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Abstract

In this paper, we extend the study on packing and covering of
complete directed graph D; with Mendelsohn triples [6]. Mainly, the
maximum packing of D; — P and D; U P with Mendelsohn triples are
obtained respectively where P is a vertex-disjoint union of directed
cycles in Dy.
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1 Introduction

A Steiner triple system of order t denoted ST'S(t), is a pair (V,B)
where V is a t-set and B is a collection of 3-element subsets (called triples)
of V such that each pair of elements occurs in a unique triple of B. It is
well known that an STS(t) exists if and only if t = 1 or 3 (mod 6). In
terms of graph decomposition, an ST'S(t) can also be viewed as a partition
of the edges of K, each element of which induces a triangle C3; we denote
such a decomposition by C3|K;.
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A packing of a graph G with triangles is a partition of the edge set of a
subgraph H of G, each element of which induces a triangle; the remainder
graph of this packing, also known as the leave, is the subgraph G — H
formed from G by removing the edges in H. If the remainder graph is
minimum in size (that is, has the least number of edges among all possible
leaves of G), then the packing is called a maximum packing. The following
result is well-known.

Theorem 1.1 [5] The remainder graph P for the maximum packings of
K, with triangles are as follows:

[ t(mod6) O |1 23] 4] 5|
| P Flo|lFlo|R|C|

F is a 1-factor, F} is an odd spanning forest with % + 1 edges (tripole),
and Cj is a cycle of length 4.

It is natural to ask for which subgraphs H of K, C3| Ky — H. When ¢
is odd and H is a 2-regular graph, the following result has been obtained
by Colbourn and Rosa. [3).

Theorem 1.2. [3] Let ¢t be an odd positive integer. Let H be a 2-regular
subgraph of K;. Ift = 9, then suppose that H # C4UCs . Then C3| K;—H
if and only if the number of edges in K; — H is a multiple of 3.

A covering of a graph G with triangles is a collection of triangles, P,
such that each edge of G occurs in at least one triangle in P. So, if G(P)
is the multigraph formed by joining each pair of vertices » and v with z
edges if and only if P contains z triples that contain both % and v, then
clearly C3| G(P). The multigraph G(P) — G is called the excess graph of

G, it is also known as the padding of the covering P of G. A covering with
" smallest excess graph (in size) is called a minimum covering. The following
result which is the companion of Theorem 1.1. considers minimum covering.

Theorem 1.3. [5] The excess graph P for the minimum coverings of K,
with triangles are as follows:

[t(mod6) JOJ1 [ 2 [3[4]5
[ P Flo|R|o0|R]|C
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F is a 1-factor, F} is an odd spanning forest with £ + 1 edges (tripole),
and C; is a cycle of length 2.

Colbourn and Rosa got the following result about covering and the re-
sult is also proved by C. M. Fu, H. L. Fu and C. A. Rodger using a different
method [4].

Theorem 1.4. [2] Let H be a 2-regular (not necessarily spanning) sub-
graph of K;. Then C3| K; UH if and only if the number of edges in K, UH
is a multiple of 3.

Similarly, corresponding problem about packing and covering of directed
graphs can be considered.

A Mendelsohn triple system of order t, denoted MT'S(%}, is a pair (V, B)
where V is a t-set, B is a collection of cyclically ordered 3-subsets of V(called
Mendelsohn triples ) such that each ordered pair of V' appears in exactly one
Mendelsohn triple of B. In terms of graph decomposition, the existence of
an MTS(t) is equivalent to partition the directed edges (or edges in short)
of the complete directed graph of order ¢, D, into a collection of directed
3-cycles (directed C3s). We denote such a decomposition by 53 |D¢. The
following is well-known. When ¢t = 0,1 (mod 3), t # 6, there exists an
MTS(¢) [1] .

Quite recently, L. Pu, H. L. Fu and H. Shen extend the work of Theo-
rem 1.2 and Theorem 1.4. and prove the following result.

Theorem 1.5 [6]. Let ¢t be an integer, ¢ > 13. Let D, be a complete
directed graph without loops and its order is ¢. Let P be a vertex-disjoint
union of directed cycles in D; and |E(P)| be the number of edges of P. Then
Cs |Dy — P (or C3 | D, U P) if and only if t(t — 1) — |[E(P)| = 0 (mod 3)
(or t(t — 1)+ |E(P)] = 0 (mod 3)).

In this paper, we further extend the work of Theorem 1.1, Theorem 1.3
and Theorem 1.5. Mainly, we obtain the maximum packings of D; — P and
D; U P with Mendelsohn triples respectively.
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2. Preliminaries

Let Cj; denote a cycle of length I; and V(Cy,) be the set of vertices of
k

Ci;. Also, let P, = UYL, C;, whenever n = ) ; and V(C,)NV(Cy;) =0
i=1

(¢ # j). For convenience, we use k at to denote k vertex-disjoint directed
t-cycles. If P, is oriented, we get P}. And P, is obtained by reversing
the direction of all edges in P;}.

Let A be an m-set, B be an n-set and AN B = . A complete bipartite
directed graph D4 g (Dm,z) with two partite sets A and B contains 2mn
directed edges. Therefore, Diyn = Dy + D + D, and D1 = Dy +
Dm,]_.

The join of two directed graphs G and Gs is denoted by G1 VG2. Then
A(G1 vV Ga)= A(G1) U A(G2) U A(D|V(G,)|,|V(G2)|) where A(G) denotes
the set of edges of G.

Definition 2.1. Let H be a 2-factor of G. If H is oriented such that
for each vertex w in H, deg*(w) = deg™(w) = 1, then H is a directed
1-factor of G.

Lemma 2.1. Let C be a directed 1-factor. Then 53 | (—;" VK, where
vic)ynV(K,) =0.

The lemma can be deduced from the follgwing example immediately.

Example 1. Let A = Z5, B = {00} and Cs = (0,1,2,3,4). The graph
T contains a single point co. Then TV Cs = Dy g+ 65 = {(0,1, 00),
(1,2,00), (2,3,00), (3,4,00), (4,0,00)}. The following Lemma is useful
and we adopt a difference method approach. Here we assume that the
readers are familiar with the method of construction triple systems via
difference triples [7, 8].

