The adjacent vertex-distinguishing total
chromatic number of 1-tree

Haiying Wang*t
The School of Information Engineering
China University of Geosciences{Beijing)
Beijing 100083, P.R.China

Abstract Let G = (V(G), E(G)) be a simple graph and T(G) be the
set of vertices and edges of G. Let C be a k—color set. A (proper) total
k—coloring f of G is a function f: T(G) — C such that no adjacent
or incident elements of T(G) receive the same color. For any u € V(G),
denote C(u) = {f(u)} U {f(uv)luv € E(G)}. The total k—coloring f of
G is called the adjacent vertex-distinguishing if C(u) # C(v) for any edge
uv € E(G). And the smallest number of colors is called the adjacent
vertex-distinguishing total chromatic number x,:(G) of G. Let G be a
connected graph. If there exists an vertex v € V(G) such that G — v is
a tree then G is a 1—tree. In this paper, we will determine the adjacent
vertex-distinguishing total chromatic number of 1-trees.
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1. Introduction

Let G = (V(G), E(G)) be a simple graph and T(G) = V(G) U E(G) be the
set of vertices and edges of G. A(G), 6(G) and Va denote the maximum degree,
the minimum degree and the set of the vertices with degree A(G) respectively.
For v € V(G), we use Ng(v) to denote the neighbor set of v in V(G). For
S C V(G), G[S] denotes the subgraph of G induced by S.
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Let G be a connected graph. If there exists a vertex v € V(G) such that
G — v is a tree, then G is a 1—tree.

Let C be a k—color set. A (proper) total k—coloring f of G is a function f:
T(G) — C such that no adjacent or incident elements of T'(G) receive the same
color. For any v € V(G), denote C(u) = {f(u)}U{f(uv)juv € E(G)}. The total
k—coloring f of G is called the adjacent vertex-distinguishing if C(u) # C(v)
for any edge uv € E{G). And the smallest integer k is called the adjacent
vertex-distinguishing total chromatic number x,.:(G) of G. It is obvious that
Xat(G) 2 A(G) + 1.

Suppose that f is an adjacent vertex-distinguishing total coloring of G. For
w € V(G), f(Ne(w)) denotes the color set of the edges incident to w in G and
felw] = f(Ne(w))U{f(w)}. If an element ¢ is colored a, then we denote a => .

After B.Bollébas, A.C.Burris, R.H.Schelp, C.Bazgan and P.N.Balister dis-
cussed the vertex-distinguishing coloring in [1-3], Zhongfu Zhang, Linzhong Lin,
Jianfang Wang and Xiangen Chen introduced the adjacent vertex-distinguishing
edge coloring and the adjacent vertex-distinguishing total coloring in [6] and (7].
Some results on the subject have been obtained in [4-7].

Lemma 1([6])) If G has two vertices of maximum degree which are adjacent,
then x.:(G) > A(G) +2.

Lemma 2([6]) If G has m components G; (i = 1,2,--- ,m) and |V(G;)| 2
2) i= 112v ree,M, then Xat(G) = max{xc!(cl)1 Xat(G2)v fee )Xat(Gm)}-

Lemma 3([6]) Let C, be a cycle with n > 4. Then xq:(Cr) = 4.
Lemma 4([6]) Let S, be a star with n > 3. Then x4:(Sx) =n +1.
Lemma 5([6]) Let F, be a fan with n > 4. Then xq(Fn) =n+1.

Lemma 6([6]) Let T, be a tree with n > 4. Then

_ [ AT+, if E(Ta[Va]) =9,
Xat(Tn) = { AETn; +2, ;f EETn{Vﬂ) # 0.

Lemma 7([6]) Let S, be a double-star with » > 4 and m > 4. Then

_ A(Spm)+1, if n#m,
Xat(Sn,m) = { A(Snm)+2, if n=m.

In this paper, we will determine the adjacent vertex-distinguishing total
chromatic number of 1-trees.

2. Main results
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The adjacent vertex-distinguishing total chromatic number of the graphs G
with A(G) < 2 has been determined in {6] and [7]. So we only consider the
graph G with A(G) > 3. Then |V(G)| > 4.

