Theorem 2.2, there are three Hamming distances in the or-
thogonal array. Define that two rows are first associates if their Hamming
distance is At, second associates if their distance is A(f — 1) and third asso-
ciates if their distance is A(t — 1) + 1.

All the rows with distance At to each other come from the same row in
the difference matrix, there are t such rows, son; =t — 1.

For each row, its second associates are those rows corresponding to
different rows in the difference matrix and same symbol in the juxtaposed
column. There are (A — t)t such rows, so np = (A - t)t.

For each row, the third associates of it are those rows corresponding to
different symbols in the juxtaposed column. There are At(t — 1) such rows
in number, so ng = At(t - 1).

Let’s find the intersection matrices.

(1). Taking any pair (z,y) of first associates, they correspond to the
same row in the original difference matrix and same symbol in the jux-
taposed column. But there are no common symbol in the pair of the
corresponding entries of the two rows, and the ¢ rows are self-closed, so
piy =t—2, p, =0 and pi; = 0.

For this pair, their common second associates are those corresponding
to the same symbol in the juxtaposed column. There are (A — 1)t such
rows, so phy = (A — 1)t.

Because z’s second associates are those corresponding to the same sym-
bol in the juxtaposed column, but y’s third associates are those rows cor-
responding to the different symbols in the juxtaposed column. There are
no common rows satisfying the condition, so p}; = 0.

Their common third associates are those corresponding to the different
symbols of that corresponding to both z and y. There are (¢ — 1) such
symbols and each symbol corresponds to At rows, so p3; = At(t — 1).

(2). Taking any second associate pair (z,y). z and y correspond to
different two rows in the original difference matrix and the same symbol
in the juxtaposed column, so they have no common first associate, hence
p?, = 0. The (t — 1) first associates of z all correspond to the same row
in the original difference matrix but different symbols in the juxtaposed
column, so p?, = ¢t — 1 and the similar reason leads to p?; = 0.

(z,¥)’s common second associates should be those corresponding to
different rows in the original difference matrix with respect to x and y.
There are (A — 2)t such rows, so p2, = (A — 2)t. Because that z's second
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associates correspond to the same symbol in the juxtaposed column with y,
and y’s third associates correspond to different symbols in the juxtaposed
column with z, there are no common rows among them, so p2; = 0.

It's easy to see that p3; = (£ — 1)\t

(3). Taking any third associate pair (z,y). They correspond to different
rows in difference matrix and different symbols in the juxtaposed column.
So obviously, p}, = 0, pd, = 0 and p3; = (¢ — 1). Their common second
associates should be those rows corresponding to the same symbol in juxta-
posed column with z and y respectively. But z and y correspond different
symbols in the juxtaposed column and there are no such rows, so p3, = 0.

Meanwhile, there are (A — 1)t rows corresponding to the same sym-
bol with z in the juxtaposed column and different symbol with y in the
juxtaposed column, so p3; = (A — 1)t.

At last, the common third associates of (z,y) should be those rows
corresponding to different symbols with both = and y in the juxtaposed
column. Since z and y correspond At columns respectively, so p3; = A2 —
2Xt = M(t — 2).

Hence the rows of the orthogonal array Ly (#*+1) form an association
scheme with respect to Hamming distance. li

From Ly, (t**+!), we may construct another association scheme as well.
In the construction of Ly (t**+!), when the entries of D(At, \t,t) are

replaced by the entries of additive table, we obtain Ly (t*t). There are
two Hamming distances. For any row in D(\, Mt,t), after replacement,
it produce ¢t new rows and there is no coincidence between any two such
rows. If we define that such two rows are 1st associates each other, we have
n = t—1.

Any two rows in D(\, At,t) produce two groups of ¢ rows each after
replacement. Each new row has distance At with those who are at the same
position in the different groups. For a chosen row, there are At — 1 such
rows, so 72 = A — 1. Other relations are defined as the 3rd associates and
we have ng = (At — 1)(t — 1).