Throughout the rest of paper all packings are obtained by using Mendel-
sohn triples and thus we will not mention this again and again. For conve-
nience, we use (a,b) to denote a directed cycle of length 2 and a directed
edge from a to b is denoted by ab for simplicity.

Lemma 2.2. D, —?4, Dy — Py, Dyg — Py and D3 — Pi3 can
be packed with leave Cs.
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Proof The proof is by direct constructions. Let D4 be defined on Z,; where
C4 = (0,1,2,3) is the missing cycle. Then Dy— C4 = {(0,3,2),(0,2,1)}u
{(1,3)}. Let D; be deﬁn_gd on Z; where C7 = (0,1,2,3,4,5,6) is the miss-
ing cycle. Then D; — C7 = {(2,0,6), (3,0,4), (4,0,5), (1,0,3), (4,1,6),
(5,0,2), (3,5,1), (4,6,1), (3,2,6), (5,2,1), (5,3,6)} U {(4,2)}. Let D7
be defined on Z7 where (0,1),(2,3) and (4,5,6) are the missing cycles.
Then D; — 2 C2 U Cs = {(2,0,6), (2,6,5), (4,0,5), (2,1,4), (3,6,0),
(5,0,2), (3,0,4), (3,5,1), (4,1,2), (1,5, 3), (4,6,3)} U{(1,6)}. Let Dy be
deﬁnedéon ZsV {00,001} and Cs U C2 = (0,4,3,2,1) U (ccp,001). Then
Dy — Cs U Q2 = {(3, 2, 000), (2, 1, 00g), (1,0, 00p), (0, 3,000), (0, 2,001),
(2 4, 001) (4 1, 001) (1 3, 001) (3 0, 001) (3a1a4), (47210)} U{(4»°°0)}'
Let D, be deﬁned on Zr and C4 U C3 = (0,1,2,3) U (4,5,6). Then
D; — C4U03—{(206) (2,6,5), (4,0,5), (2,1,4), (3,6,0), (0,4,1),
(5,0,2), (1,5,3), (6,3,4), (4,3,2), (3,5,1)} U {(1,6)}. As for Dyo — Pio
and D;3 — P13, the packings can be found in Appendix A and Appendix B
respectively . O

Theorem 2.2. Fort=1,4 (mod 6) and ¢t > 13, D; — P, can be packed
with leave O if and only if t(t — 1) — |E(P)| = 2 (mod 3).

Proof. The necessity is obvious. We prove the sufficiency by induction on
t. Lemma 2._2_ shows that it is true for ¢t = 4,7,10,13 except when t =4
and Dy — 2 C2. Assume the case is true for smaller ¢, we shall prove it is
true for ¢. First we consider the caset = 6k+ 1. Then |E(P)| = 1 (mod
6). Let |[E(P)|=6h+1,0< h <k or |[E(P)] = 6k+ 1. For the former
case, we can add Mendelsohn triples T' to P where V(T)NV(P) =
Therefore, it suffices to consider the case |[E(P)| = 6k + 1. We divide the
proof into four cases when k is even.

Case 1. Pgh,, = P;,’c_'_e + P _s.

Then Der+1 — Pgiyr = |(Dsk+6 — Py — Pagys) + Dakve,sk—6) +
(D3k+6 14 Py 6)+H(Dak— 5—P;,'cw) = (I) + (II) + (I1I). By the hypothesis,
03 | (III). By Lemma 2.1, 03 | (II). In order to prove 03 | (1), write
2v = 3k + 6. Denote the (2v)-set as V and V = {i;{ i € Z,,j = 0,1}. We
first map the directed cycles of total length 2r onto the 2r vertices {;}
as follows. Every even cycle of length 2m is mapped onto the vertices in
{io, ('I. + 1)0, vy (‘l +m - 1)0, (2 +m — 1)1, (Z +m— 2)1, . 'i]}. These
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vertices can form a directed cycle (ig, (¢ +1)g, ..., (i+m —1)y, ((+m —
1)1, (i+m—2)1, ..., %1). There exist even number of odd directed cycles
and they are mapped in pairs onto the vertex set {i;} as illustrated in the
following example: Cs U Cs= (o, (i + Lo, 1) U ((i + 2)o, (i + 3)o, (i +
31, G420, E+1)).

We choose a 1-factor for cog by including all edges of the form {ipi;}
and {149} which are not in Py, and completing the 1-factor with edges
of the form {i;(i + 1);} and {(i + 1);i;}, here the first subscript is taken
modulo r. A 1-factor for 0o; is then chosen by taking all remaining edges
of the form {i;(¢+1);}, {(+1);4;}, and all edges of the form {i;(i + 1)}
and {(¢ 4+ 1)o¢;} which are not in Py,.

The edges on vertex set {i;} remained unused by either P, or the
factors for cog and ooy can be partitioned into three groups: those on
{#0}, those on {i,}, and those between the two classes. We partition these
edges into Mendelsohn triples using a standard method of ” pure and mixed
differences”, after noting that whenever {i;k;} is a remaining edge, so is
{(i+@);j(k+a);}. The differences used in Py, P;, and the two directed 1-
factors for oo and oo; are 1gg, (v—1)go, 111, (v—1)11,001, 010, 101, (v —1)10-
The remaining differences are: 2gg, 3p0, --+, (¥ — 2)00; 21153115 -+ (¥ — 2)11;
201, 3015 ---» (V=2)01, (W—1)o1; 1105 2104 ---, (v—2)10. We can get six difference
triples from these differences as follows: (20,310, (¥ — 5)00),(401,510, (v —
9)00); (210,301, (¥—5)11), (410, 501, (v—9)11), (601, T10, (v—13)00), (610, 701,
(v = 13)11). The remaining differences can form 3k — 8 directed 1-factors.
By Lemma 2.1, we have 53 |(I). Thus we finish the case.