Theorem 2.1 If G is a 1-tree, then

A(G)+1, if E(G[Va)) =0,
Xat(G) = { A%G; +2, ;f EEG{ViB # 0.

Proof: Suppose that G is a 1—tree. According to the definition of the adjacent
vertex-distinguishing total chromatic number, x,:(G) > A(G) + 1. By Lemma
1, if E(G[Va]) # 0 then xqa:(G) = A(G) + 2. Thus,

AG)+1, if E(G[VA]) =0,
Xat(G) 2{ AG)+2, if E(G[Vil) # 0.

So we will only prove that

AG) +1, if E(G[Va]) =,
Xa‘(G)S{ AGH+2, it E(G{Vi})#@.

According to the definition of 1—tree, there exists v € V(G) such that G — v is
a tree. Suppose that T'=G — v.

If T is a star, then it is easy to prove the conclusion. So we assume that
T is not a star. Then there exists w € V(T) such that dr(w) # 1 and it has
only one adjacent vertex u with dr(u) > 2. Let W(T') denote the set of such
w € V(T) above. We will prove the conclusion by induction on |V(G)|.

It is obvious that Theorem 2.1 holds for |V(G)| = 4. Now assume that
|[V{(G)| = 5. Suppose that w is a vertex with the smallest degree in W(T'). Let
Np(w) = {u,v1,-++ ,v,} with dp(u) 22 and dr(v;) =1 foralli e {1,2---,s}
with s > 1.

Case 1 wv € E(G).

Subcase 1.1 dg(v;) = 2 and dg(v;) = 1 for all ¢ € {1,2,--- ,k ~ 1} and
j€{k,---,s} withk>2and s> k.

In this subcase, we consider the graph Go = G — {v,--- ,v,}. It is easy to
see that [V(Gop)| < |[V(G)| and Gy is also a 1-tree with A(Go) = A(G) = A. By
the induction assumption Gp has an adjacent vertex-distinguishing total color-
ing f’ with the color set Cp with |Co| € {A + 1, A + 2}. In the following, we
will extend f’ to an adjacent vertex-distinguishing total coloring f of G with
the color set C with Co C C and |C| € {A + 1, A + 2}, respectively.
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There are four subcases in all, denoted (a)(b)(c)(d) below.
(a) de(w) # dg(v) and de(w) # do(w).
(b) de(w) # dg(v) and dg(w) = de(u).
(c) de(w) = dg(v) and dg(w) # do(u).
(d) de(w) =dg(v) = da(u).

Now we only deal with the case of dg(w) = dg(v) = dg(u) = A = s +2
with s > 2 and k > 2 (see Figure 1) (A similar arguments work for other cases).
In this case, E(Go[Va]) # 0. Then |Co| = A + 2.

Figure 1

Firstly, let Co = C. Since |fg [u]| = A + 1, there exists at least one color
“¢1 € Cp such that ¢; € f, [u]. Similarly, there exists at least one color co € C
such that co € fg,[v]. Secondly, we do it step by step below.

Note: the elements which have not yet colored, retain the colors given by
f' when we extend f’ to f of G respectively. In the proof below, we will not
mention it again.

Step 1

If c; € fg,[w] and co & fg,[w] U {1} with de(v) = 2 then dg(w) > 3. Let
C] = Wk.

If o) & fg,[w] and ¢ & fg,[w] U {c1} with dg(v) # 2 then firstly select any
color ¢ € {cg,c1} — f/(vvk—~1) and let ¢ = wwvg_;; secondly, select any color
aeC—{f'(w),c}U{f(v), f(vvk—1)} and let o = vi_;.

If e1 & fg,[w] and co = ¢; then let co(= c1) => wok.

If ¢; € fg,lw] and co € fg, [w] then let cp = wug.

If ¢ € fg,[w) and ¢o € fg,[w] then do Step 2 directly.