In fact, for a given Ly (t*+1), we need only to delete the juxtaposed
column and any other one, so that there are three Hamming distances in
the array. By the similar proof in 3.2, we have:

Theorem 3.3 Let there be an orthogonal array Ly (t*+!). By deleting
the jurtaposed column in the construction and any other one, a 3-class
association scheme is obtained with parameters:

v=X% ny=t-1, ng=A-1,ng=(M-1)t-1)

t-2 0 0
P = 0 -1 ,
t-2)(\t—1)
0 0 t—1 01 t—2
P = At —2 0 Py = 0 A -2 .
(M — 2)(t— 1) (At - 2)(t - 2)

154



It is seen that from both saturated and unsaturated symmetric orthog-
onal arrays, an association scheme with respect to Hamming distances can
be obtained. As summary, we have the following theorem.

Theorem 3.4 (1). Let there be a saturated symmetric orthogonal array
OA(n,m,t,s), all the orthogonal arrays OA(n,m—r,t,s) obtained by delet-
ingr (r < 8) columns from it are schematic.

(2). All the symmetric orthogonal arrays in form of Ly2 (t**!) are schematic.

Notice that Delsarte [9] gave a sufficient condition for an orthogonal
array to be schematic.

Theorem 3.5 gDelsarte) Let o be the number of distinct nonzero Ham-
ming distances between the runs of an OA(n,m,t,s). If s > 20 — 2 then
the orthogonal array is schematic.

According to the Theorem 3.5, the orthogonal arrays constructed from
Latin squares, Hadamard matrices and vector spaces over Galois fields are
all schematic.

The condition of Theorem 3.5 is not necessary. An orthogonal array
constructed from a difference matrix does not satisfy the condition in 3.5.
Bultl we can still construct association scheme from it, so it is schematic as
well.

So far, we have given the answer of Hedayat’s open problem (see [12])for
symmetric orthogonal arrays with strength two.

Example
There is the orthogonal array L13(37) as follows. (transposed):
1112 2 2 3 3 3 1112 2 2 3 3 3
1 231 2 31 2 312 31231 2 3
1 231 2 3 2 31312 2 3 131 2
123 2 3 11 2 3 312 312 2 31
1 23 2 31 312 2 3 112 3 3 1 2
1 23 312 2 312 3131212 3
1 23 31 2 312123 2312 31

By the method of Theorem 3.2, we obtain the association scheme as
follows.
v= 18,71,1 = 2,’!‘&2 = 3,n3 =12

10 O 02 0 0 0 2
P = 3 0 ),A= 0 0 |,P= 0 3.
12 12 6

The scheme is listed in Table 2.

By the method of Theorem 3.3, by deleting the juxtaposed column and
second columns of L15(37), we obtain a 3-class association scheme with
parameters:

v=18 n1=2,n2=5,n3=10

100

P = 0 5
5

00 2 01 1
Py = 4 0 |,P= 0 4 |.
8 4
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Table 2: Table of first association scheme obtained from L;5(37)

run | 1st assoc. | 2nd assoc. 3rd assoc.

1 23 101112 14567891314151617 18
2 13 101112 14567891314 1516 17 18
3 12 101112 |4567891314151617 18
4 56 131415 | 123789101112161718
5 46 131415 | 123789101112161718
6 45 131415 | 1237891011121617 18
7 89 161718 |1123456101112131415
8 79 161718 [123456101112131415
9 78 161718 1123456101112131415
10 11 12 123 45678913141516 1718
11 10 12 123 456789131415161718
12 1011 123 456789131415161718
13 14 15 456 1237891011121617 18
14 1315 456 1237891011121617 18
15 1314 456 1237891011121617 18
16 17 18 789 123456101112131415
17 16 18 789 123456101112131415
18 16 17 789 123456101112131415

The scheme is listed in Table 3.

There are some other methods to construct symmetric orthogonal ar-
rays. Shrikhande [21] gave a method by the Kronecker sum of an orthogonal
array and a difference matrix. It is stated as follows.

Theorem 3.6 (Shrikhande) If there ezists an orthogonal array Lym(m™)
and a difference matriz D(Am,r,m), then D = L,,(m™) ® D(Am,r,m) is
an orthogonal array Ly,m2(m™).