Case 2. Pgiyy = Pgiyr+ P;c—s-A

Suppose P:;.';c +7 contains an l-cycle C; = (z0, %1, -, Zt—1)- Let V(P:;','c _,_7)
=V and V = V; \ {zo}. By adding a Mendelsohn triple (zo,Zi-1,21) to
P} ;, we have

Der1 = Pghyy
= Deks1 — (Pir_g + Ci+ Pay7.y)
= Deic4+1 — [Pgi_g + Ci+Pif 17+ (@o, T11,21)] +(0, Tt-1, 1)
= Der41 — [Pie_g + Piyq_t + (21, %2, -, T1—1) + (20, 21) + (20, T1-1))
+(xo, 21-1,%1)
= Dek41 — [Pg_g + Paryg + (z0,21) + (%0, Ti-1)] +(2o, Ti-1,71)
= [(Dsk+6 — Piys = Pikys) + Dsk—6,3k+6) + (Dak—s — Pi_g)
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+ [(Dao,v—{z1,mi-1} +Pirgs + (%0, Ti-1,%1)]

= (la+1p) + (IT) + [Dag,v—{a1,....w1-1} + (Pagpre — (T1-1,Ti—2, .., T2, 21))] +
(z1,Z1-1) + {(Z0, To4i, T144)[0 < : < 1 = 3} + (21, 71-1)

= (Ia+I(,) + (LI) + (III) + {($0,$2+,’,$1+i)|0 <iLl- 3} + (:1:1,:1:1_1).

Similarly, C3 | (IaiI(,) + (II) + (III).

Case 3. Por+1 = Cok+1- .

Let Vor+1 = VarseUVar—s = {o0i|i € Zax_5}U{ili € Zak46} and Cer1
= (000,001, .y 003k—6,0,1,..., 3k + 5) Add A = {(k + 2,003%—6,000),
(000, 3k++5, k+2), (00sk—6,k+2,0), (0,k+2,3k+5)} to Coxs1 and divide
Cék+1 into Csk+e, 53k_5 and six 2-cycles. The triples in A should be
chosen carefully so that the two 2-cycles (k+ 2, 3k +5) and (0, k +2) are in
two directed 1-factors f; and fs from Dagy46 — C3k+6 respectively. Then
we have: .

Dek+1 — Cer+1
= Der41 — (Cer+1+4)+A
= (Dsk—s — Cak_s)+ (Dskrs — Cakts)+ D(3k_7),(3k+6)
+D{coo},Varso— {(k+2,3k+5} T D{cogis1} Varsa—{k+2,0) — (0, k+2) = (k+2,3k+
5)+A R
= (D+[(Dak+6 — Cax+e —f1 — f2)+ D@k—),3k+6)]+
[D{ooo} Varro—{k+2,36+5) + J1 = (k42,38 +5)] +[Dcosy—s},Varsa—{ (k+2.0)} +
fo—(k+2,0)]+A
= (I)+(ITa+1IL,)+ (III)+ (IV)+ A.

By the hypothesis, (I) has a maximum packing with a leave C’z The
differences from Dgyy6 — C3k+6 can form difference triples (2, 3,3k + 1),
(4,5,3k - 3),(6,7, 3k — 7) and (3k — 7) directed 1-factors. By Lemma 2.1,
Cs |(I1,+11,) and 03 |(IIT)+(IV). Thus we have the proof of this case.

Case 4. Pehyy = Piyornt Pakogns h 22

We use a technique called "fitting” to solve it. The details can be found
as follows.

Suppose P3k +G+h contains at least two cycles CJ (ap,a1,a2,03, ...,0;-1)
(2 h+2)and Gy = (b1,b2,..., 1) Let Vi = V(P3k+6+h)7 Vo ={a;| 0 <
i<h-1}and V =V)\Vp. Wecanadd A = {(b1,an,an-1), (a0, b1,an-1),
(aj—1,b1,00)} to Pg, +64+n- These triples should be chosen carefully so that
the 2-cycle (b1,a;-,) is in a directed 1-factor f; and the 2-cycle (ap,b1) is
in a directed 1-factor fo. By combining edges in Dex41 and P g, ),
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we can get ah = (ag,@1,02, .-, Bh—1), P‘.;',;_,_G, and a Mendelsohn triple
(@j-1,an,b1). Then we can use the result of Case 1. The details can
be found as follows:

Dery1 - P 6k+1

= Ders1 — (Pafh_s_p+ CJ + Cl + Pl ganojot)

= D41 — (Pah_s_n+ CJ + Cl+P3k+6+h—]-l+ A+ A

= Dek+1=[Pafys-n+ Pagiorh—jor T (00,1, @h=2,ah-1) + (b1, b2, ..., b1)
+ (b1,an, -, @j-1) + (b1,00) + (aj-1,80) + (b1,an-1) + (@r,an-1)] + A

= Dek+1—[Pi_s_p + Pahresnojot +Cn + (b1,02,..,b00) + ((an, -y @j1) +
{bran} + {aj_1b1}—{a;j_1an})+ (b1, @0)+(a;-1,a0) + (b1, an_1) + (an,an-1)]
+A

= Dokt1 — [Pf_g + P + {bran} + {aj-1h1} — {aj1an} + (b1, 00) +
(aj_l,ao) + (bl,ah_l) + (an,an-1) ] + A

= (Dak+6— Pif16) + (D3r—5— Pi_5) +[Dak—73x+6+ Di{ac},v—{b1, a;_1} +
Dian_1},v={b1, an} = {01an} — {@j-1b1} + {aj_1an}] + A

= [(Dsk+6—Psh 16— F1—fo)+D3k—7,3k+6)+(D3k-5—Pa_5)+[D{ao},V—{bs, aj_1}
+(fi— (b1, aj-1))] + [D{an_1},V={b1, an} T (F2= (b1, an))] + (b1, ;1) +
(b1, an) —{bran} — {aj-11} + {aj—1an} + A

= [(Ia = f1 = f2) + L)+ (II) + (I11g) + (II0p) + (@j—1,an,b1) + A.

The same as Case 1, I, can be decomposed into difference triples and
3k — 5 directed 1-factors which contain f; and f,. The 3k — 5 directed
1 factors minus two dlrected 1-factors f) and f; is 3k — 7. By Lemma 2.1,
C’3 |(Ia — fr = f2) + Iy and C3 |(IT,) + (IIL,). By the hypothesis, (II) has
a maximum packing with a leave C-.