Step 2 Let {f(wvk), -, f(wvs)} € C ~ {f'(w), f'(wu), f'(wv), f'(wv1),-- -,
[ (wvk-2), f(wvk-1)}.
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Step 3 Select o; € C — {f(wv;), f'(w)} and let a; = v; for all ¢ € {k,--- ,s}.
Subcase 1.2 dg(v;)=2forallie {1,2,---,s} with s> 1.

(I) There exists one vertex z € V(G) such that dg(x) = 1 (see Figure 2).

X

Figure 2

We consider the graph Go = G —v, +vz. It is easy to see that |V(Gy)| < |[V(G)|
and Gy is also a 1-tree with A(Gp) = A(G) = A. By the induction assumption
Gy has an adjacent vertex-distinguishing total coloring f’ with the color set Cp
with |Co| € {A + 1, A + 2}. In the following, we will extend f’ to an adjacent
vertex-distinguishing total coloring f of G with the color set C with C; € C
and |C| € {A +1, A + 2}, respectively.

(A) If E(Go[Va]) # @ then |Co| = A(G) +2 and let C = Cy. Since |fg, [v]| =
dg(v)+1 < A(G)+1, there exists at least one color cg € C such that cp & fg, [v]-
Similarly, there exists at least one color ¢y € C such that ¢; & fg [u]. So

co # f'(vz) and ¢; # f'(uw). Assume that f'(v;) = ¢, fori e S C {2,---,s}
below.

(A1) dg(v) > 3.

Step 1 Let f'(vz) = vu;.
Step 2

If o & fg,lw] U {c1} and 1 € fg,[w] U {f'(vz)} then firstly let c; = w and
co = wvy; secondly, select any color a; € C—({ f'(wv;), f'(vvs) JU{f'(w), f'(v)})
and let a; => v; foralli € S.

Ifco =1 € f, [w] then co = ¢; # f'(vz). Let co = 1 = wu;.

If co & f&,[w] and ¢1 = f'(vz) & f,[w] then co # c;. Firstly, let co = wv; and
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¢ = w; secondly, select any color a; € C — ({f'(ww;), f'(vv;)} U {F/(w), f'(v)})
and let a; = v; foralli € S.

If co & fg,[w] and ¢; € f& [w)] then let co = ww;.
If co € fG,[w] and ¢; € fg, [w] U {f'(vz)} then let ¢; = wuy.

If g = f'(w) € fg,lw] and ) = f'(vz) & fG,[w], then firstly let ¢; = w and
f/(w)(= co) = wvy; secondly, select any color a; € C — ({f'(wv;), f'(vws)} U
{f'(w), f'(v)}) and let a; = v; forall i € S.

If co € fG,[w] and 1 = f'(vz) & fg,[w], but f'(w) # co, then firstly let ¢; = w
and f'(w) = ww;; secondly, select any color a; € C — ({f'(ww), f'(vvi)} U
{f'(w), f'(v)}) and let a; = v; foralli € S.

If co € fg,[w] and ¢y € fg, [w] then select any color @ € C —(fg, [w]U{f'(vz)})
and let a = wvy.

Step 3 Select any a; € C'— ({ f(w), f(wvy)}U{f'(vz), f'(v)}) and let a; = v;.

(A.2) do(v)=2.

In this subcase, s = 1. We reconsider the graph Gy = G — v+ wz. It is easy
to see that |V(Gy)| < [V(G)| and Gy is also a 1-tree with A(Go) = A(G) = A.
By the induction assumption Gg has an adjacent vertex-distinguishing total col-
oring f’ with the color set Cp with |Co| = A+2. Let C = Cp. Firstly, select any
color ¢ € C — fg [w] and let ¢ = v;. Secondly, f'(wu) = v and f'(w) = vu;.

(B) If E(Go[Va)) = 0 and E(G|Va]) # 0 then |Col = A(G) + 1. Let Co Cc C
and |C| = A(G) + 2. Assume that ¢ € C - Cb.

Step 1 Let f'(vz) = vv;.

Step 2 Let ¢ = wuv,.

Step 3 Select any a; € C—({f'(w), f(wv)}U{f'(vz), f'(v)}) and let a; => v;.