In the theorem, the Kronecker sum of two matrices A® B means adding
every entry of B to the whole matrix A, then the order of the sum is the
product of the orders of the two matrices. If the given difference matrix is
symmetric, it is equidistant. After Kronecker sum, the Hamming distances
of the rows depend on the distances of the orthogonal array, so we have:

Corollary 3.1 By Shrikhande’s construction, if D(Am,r,m) is symmet-

ric and Lym(m™) is schematic, then D = Lym(m™) ® D(Am,r,m) is a
schematic orthogonal array.

4 Some Asymmetric Orthogonal Arrays

In design of experiments, there is a demand for the factors to take different
numbers of levels, so orthogonal arrays with different numbers of levels
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Table 3: Table of second association scheme obtained from L,g(37)
run | 1st assoc. | 2nd assoc. 3rd assoc.

23 47101316 | 5689111214151718
13 58111417 (467910121315 16 18
12 69121518 [ 45781011 13141617
56 17101316 ( 23891112141517 18
46 28111417 | 137910121315 16 18
45 39121518 |11278101113141617
89 14101316 (23561112141517 18
79 25111417 1134610121315 16 18
78 36121518 (12451011131416 17
10 1112 1471316 235689141517 18
11 1012 2581417 134679131516 18
12 1011 3691518 124578131416 17
13 14 15 1471016 23568911121718
14 1315 2581117 134679101216 18
15 1314 3691218 124578101116 17
16 1718 1471013 23568911121415
17 16 18 2581114 13467910121315
18 16 17 3691215 124578101113 14

W oo ~JO O W N =

are needed. Such arrays are called asymmetric (or mixed-level) orthogonal
arrays.

There is a method to construct asymmetric orthogonal array by Ad-
delman (1]: suppose that an orthogonal array of strength 2 has a column
involving m symbols, and let m’ be a positive integer such that m = 0
(mod m'). Then the m-symbol column can be collapsed into an m/-symbol
column by first grouping the m symbols into m’ sets of m/m' symbols each
and then replacing the symbols belonging to the same set by a common
symbol. It is an orthogonal array of strength 2. For example, the array
0OA(16,5,4,2) can be used in the way to construct asymmetric orthogonal
array OA(16,5,2 x 4*,2).

If the given array is produced from Latin square or vector space over
Galois field, there is one Hamming distance. After substituting by m’ sets
of m/m’ symbols, the rows are grouped into m' groups according to the sets.
There is one Hamming distance in the same group while in different groups
there are two Hamming distances. So the rows of the new orthogonal array
f(l)lrm a group divisible association scheme. It can be shown as following
theorem.

Theorem 4.1 The derived asymmetric orthogonal array by Addelman’s
method from the saturated orthogonal array is a schematic orthogonal array.

In an Hadamard matrix H,(n > 4), a set of three distinct columns of
H,, is said to have the Hadamard property if the Hadamard product of
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any two columns in the set equals the third (Hadamard product of two
vectors a = (ay,az,---,a¢) and b = (b, ba,---,b;) is defined as ax b =
(a1b1,azbs, - -+ ,aby)).

The following result belong to Wang [22].

Lemma 4.1 (Wang’s Lemma) Let H,, be an Hadamard matriz and sup-
pose that there is a set of three columns of H,, having the Hadamard prop-
erty. Denote these columns by a;,ag, ag, then in any n X 4 submatriz of
H,, made up of the columns a;, as,a3 and c, where ¢ is any column of H,
other than 1,, and the three with the Hadamard property, each of the eight
vectors
(1,1,1,£1),(1, -1,-1,41),(-1,1, -1, +1),(-1,-1,1,£1)

occurs equally often as a row.

According to Cheng [8] and others, several asymmetric orthogonal ar-
rays of strength two can be constructed by Hadamard matrices, as summa-
rized in [10].

If an Hadamard matrix contains a set of three columns with Hadamard
property, replace the 4 rows (1,1,1),(1,-1,-1),(-1,1,-1),(-1,-1,1) in
the three columns with the Hadamard property by the symbols 0,1,2 and
3 respectively and delete the initial column 1, of H, by Wang’s lemma,
then an n X (n — 3) matrix is obtained. It is an asymmetric orthogonal
array OA(n,n — 3,4 x 2°~4,2). We shall show that the asymmetric OA
constructed in such way is a schematic orthogonal array.