Now we need to consider the cases that all cycles in P have length less
t_l\lat h+2. If P contains at least one cycle 5h+1, it must have another cycle
C:1. Thus by fitting, we can manage to get the form as that in Case 1. Now
it is left the cases in which all cycles in Py} ¢, are less than h. If P ¢,
contains at least one cycle ah_l, it can be deduced to Case 2. Now it is
left the cases in which all cycles in P3¢, are less than h — 1. If P ern

contains at least one (_;"h_z, then we can get Pé','z = 3",; +8t P:;','C_T If
there exist a j-cycle C; (j > 4) in P;,'c +g and we can settle this cases by
fitting. If all cycles in P +g have length less than 4, then we can find a C».

Now, it is left the cases in which all cycles in Pg, +645 are less than h — 2.
Repeat the process until all cycles in P g, are less than [4]. Now,
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we write P, = P::I.c+6+r”5] + P;e—s—[g] and by repeating the process as
above we solve all cases.

When £ is odd, we first consider Pé','c 41 = P;;c +3+ P;,;_z and proceed
similarly as above.

Case 5. Pgh,, = Ct +Ct,3k—4<lp <l <3k+6.

We need to consider the following cases: (i) [ = 3k + 5, lp = 3k — 4;
(i) y =3k +4,l, =3k—3; (iii) [, =3k +3,l, =3k —2; (iv) h = 3k + 2,
lp =3k—1; (v) 3 =3k+1, lo = 3k. For any of the cases, we can first
divide C,': into two cycles using the method of Case 3. Then we can change
all the cases into the form of Case 2 and Case 4. Thus we finish Case 5.

As for t = 6k + 4, we first consider the cases P, = Pif ¢+ Pah_o
when k is even and Pgf,,, = F+3 + Pakyr When k is odd, then we can
proceed similarly as above. O

3. Maximum Packing of D; — P

With above preparations, we can prove the following theorem.

Theorem 3.1. For each directed 2-regular subgraph P of D, and an
integer ¢, ¢ > 13, D, — P can be packed with leave L; if and only_‘if
t(t — 1) — |E(P)| = i (mod 3) where i =0,1,2. Here, Ly = 0, Ly =Ca
(OI’ 2Cs) and Ly = Cs.

Proof. The necessity is obvious. We only need to prove the sufficiency.
Note that Theorem 1.5 is a special case where i = 0. Now we consider
the casesi = 1,2.

Case 1. t(t — 1) — |[E(P)| = 2 (mod 3).

The same as that in Theorem 2.1, we only need to consider the following
cases: (i)t = 6k, |E(P)] = 6k—2; (i)t = 6k+2, |[E(P)] = 6k;
(iii) t = 6k+3, |[E(P)] = 6k+1; (iv)t = 6k+5, |[E(P)| = 6k+3;
(V)t = 6k+1, |E(P)| = 6k+1;(vi)t = 6k+4, |[E(P)| = 6k+4.
For cases (i) ~ (iv), let P* = P U C2 where V(P)NV(C2) = 0. By
Theorem 1.5, 83 |P* and then we can pack D; — P with leave 52. As for
cases (v) and (vi), they have been proved in Theorem 2.1.

Case 2. t(t — 1) — |E(P)] =1 (mod 3).
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The same as before, we only consider the following cases. (i)t = 6k,
|[E(P)| = 6k-1; (ii)t = 6k+2, |E(P)] = 6k+1; (iii)t = 6k+3,
|[E(P)] = 6k+2; (ivit = 6k+5, |E(P)] = 6k+4. (v)t = 6k +1,
|E(P)|_\= 6k —1; (vi)t = 6k+4, |[E(P)] = 6k+2. Let P =C, UH
where C,, = (z1,%2,...,Z5). Since |V(P)| <t —1, let v be a vertex not
in P a.nd__\let 6‘n+1 = (z1,%2,++,Tn,v). By Theorem 1.5, D, — 5,.,.,.1
U H has C3-decompositions and the edge {z12,} is in a Mendelsohn triple
(z1,Zn,y). By deleting this triple, we have a packing of D; — P with a
4-cycle (z1,y, Zn,v) leave. 0

4. Maximum Packing of D; U P

We are now in a position to obtain the packing of D, U P.

Theorem 4.1. For each directed 2-regular subgraph P of D; and an
integer t, t > 13, D; U P can be packed with leave L; if and only if
t(t — 1) +|E(P)| = < (mod 3) where ¢ = 0,1,2. Here, Ly = 0,
Ly =C4(0r2C2) and Ly = Cos.

Proof. The necessity is obvious. We only need to prove the sufficiency.
Theorem 1.5 is a special case of i = 0. We divide the proof into two cases.

Case 1. t(t — 1) + |E(P)| = 1 (mod 3)

For t = 3k, |E(P)| =3l+4+1<3k—2, let Ps—y = Pyry1 + Par_gz1-2
where V(P3141) N V(Psg_31—2) = 0 and ¢ € V(D3k) \ V(P3x-1). Then
D3y + Pai41 = Daic + Paiy1 + Pag-3t—2 — Pak—3i—2 = (Dgg—1 — Par-a1-2) +
(D{z},3k~1+Psi~1) = (I) + (II). By Lemma 2.1, (II) has C3-decompositions
while by Theorem 3.1, (I) can be packed with leave 2 52 or 54. If |[E(P)| =
3k —2 and z,y ¢ V(P), we have D3 + Pasx—2 = D2 + D3x—2 + D2 3p—2 +
P2 = Dy + (D3k-2 — Psk—2) + (Da,3k—2 + 2Ps—2) = Dy + (I) + (II)
where D, is defined on {z,y}. By Lemma 2.1, (II) has C3-decompositions
while by Theorem 3.1, (I) can be packed with leave Ca.

Fort = 3k+1, IE(P)‘ = 3l+1 < 3k+1, let Psp, = P31+ Psi—31—1 where
V(P3141) NV(Psr_31-1) = 0 and = € V(D3k41) \ V(Psk). Then Daryy +
P34y = Daky1+Patg1+Par—31-1—Pag-31-1 = £D3k—P3k—3l—l)+(D{a:},3k+
P3) = (1) + (II). By Lemma 2.1, (II) has C3-decompositions while by
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Theorem 3.1, (I) can be packed with leave 2 52 or 64. If |E(P)|=3k+1
and P41 = Papq1-1 U Ct where C; = (.’Bo,izl, ...,:1:[_1), we have Dgpqq +
P3ry1 = Dakq1 + Paggr—1 + (20, 21, Ti-1) + (21, .00, Ti—1) — (21, 71-1) =
(zo, z1,T1-1) + (Dar — (%1, %1-1)) + (D{zo}, 3k + Par) = (%o, T1,Z1-1) + (I)
+ (IT). By Lemma 2.1, (II) has Cs-decompositions while by Theorem 3.1,
(I) can be packed with leave 5'4 or 2 Cs.