(C) If E(Go[Va]) =0 and E(G[Va]) = 0 then |Co| = A(G) + 1. Let C = Cy.
(C.1) de(v) 23

(C.1.1) If dg(v) = dg(u) = A(G) then dg(w) # A(G) > 4 and wv € E(G).
Step 1 Let f'(vz) = vu;.

Step 2 Select any a € C — (fg,[w]U {f'(vz)}) and let & = ww;.
Step 3 Select any oy € C—({f'(w), f(wv1)}U{f' (vz), f'(v)}) and let a; => v;.
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(C.1.2) If dg(v) = A(G) and dg(u) # A(G) then dg(w) # A(G) > 4.
So there exists at least one color ¢; € C such that ¢; € fg, [u]. Assume that
fl(vi)=cy forie S C{2,---,s} below.

Step 1 Let f'(vz) = vv.

Step 2

If c; & fg,[w] and ¢; # f/(vz) then let ¢ = wuy.

If ey € fg,lw] and ¢1 = f'(vz) then firstly let ¢, = w and fl(w) = wuy;
secondly, select any color a; € C — ({f'(ww;), f'(vv;)} U {f'(w), f'(v)}) and let
a; =>v; forallie S.

If ¢ € f&,[w] then select any @ € C ~ fg,[w] and let a = wv;.

Step 3 Select any a; € C—({f'(w), f(wv1)}U{f'(vz), f'(v)}) and let oy = v;.

(C.1.8) If dg(v) # A(G) and dg(u) = A(G) then dg(w) # A(G). So there
exists one color ¢g € Co such that co & fg, [v].

Step 1 Let f'(vz) = vu,.

Step 2

If co & fG,[w] then let co = wu,.

If co € fg,[w] then select any @ € C — fg, [w] and let a = wv;.

Step 3 Select any a; € C—({f'(w), f(wv1)}U{f'(vz), f'(v)}) and let oy => v;.

(C.1.4) If dg(v) # A(G) and dg(u) # A(G) then there exists at least one
color ¢y € C such that ¢p ¢ fg [v]. Similarly, there exists at least one color
c1 € C such that ¢; ¢ fg, [u] with ¢; # f'(uw). Its steps are similar to (A).

(C.2) dg(v)=2.

In this subcase, s = 1. We reconsider the graph Go = G — v +wz. It is easy
to see that |V(Go)| < |[V(G)| and Gy is also a 1-tree with A(Gyp) = A(G) = A.
By the induction assumption Gp has an adjacent vertex-distinguishing total
coloring f’ with the color set Cp with |[Co| = A + 1. Let C = Cp. Firstly, let
f'(wz) = wv and f'(wz) = v;. Secondly, f'(wu) = v and f'(w) = vuy.

(IX) dg(z) > 2 for all z € V(G) (see Figure 3).
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Figure 3

In this subcase, v is the unique vertex with maximum degree in G. We consider
the graph Gg = G — v;. It is easy to see that |V(Gyp)| < |V(G)| and Gy is
also a 1—-tree with A(G) = A(Gq) + 1. By the induction assumption Gy has
an adjacent vertex-distinguishing total coloring f’ with the color set Cy with
|1Col = dgo(v) + 1. In the following, we can extend f’ to an adjacent vertex-
distinguishing total coloring f of G with the color set C with Cy C C step by
step.

Since dg, (z) = 2 for all z € V(Gyp), v is also the unique vertex with maxi-
mum degree in Go. So dg(v) = dg,(v) + 1 and A(G) = A(Go) + 1. Firstly, let
IC| = |Co| + 1(= dg(v) + 1). Assume that & € C — Cy.

Step 1 Let a = vv,.

Step 2 Select any 8 € C ~ (fg,[w] U {a}) and let 8 = wuv;.
Step 3 Select any v € C — ({&, B} U {f'(w), f'(v)}) and let v = v;.

Subcase 1.3 dg(v;) =1foralli=1,2,---,s with s > 1 (see Figure 4).