Corollary 4.1 The asymmetric orthogonal array OA(n,n—3,4 x 27~4,2)
constructed in the above way is a schematic orthogonal array.

Proof. It can be seen that in the chosen three columns, the rows
(1,1,1),(1,-1,-1), (-1,1,-1), (-1, -1,1)
are equidistant. In the replacement, they are repeated for the same times.
In H,,, the rows fall into two cases: two rows corresponding to the same
symbol in the new column have one distance, those two corresponding to
different symbols in the new column have another distance. So they are
grouped. The rows in the asymmetric OA(n,n — 3,4 x 2"~4)2) form a
group divisible association scheme according to Hamming distances, so the
orthogonal array is schematic . il

For instance, we have an OA(8,5,4 x 2%,2) from Hy = Hy ® Hy by
replacement. It is a schematic orthogonal array ([10]pp.52).

The column of 1 in Hjg is deleted and the rows of the three columns that
have Hadamard property are replaced by 0,1,2 and 3 respectively. Then
the asymmetric orthogonal array OA(8, 5,4 x 2%, 2) is obtained. It is shown
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as follows.

(+E+++++++\

+ o~ + =+ -+ - (0 + + + +)

U (2]*_':*_“:

:- - - - 2 - -
Hs=+. + + +_’1+i—t

+ o+ - =4+ o+ = - 3 4+ — — 4+

R S S T 1 - - + +

. ) \3 - + + -

o+ - = - -+ o+

\+ - =+ -+ 4+ =)

In OA(8,5,4 x 2%,2), the first row and the third row have one distance,
while the first row and the second have another distance and so on. All the
rows form an association scheme, hence the obtained array is a schematic
orthogonal array.

In the Hadamard matrix satisfying the condition of Wang's lemma,
there are three Hamming distances of the chosen eight rows. It is not
difficult to see that the given eight rows form a 3-class association scheme
with parameters

v=8mn =1, ng =3, ng =3,

0 00 00 0
2

P = 03 |,A=

1
0 |,P3=
0 2

1 0
0 2
0

Suppose there is an H,, (n > 16) with three columns having Hadamard
property. If we replace the rows of the three columns and one other column
together with symbols 1,2,...,8, then we obtain an asymmetric orthogonal
array OA(n,n—4,8 x 2"~3,2). In the submatrix with the eight rows, there
are 4 Hamming distances (one distance is zero because of repeating). Since
the original matrix is equidistant, after replacement, there are 4 distances
of the rows in the array according to the distances of the chosen 8 rows in
the submatrix. But the rows in the submatrix form an association scheme.
If the rows in the submatrix are repeated, according to Lemma 3.1, they
also form an association scheme with 4 classes. So equivalently, the rows in
the asymmetric array form an association scheme as well, it is a schematic
orthogonal array.

We may generalize the discussion and obtain the following result.

Theorem 4.2 If the esymmetric orthogonal array is obtained by replac-
ing the rows of a submatriz in an Hadamard matriz H, by a set of finite
number and the rows of the submatriz form an association scheme, then
the asymmetric orthogonal array is a schematic orthogonal array.
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The idea of Theorem 4.2 leads to another case of schematic orthogonal
array.

Theorem 4.3 If the orthogonal array A; is equidistant and Az is schematic.
Juztapose the two arrays, if the result is an asymmetric orthogonal array,
then it must be o schematic orthogonal array.

The discussion above deals with adding or subtracting columns of the
orthogonal array. But what if we add some rows to an orthogonal array?

In design of experiments, there is a method of foldover to obtain a higher
resolution of the 2-level factorial design by orthogonal arrays [6)].

B}lrl the method of foldover, we can obtain schematic orthogonal arrays
as well.