Fort = 3k+2, |E(P)| = 31+ 2 < 3k +2, let Pyy1 = Pygo +
Ps3p._3_1 where V(P31+2)0V(P3k_31_1) =@Pandz € V(D3k+2)\V(P3k+1).
Then Dsk+2 + Psi2 = Dakt2 + Patv2 + Pak—31-1 — Pak-31-1 = (Dag41 —
P3k 3t-1) + (D{z},3k41 + Pak41) = (I) + (II). By Lemma 2.1, (II) has
C3-decomposmons while by Theorem 3.1, (I) can be packed with leave
2 02 or C4. If |[E(P)| = 3k + 2 and Psgyo = Pypyo U Cz where Ct
(w0, 1, ..., Z1-1), then Daxy2+ Psry2 = Daky2+ Pagso—t+ (%o, %1, T1-1) +
(x1, 00y T1—1)— (@1, T1-1) = (Zo, T1, Ti—1) + (D3gs1— (21, T1-1)) + (D{a:u},jk+l
+ Pary1) = (Zo,21,%i-1) + (I) + (II). By Lemma 2.1, (II) has Cs
decompositions while by Theorem 3.1, (I) can be packed with leave C4
or 2 52.

Case 2. i(t — 1) + |E(P)| = 2 (mod 3)

Fort = 3k, |E(P)| =3l+2 < 3k —1, let Psx_1 = P32 + Par_31-3
where V(Ps42) N V(Psg—_31-3) = 0 and = € V(Ds;) \ V(Psk-1). Then
Dsjc + Pyt = D3k + Pary2 + Pak—31-3 — Pak-31-3 = (D3g-1 — Pak-31-3) +
(D{z},3k-1+Psk-1) = (I)+(II). By Lemma 2.1, (II) has C3-decompositions
while by Theorem 3.1, (I) can be packed with leave 52. If|E(P)|=3k-1
ind z ¢ V(P) , we have D3 + P31 = Dg;z_l + (D{z),ak—l + P3pq) =
C2 +(Dak—1~ C2) + (Diz}sk—1 + Ps=1) = Ca+(D+(II). By Lemma 2.1,
(II) has 53-decompositions while by Theorem 1.5, (I) can be packed with
Mendelsohn triples.

Fort=3k+1, |[E(P)|=3l+2 <3k—1,let P3y = Pyyp2+ Par_a1_2
where V(Psi42) N V(Pag—31-2) = @ and = € V(D3r41) \ V(Ps;). Then
Dsk+1+Paiy2 = Daky1+ Pay2+ Pak-3i—2 — Psk—3i-2 = (Dax — Pak—-a1-2) +
(D{x}.3% + Pax) = (I)+(II). By Lemma 2.1, (II) has C3-decompositions
while by Theorem 3.1, (I) can be packed with leave Ca. If |[E(P)| = 3k — 1
and z,y ¢ V(P) , we have Dagy1 + Pax—1 = Dz + (Dag—1 — Psr—1) +
[(D{z},36-1 + Pak—1) + (D{y},3k—1 + Pak—1)] = Da+(I)+(II) where D, is
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defined on {z,y}. By Lemma 2.1, (II) has ag-decompositions while by
Theorem 1.5, (I) can be packed with Menﬂelsohn triples. Moreover, D, is
the leave. Here, D5 can be considered as Cs.

For t = 3k + 2, |E(P)| = 3l < 3k, let Psgyy = Py + Psg—3141 Where
V(P31) NV (Psg-3141) = 0 and z € V(D3k+2) \ V(Psk41). Then D3y +
Py = Dagy2+ P+ Pg-st+1—Pak-3141 = (D3kil —P3—3141)+(Dyz} 341+
Psiyq) = (I)+(II). By Lemma 2.1, (II) has C3-decompositions while by
Theorem 3.1, (I) can be packed with leave 52. If |[E(P)| = 3k and z,y ¢
V(P), we have D3y 2+ Pax = Da+(D3r.—Psi)+[(D{z},3x+P3k)+(Diy} .36+
P3i)} = Da+(I)+(I1). By Lemma 2.1, (II) has Es-decompositions while by
Theorem 1.5, (I) can be packed with Mendelsohn triples. Moreover, D; is
the leave. O

5. Concluding Remark

It can be seen that all the packings of D, — P and D, U P we obtained
in this paper are in fact maximum packings with Mendelsohn triples. For
the values t < 13, the maximum packings of D; — P and D; U P can also
be obtained by direct constructions. Since it is a matter of routine work,
we omit the details. Moreover, with the results obtained in this paper, we
can extend the study to packing AD; with Mendelsohn triples or packing
AD; — P (AD; U P, respectively) with Mendelsohn triples where P can be
a larger subgraph of AD;.
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Appendices

Appendix A: Dy — Pyo can be packed leave Cs.
Proof. Let D, be defined on {%;}i € Za,j = 0,1} U {o0;|i € Z4} where?,;
= (00g, 001, 002,003). Then Dyg—Ps U Cy = (Dg— Ps)+Dys+(Dy — C4)
where Dg — P can form four directed 1-factors and associate these with
004,% € Z4, respectively. By lemma 2.2, Dy— (_3"4 can be packed with leave.

Let Dio be defined on Zg U{oos]i € Z2} where Cs = (0,1,2,3,4,5,6,7)
and (000, 001)_?\11‘6 the missing cycles. Then Dyg— Cs U 52 = (Dg - C'g)—l-
Dyg -+ (D2— C2) = {(1+i, i, OOo)li € Zg} U {(l, 6,001), (6,3,001),(3,1, 001),
(5,2, 001),(2,7,001),(7,5,001), (0,4, 001), (4,0,001), (7,4,1),(3,0,5), (2, 5,
0),(2,0,6),(6,0,3),(6,4,2),(3,5,7),(7,2,4), (1, 4,6),_{1, 3,7),(1,5)}.