Figure 4

In this subcase, we can consider the graph Go = G — {v;,-++,vs}. Then
A(G) = A(Go) or A(G) = A(Gp) + 1. It is easy to see that |V(Gg)| < |[V(G)|
and Gy is also a 1-tree with A(Gp) < A(G). By the induction assumption Go
has an adjacent vertex-distinguishing total coloring f’ with the color set Cp
with |Co| € {A(Gp) + 1, A(Gp) + 2}. In the following, we can extend f’ to an
adjacent vertex-distinguishing total coloring f of G with the color set C with
ICl € {A(G) +1,A(G) + 2} and Co C C.

Step 1

(A) If A(G) = A(Go) + 1 then w is the unique vertex with maximum de-
gree in G. Let Cp € C and |C| = A(G) + 1(= A(Go) + 2). Firstly, let
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{fwwr), -, f(wys)} C C — fG,[w]. Secondly, do Step 3 directly.

(B) If A(G) = A(Gy) = A then we may assume that wv € E(G) and
w € E(G).

(B.1) If E(Go[Va)) # 0 then E(G[Va]) # 0 and |Co| = A(G) +2. Let Gy = C.
Assume that dg(w) = dg(v) = dg(u) = A and {uv,wv} C E(G). Assume that
a1 € Co - fg, [u] and ¢ € Co — fg, [v]. Then ¢o # c;.

If ey & {f'(wv), f'(v)} and f'(wu) = co then firstly let ¢; = w; secondly,
do Step 2(1).

Ife) & {f'(wv), f/(v)} and f(wu) # co then firstly let cp = wv,; secondly, do
Step 2(2).

If ¢; = f'(wv) then firstly let cg = wvy; secondly, do Step 2(2).

If ¢y = f'(v) and ¢ € {f'(u), f'(wu)} then firstly let o = w and ¢; = wwy;
secondly, do Step 2(2).

If ey = f'(v) and ¢p = f'(wu) then firstly let ¢; = wwv;; secondly, do Step
2(2).

If ¢; = f'(v) and ¢o = f'(u) with s > 2, then firstly let co = wv; and ¢; = wvs;
secondly, do Step 2(3).

Ifc = f'(v) and ¢p = f'(u) with s = 1, then A = 3. Assume that v/ €
Ng(v) — {u,w}.

If f'(uv) # f'(v') then firstly let f/'(uv) = v and ¢; = uv; secondly, let ¢; = w
and ¢g = wv; finally, do Step 3.

If f'(uv) = f/(v') then f'(wv) # f'(v'). Firstly, let f/(wv) = v and ¢; = wy;
secondly, let co = ww;; thirdly, select any color @ € C — ({co, 1} — {f'(wu)})
and let o = w; finally, do Step 3.

(B.2) If E(Go[Va]) = E(G[Va]) =0 then |Co] = A + 1. Let C = Cp.

If dg(w) = A then dg(u) # A and dg(v) # A. Let {f(wuv),- -, flwys)} C
C - fG,lw]. Finally, do Step 3 directly.

If dg(w) # A then we only deal with the case of dg(u) = dg(v) = dg(w) < A
with wv € E(G). Assume that co € Co — fg,[v] and ¢; € Co — fg, [u]. Its steps
are similar to Subcase (B.1).

(B.3) If E(Go[Va]) = 0 and E(G[Va]) # @ then |Co| = A(G) +1. Let Co € C

and {C| = |Co} + 1. Assume that a € C — Cp. Firstly, let & = w. Secondly, do
Step 2(1).
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Step 2

(1) Let {f(wn),- -, f(wvs)} C C = {f'(ww), f'(wv), f(w)}.

(2) Let {f(wvz),---, flwvs)} € C = ({f'(ww), f'(wv), f(w)} U { f(wu)}).
(3) Let {f(wwvs), -+, f(wus)} C C ~ (fg,[w] U { f(wur), f(wu2)}).

Step 3 Select any o; € C — {f(wv;), f'(w)} and let a; = v; foralli=1,--- ,s.

It is easy to verify that the coloring f above is an adjacent vertex-distinguishing
total coloring of G in the cases respectively.

Case 2 If wv € E(G) then its proof is very similar to Case 1 by the defi-
nition of the adjacent vertex-distinguishing total coloring.

Thus, Theorem 2.1 holds. D
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