Lemma 4.2 Let there be an association scheme with parameters
VN1, N2y - - ndap;'k(iaj) k=1,2,---, m)'
If we duplicate the scheme and define one more associate class between any
symbols in the different schemes, then we obtain a (d + 1)-class association
scheme with parameters
U= 20,7 = ny, Mg = Ny, - fig = ng,Ag41 = v,

00 - -- 0 m

_ Py if b k<d+1 ) 0 - 0 m
13;'&: 0 ifi<d, j=d+1, P =
v ifi<dj=k=d+1 0 ng

0

Proof. For the two schemes with the same parameters, we define the
original associate relations unchanged within the schemes and define two
symbols in different schemes to be the (d + 1)-th associates. It is easy to

see that for 4, j,k < d, pj; is unchanged.

When i < d and j = d + 1, for a pair of i-th associate (z,y), if &£ < d,
the k-th associates of z are those that are in the same scheme with z.
Meanwhile, they are (d + 1)-th associates of y. But there are no such

symbols because z,y are in the same scheme, so ;b;'.k =0ifi<d,j=d+1.
If j = k= d+1, then % = v.

For a given pair of (d + 1)-th associates z,y, they are in the different
schemes, so all n;-th associates of z must be (d 4 1)-th associates of y. So

in 13,14.1, only the last column has nonzero elements but the last one. It is

easy to see that for i,5,k=d+1, ﬁ;k = 0. So the last column of I:’d_,_l is
(nla nz, - --,Nd, 0),

|

By Shrikhande’s Theorem 3.6, Wang and Wu (23] gave a method of
constructing asymmetric orthogonal array, we state it in a simple form (for
the case of i = 2).

Theorem 4.4 Let A be an orthogonal array OA(n,n1 + nz,m7'm3?,2)
and suppose that there exist two difference matrices D(M, k;,m;)(i = 1,2),
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where n and M are both multiples of the m;’s. Partition A as A = [C1:C],
where C; is a symmetric orthogonal array OA(n,n;,m;,2) with symbols
from the Abelian group over which D(M,k;,m;) is defined, then by the
generalized Kronecker sum

[CleD(M7kl,ml)EC2®D(M7k2sm2)] ’
the matriz is an orthogonal array OA(Mn, kin;y + kgng,m'f‘"‘m;""’, 2).

By the Corollary 3.1, in the generalized sum of an orthogonal array
and a difference matrix, if the orthogonal array is schematic and others are
equidistant, then the rows of the new array depend on that of the schematic
orthogonal array. Since a difference matrix is equidistant, we have:

Corollary 4.2 In the construction of Theorem 4.4, if one of the orthogonal
array is schematic and the other orthogonal array and difference mairices
are equidistant, then the orthogonal array generated is a schematic orthog-
onal array.

Many symmetric orthogonal arrays are constructed via difference ma-
trices, there are some methods to do so for asymmetric orthogonal arrays
as well. Wang and Wu [23] gave a method.

If A represents a difference matrix D(Am,n,m) and A; = A®i(i =
0,1,2,--,m— 1), then develop A as [Af, A},---,Al,_,]'. Construct

&y A e ALY
a a - a' ’
where a = (1,2, - - - Mm)’, the array is OA(Am2,n + 1,m" x (Am), 2).
Then we have the lemma (Dey and Mukerjee [10], pp. 62).

Lemma 4.3 The existence of a difference matriz D(Am,n, m) implies that
of an orthogonal array OA(Dm2,n + 1,m™ x (Am), 2).

From the lemma above, we have the following theorem.

Theorem 4.5 The asymmetric orthogonal array OA(Mdm2,n + 1,m™ x
(Am),2) constructed in Lemma 4.3 is schematic.

Proof. In Lemma 4.3, A is the given difference matrix, A; = A@i,i =
0,1,---,m— 1. The entries of a row in Aj are totally different to their cor-
respondences in A}. The Hamming distance of such two rows is n. But the
rows within A} and out of A} except their correspondences are equidistant.
So the rows in the array are grouped according to their positions in Aj.
The rows in the same position are in one class, the others are in another
class. They form a group divisible association scheme, hence the array is a
schematic orthogonal array. il
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The following example is also in [10], it is a schematic orthogonal array.

!

022011 100122 211200
121020 202101 010212
112002 220110 001221
0A(18,7,3% x 6,2) = | 000000 111111 222222
201012 012120 120201
210021 021102 102210
123456 123456 123456
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