Let Do be defined on Zg U {o0s]i € ZQLand 5C2 = (O_,}) U (2,3)U
(4,5)U_(6,7)U (000,001). Then D10~ 5 C3 = (Ds — 4C2) + Dyg +
(D2 —C2) = {(000, 1,2), (00g,2,1), (000, 3,4), (009, 4, 3), (000, 5, 6), (000, 6,
5), (000, 0, 7), (OO(), 7, 0), (001, 1, 6), (001, 6, 3), (001, 3, 1), (001, 5, 2), (001, 2, 7),
(001,7,5), (001,0,4), (001,4,0),(7,4,1), (2,0,6),(6,4,2), (1,4,6), (1,3,7),
(3,0,5),(5,7,3),(7,2,4),(6,0,3),(5,0,2), (1,5)}.

Let Dyg be defined on Zg U {oo;|i € Zg}_qnd 2C3V2C2 = (_%,6,3LU
(5,2, 7) U (0,4)U (200,001). Then Dy —2C3U2C2=(Dg —2C3U C2)
+ Dog + (D2 — C2) = {(1 +1,1,000), (7,1 + ¢, oo1)|i € Zs} u{(7,4,1),
(3,0,5),(2,5,0),(2,0,6),(6,0,3),(6,4,2),(3,5,7),(7,2,4), (1,4,6),(1,3,7)} U
{@,5) .

Let Do be defined on ZgU{oosi € Z2} and Cs U2 C2 = (0,1,2,3,4,5) U
(6,7) U_*(000,001). Then Diyg — Ce W2 C3 = Dg — Ce U C2 + Dz's +
(Dg - C’g) = {(7, 2,000),(2,4, 000), (4,7, 000), (6,0,000),(0,3,000),(3,6, 000),
(1,5, 000), (5,1,000), (1,6, 001), (6,3,001),(3,1,001), (5,2,001), (2,7,001),(7,
5,001), (0,4,001),(4,0,001),(7,4,1), (2,0,6),(6,4,2), (1,4,6),(1,3,7),(1,0,2),
(5,4,3), (3,2,5),(7,0,5),(3,0,7)} U {(5,6)}. R

Let D;g be defined on Z7U_{\oo,-|£e Z3} andC_z ucs= (0,1,2,3, 4,5, 6)U
(009,001,002). Then Dyg — C7UCs= D7~ C7+ D37+ (D3 —Cs) =
{(0, 2, 009),(2, 4, 000), (4,6, 000), (6,1,000),(1,3,000),(3,5,00), (5,0,00),
1,s, o01), (5,1,00 ),(6,3,001), (3» 6,001), (2,0,001),(0,4,00), (4,2,00y),
(3,0,002), (0,6, 002),(6, 2, 002), (2, 1,002), (1,4, 002),(4,3,002), (6,4, 1), (6,
5,2),(2,5,3), (5,4,0), (1,0,3), (000, 5)} N N .

Let D;p be defined on Zg U {oosli € Z,} and Cs U C3 U C2 =
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(0,1,2,:_3\,4) li (5,6,7) U (000,_\001). Then Dyp — 55 U 53 U 52 =
(Ds - Cs U 03)+D2,3+(D2 — Cg) = {(1 + 1,1, OOo)li € Zs} U{(3, 0, 001),
(0,5,001),(5,3,001), (1,4,001), (4,6,001),(6,1,001), (2,7,001),(7,2,001),
(7,4,1), (2,0,6),(6,4,2),(1,3,7),(2,5,0), (6,0,3),(3,5,7),(4, 5,2),(1,6,3),(7,
0,4)} L {(1,5)}.

Let Dso be defined on Z)0 and Clo = (0,1,2,3,4,5,6,7,8,9). Then
DlO"‘Clo— {(7,9,1), (6,8,0),(5,7,0),(8,1,9),(4,8,6),(5,9,6), (4,9,7),
(5,0,9),(3,0,8),(2,0,7),(6,0,3), (6,9, 2), (4,3,9), (4,2,8),(4,0,2),(1,0,4),
(2,9,3),(1,4,6),(7,3,8),(7,5,4), (5, 8,2),(1,8,5),(7,1,3),(6,2,7), (1,6, 3),
(5,2,1),(5,3)}. O

Appendix B. D13 - P13 can be packed with leave 02

Proof. D3 — C’9 U C4_:— (Do - C’g) + Dy + (Dg — C'4) Let Dy
be defined on Zg where Cg = (0,1,...,7,8) is the missing cycle. Let Dy
be defined on {o0;}i € Z4}. We can get a difference triple (2,3,4) and the
remaining dlfferences can associate w1th oo;{t € Z,), reSpectwely

D3 — 20’4 UCs = (Dg - C4 UC’5)+D49+(D4 — C4) Let Dg be
defined on Zg where 04 U 05 = (0,1,2,3)U(4,5,6,7,8). Let Dy be defined
on {oo;|i € Z,}. We can get a difference triple (2,3,4) and the differences
7 and 8 can associate with oog and 00, respectively. Moreover, there are
two directed 1-factors (8,0,5,2,7,4, 1,6, 3) and (8,5,1,7,3,4,0,6,2) for coz
and oogz, respectlvely .

Dis—Cr UCz U Ca= (Do - CrU Cz)+Dag+(Ds — C4) Let Dy
be defined on Zg where02UC7— (0,1) U (2,3,4,5,6,7,8). Let D4 be de-
fined on {oo;|i € Z4}. We can get a difference triple (5,6, 7) and the differ-
ences 2 and 4 can associate with cog and oo, respectively. Moreover, there
are two directed 1-factors (8,0,3,2,1,4,7,6,5) and (1,2,5,4,3,6,0,8,7) for
00y and 003,

Dis—Cs UCe UCa = = (Do — Cs UCG)+D49+(D4 - C4) Let
Dy be defined on Zg where 03 U C’g = Q 1, ZLU (3,4,5,6,7,8). Let Dy
be defined on {oo;|i € Z4}. D13 — C3UCg U Cs = {(},i+2,i+5)|i €
Zg ~ {3}} V) {(000,1,‘1:-}'7)‘1. € Zg ~ {2}} U {(001'1.,1.+5)l2 € Zg ~ {0}} U
{(002,i i+6)|i € Zg\{5}} U{ 2 3, 5) (5,8,0),(2, 002,000),(5,001,002),(0,
000, 001), (002,003,000) (ool,oo;;)}

Di3—-3C3 UCs= (Do —3 03)+D4 9+(Dyg — C’4) Dy = K§+Kj,
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Ky can be decomposed into Kirkman triple system [3] and contains four
parallel classes. If all these parallel classes are oriented properly, then one
oriented parallel class can be chosen as UJ_; C3 and four oriented parallel
classes associated with 0o; (i € Z4), respectively. "

D3 - Ca U2 C’z U C'4 = (Dg — Co U 202)+D49+(D4 - 04) Let
Dy be defined on Zg where Cs UC2 UCa = (0,1,2,3,4) U (5,6) U (7,8).
Let D4 be defined on {o0;|t € Z;}. We can get a difference triple (2,3, 4)
and the differences 7 and 6 can associate with ocog and co;, respectively.
Moreover, there are two directed 1-factors (0,5,1) U (2,7,6) U (3,8,4) and
(8,0)U(4,5)uU(3,2,1,6, 7) for cop and 003, respectively.

Dys—Cs U2Cs UC2 = (Dg - Ca UCy U O’z)+D49+(D4 ~ Ca)-
Let Dg be defined on Zyg where 03 U C4 U Cz = (0,1,2) U (3,4,5,6) U
(7,8). Let Dy be defined on {oo;|i € Z4}. We can get a difference triple
(2,3,4) and the differences 5 can associate with cog. Moreover, there
are three directed 1-factors (2,8,86,5,3,1,0,7,4), (0,8,5,2,1,7,6,4,3) and
1,8,0,6,7,5, 4) ] (2 3) for ' 001, 002 and 003, respectlvely

D3 — 3C2 UCs UCa= (Dg - 302UC’3)+D49+(D4 —C4)
Let Dg be defined on Zg where 3 CQ U Cs = (0,1) U(2,3) U(4,5) U
(6,7,8). Let Dy be defined on {oo;|i € Z4}. We can get a difference triple
(2,3,4) and the differences 5 and 6 can associate with cog and oo, respec-
tively. Moreover, there are two directed 1-factors (2,0,8,7,5,6,4,3,1) and
(8,0,7,6,5,3,4,2 1) for 002 and 003, respectively.

For D13 — 2Cs U 03, let Dg be defined on Zg where 2 05 U 03 =
(0,1,2,3,4) U (5,6,7,8,000) U (001, 002,003). Let Dy be defined on {oo;}i €
~ Z4}. Difference 8 can associate with 00, directed 1-factor (3,0,6,8,2,5) U
(1,7,4) can associate with cos. Moreover, there are Mendelsohn triples and
a leave as follows. {(0c0g, 8,0), (4,5,09), (4, 009, 0), (o0, 1, 6), (o0, 6, 2), (00,
2,7), (000, 7,3), (000, 3, 1), (3,8, 6), (8,4,2), (5,2,0), (0, 7,5), (6,0,2), (1,3,6),
(2,4,7), (3,5,8), (5,7,1), (8 1,4), (001, 7, 0),(001,0,3), (001, 3, 7), (001, 5, 1),
(001,1,8),(001,8,5), (001, 4, 6), (001,6,4)} U {(c01,2)}.

FOI D3 — C11 U C2, Let Dy3 be defined on Z,, U {000} Where Cu
UCg-- (0,1,2,3,4,5,6,7,8,9,10) U (11, 000). ThenD13—C’11 UCz

{(k,k + 2,k + 6)|k € Z12 ~ {5,9,10}} U {(k,k + 3,k + 1)|k € Z12 \
{3,5,6,8}} U {(k,k + 7,k + 3)|k € Z12 \ {0,4,9}} U {(c00, k, k + 5)|k €
Zha ~ {6,11}} U {(000, 6,4), (0, 4,3), (4,10,11), (3,6,11),(4,0,7),(11,0,9),
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9,4,11),(7,3,9),(6,9,8), (5,8,11), (5,7,6), (7, 11)}.

For Dz — Cs U C’7, Let D;3 be defined on Z;53 U {oo} where Cs
UCr= (0,1,2,3,4,5) U (6,7,8,9,10,11,00). Then D;3 — Cs U C7 =
{(k,k+ 4,k + )|k € 212~ {9,1}} U {(k,k + 2,k + 5)|k € Z12 \ {0,4}} U
{(k,k + 6,k + 2)|k € Z12 ~ {0,8}} U {(c00, k, k + 5)|k € Z12 ~ {6,11}} U
{(c0,11,0), (00,0, 6), (5,6,2),(7,0,2), (6,11,4), (1,6,9), (8, 1,10), (10,9, 2),
(2,0,5), (0, 1,5), (00,5, 10), (00, 10, 3), (00, 3, 8), (00, 8, 2), (00, 2, 1), (00,9, 4),
(00,4,9),(00,7)}.

Let D;3 be defined on Zg U {oo;|t € Z4} where C10 U 63 =
(0 1,2,3,4,5,6,7,8, 000) U (001,002,003) Then D3 — CIO U 53 =
{(k, k+3,k+1)|k € Zg~{2}}U{(001,k,k+2)|k € Zg}U{(c02,,k,k+5)|k €
Zg}U{(OO3,k k+4)|k € Zg}U{(OOo,s 0) (2 8, 5) (3 0, 6) (000,4,1),(000,
1,7), (000, 7,4), (000,2 5), (000, 5, 3), (000, 3, 2), (00g, 6) }.

For D3 — Cr U Cs, let D;3 be defined on Z;,5 U {00} where C’5 U C’g

= (0,1,2,3,4)U (5,6,7,8,9,10,11,00). Then Dys — C11 U Ca = {(k,k+
4,k+3)|k € Z1a~{T}}U {(k, k+2,k+5)|k € Z1o\{2}}U {(k, k+6,k+2)|k €
Z15~{10,4}}U{(00, 11,0), (5,00, 0), (4,5, 10), (7,0,10), (6,11, 10), (7, 11,4),
9,2, 4), (00,7, 2), (00,2, 7), (00, 3,8), (00,8, 1), (0,1, 6), (0, 6,4), (00, 4, 10),
(0,10, 3), (00,9)}. N N

For Di3 -—Aaz, UCs U Co let D13 be defined on Z;2 U {oo}
where Cs U Cs U Ca = (0,1,2,3,4)U (5,6,7,8,9,10)U (11,00).
Then D13 — Cs5 UCs U C2= {(k,k+3,k+1)k € Z12\ {3}}U
{(k,k+T7,k+3)|k € Z12~{9,10}} U {(k,k+6,k+8)|k € Z12\{3,5}}U
{(,0,5), (0, 1,86), (c0,2,7),(c0, 3, 8), (0, 4,9), (0, 5, 10), (00, 7,0), (00,8,
1), (00,9, 2), (0, 10,3), (5, 11,4), (10,11, 1), (c0, 6, 4), (3,6, 11), (4,3,9), (9,
11,0),(1,5)}.

Let D;3 be defined on Z;2 U {o0} where 2 Cz U Cg = (0,1) U
(2,3,4,5,6,7,8,9,10) U (11,00). Then Dy3 — 2 C2 U Co = {(k,k +
7,k + 3)k € Zis ~ {5,6,8}} U {(k,k + 3,k + 1)k € Z12 ~ {0,3,5}} U
{@,7,9), (3,9,11), (4,10,0), (5, 11,1), (7, 1,3), (8, 2,4), (10,4,6), (11,5, 7),
(0001 015)’ (000’1:6)’ (0001 2, 7)’ (OOOi 318)1 (000’ 4’ 9)’ (0001 5, 10)1 (000’ 7v 0)1
(000, 8, 1), (000, 6, 4), (000, 9, 2), (000, 10, 3), (6, 11,0), (11,4, 3), (10, 11,8), (3,
6,8),(2,8,0),(1,2,6), (3,1,9),(0,3,5),(5,9,6), (8,6,0), (5,8)}.

_ For Dy3 — C2 U Cs U Cs, let Dyg be defined on Zis U {00} where
O3 UCsUCs = (0,1,2)U (3,4,5,6,7,8,9,10) U (11,00). Then Dy3 — C2
UCsUCs= {(kk+7,k+3)|k € Z12~{3,6,7,8}} U {(k,k+3,k+1)|k €
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Z12n{0,2,9,11}} U {(1,7,9), (3,9,11), (4,10,0), (5,11, 1), (6,0,2), (8,2, 4),
(7,1,3), (11,5, 7), (00,0, 5), (00, 1,6), (00,2, 7), (00, 3, 8), (00,4, 9), (0, 5, 10),
(00, 8,1), (0,6,3), (4,00,10), (c0,9,0), (=0, 7,2), (2,3,10), (6,11, 4), (9, 6, 10),
(8,10,6), (3, 1,9), (8,0,11),(2,8,3), (11,0,3), (10,11, 2), (1,0,6), (2,5,9), (7,
0,10), (3,5)}.

Fi)r D3 -3 53 U2 52, Let D,3 be defined on Z;2 U {c0} where 3 8’
u2¢C: = (0,1) U (2,3,4) U (5,6,7) U (8,9,10) U (11,00). Then Dy3 —
C3UC3UCUCUCs = {(k, k44, k+1)lk € Z12{0,2,11}} U {(k, k+2,k+
5)lk € Z12~{2,3,9,11}} U {(00,0,5), (00,3, 8), (00, 4,9), (00,5, 10), (0, 7, 0),
(00,8, 1), (00,9,2), (00,10, 3), (00,2, 6), (00, 1,7), (00, 6,4), (11,4, 10), (11,0, 4),
(4,1,2),(7,8,2), (6,11,1),(11,7,3), (5,11,9), (2, 10,6),(1,4,7), (1,9,3), (0,6,
3),(2,0,11), (9,7, 2_2, (9, 1_},3),&?,2,8), (5,8,4),(5,3)}.

_For Dl_;é — 202U Cg U C3, let D13 be defined on Z;5 U {oo} where
2C2UCsUCs= (0,1) U (234567U (8910)U (11,00).
Then D3 — 2 C2 U Cg U(C3 = {(k,k+2,k+5)|k € Zig N {2}}U
{(k,k+ 4,k + )|k € Z1o\ {0}}U{(k,k+6,k+2)|k € Z12~ {0,4,8}} U
{(00,0,5), (00, 1,6), (00, 3,8), (00, 4, 9), (00, 5, 10), (00,8, 1), (00, 2, 0), (00,
9,2), (00,10, 3), (0, 6,4), (1,2,4), (10,11, 4), (6, 11,0), (10, 6, 2), (7,8, 2), (0,
LU0}

_For 213 — 52 U (3, let Dy3 be defined on Z;¢ U {o0;|i € Z3} where
5C2UCs = (0,1) U (2,3,) U (4,5) U (6,7) U (8,9)U (c00,001,003).
Associate cog with difference 1 while (9, 3,2,5,1,7) U (6,8,0,4) can form 1-
factor for 0co;. Then the maximum packing is {(co2, 3, 7), (002, 7,1), (002, 1, 3),
(002,9,2), (002,2,0), (002, 0,9), (002, 5,8), (c02, 8,6), (002, 6,5), (0,3,1), (1,4,
2),(3,6,4), (4,7,5),(6,9,7),(7,0,8), (8,1,9),(1,5,9), (3,5,7), (4,1,8), (8,5,2),
(6,3,0), (0,7,4), (6,0,2), (4,8,2), (3,9,5), (6,2,9)} with leave (coz,4).

For D3 — 513, let D3 be defined Oan U{oo} where 513 = (0,1,2,3,
4,5,6,7,8,9,10, 11,00). Then D3 — Ci13 = {(k, k+2,k+ 6)|k € Zya N
{11}} U {(k,k+3,k+ 1)k € Zi2~ {5}} U {(k,k+ 7, k+3)|k € Z12} U
{(00,2,7), (0, 3,8), (0, 4,9), (0,5, 10), (00, 7,0), (0, 9, 2), (o0, 10, 3), (co,
11,4), (o0, 6,5), (oo, 8,6), (11,0, 5), (6,11,1), (1, 5,8) }u{(co, 1)} O
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