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their indices *
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Abstract We consider the connected graphs with a unique vertex
of maximum degree 3. Two subfamilies of such graphs are characterized
and ordered completely by their indices. Moreover, a conjecture about the
complete ordering of all graphs in this set is proposed.
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1 Introduction

In this paper we only consider finite simple graphs (without loops or
multiple edges). The spectrum of a graph G is the spectrum of A(G),
the adjacent matrix of the graph G. The largest eigenvalue of A(G) is
called the index (or spectral radius) of G, and is denoted by p(G). The
characteristic polynomial of G is just det(zI — A(G)), which is denoted by
®(G, ), or simply by ®(G). For other undefined notions and terminology
on the algebraic graph theory, the readers are referred to [1].

To classify and order graphs by their indices is an interesting problem
proposed by Cvetkovié in [2]. In [3], Smith determined all the graphs with
index not exceed 2. In [4] Cvetkovié et al. listed the graphs with index in

the interval (2, /2 + v/5), all of which are trees. Recently many authors
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studied the ordering of some special families of graphs, such as trees, see
(5], ete.

In this paper, we focus on the connected graphs with a unique vertex of
maximum degree 3. Let U,(3) be the set of connected graphs on n vertices
and having a unique vertex of maximum degree 3. In Section 2, we give
some lemmas which will be used in the proofs. In Section 3, two subsets of
graphs of U, (3) are characterized and completely ordered, also a conjecture
is posed about the complete ordering of U, (3).

2 Some lemmas

Before proving our main results, we first give the following six lemmas
as some necessary preliminaries.

Lemma 2.1 ([6]). Let G(m,n) be a graph obtained from a non-trivial
connected graph G by attaching at some fized vertexr two pendant paths
whose lengths are m and n, respectively. If m > n > 1, then p(G(m,n)) >
p(G(m —1,n+1)).

For positive integers a, b and ¢, we denote by T'(a, b, ¢) a tree such that
for some vertex v € V(T'(a,b,¢)), T(a,b,¢) —v =P, |JP | Pe.

Lemma 2.2 ([7]). Let v, be the largest real root of the polynomial

Ly(v) = — (072 + 073 4+ fu +1).

We set A\, = vq%+vq_%, and Aoo = v§°+v_%. Then 2 = Ay < A3 <
A <A1 < <A =V2H V5 =~ 2.058171. Moreover, p(T(2,2,c))

increases strictly with ¢ and converges 10 Ao.

Remark 2.1. [t is pointed out in [1] that if G is a connected graph, which

is neither a tree nor a cycle, then p(G) > 7% + =% = V/2+ /5 where
T= JL'f'—52 L

Lemma 2.3 ([3]). The only connected graphs on n wvertices with index
smaller than 2 are the path P,, the graph Z, and Ty, Tp and T3(see Fig.
1 ); The only connected graphs on n vertices with index equal to 2 are the
cycle Cy, the graph W,,, and Ty, Ts and Ty (see Fig. 2).

A path P = v, vy, -, v is defined (see [8]) to be an internal path if
one of the following holds:

(i) & > 2, v,v1, -+, vk are all distinct, d(ve) > 3, vour € E(G), and
d(vy)=2,foralli e {1,2,---,k};

(ii) k > 1, d(vo) > 3,d(wx) > 3, and d(w;) = 2, for all i € {1,2,---, k—1}.
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Fig. 1 The graphs with index smaller than 2
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Fig. 2 The graphs with index equal to 2

Lemma 2.4 ([8]). Let G be a connected graph and let Gy, be a graph

obtained from G by subdividing the edge uv of G. If uv lies on an internal
path of G, and G # Wy,(see Fig.2), then p(Gyy) < p(G).

Let z = 2cosf, set t¥ = e, it is useful to write the characteristic
polynomial of P,, C, in the following form(see [9]):
(P, tt +t-1)) =2 - 1)/t -1), (1)
B(Cytt +t 1)) =tF +1t-% - 2. ()
The following equation from [9] holds:
&®(T(a,b, c),t% + t—%)t(a+b+c+1)/2(t —- 1)3 = gotbtcta _ gpatbict3
+ tb+c+2 + ta+c+2 + ta+b+2 _ tc+2 _ tb+2 — tot2 +2t—1. (3)

Lemma 2.5 ([10]). Let G be a graph. Denote by 0(e) the set of all cycles
in G containing an edge e = uv, then we have: ®(G,z) = ®(G — e,z) —
(G —u—v,2) =2 ceq(e) BG - V(C), 7).

Lemma 2.6 ([1]). The increase of any element of a non-negative matriz
A does not decrease the largest eigenvalue of A. The greatest eigenvalue in-
crease strictly if A is an irreducible matriz. Therefore, in a connected graph
G whose edge are assigned non-negative weights, every proper subgraph has
smaller indez than G.
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3 Main results

Now we only consider the graphs with a unique vertex of maximum
degree 3, i.e. the ones of in U,(3). We denote by C,(:) the graph obtained
from a cycle Cy, by attaching at one vertex of Cj a pendant path of length I.
By the following theorem, the set U,(3) is totally divided into two subsets
of graphs.

Theorem 3.1. For any graph G, G € U,(3) if and only if G is either a
tree T(a,b,c) for some integers a, b and ¢, or a unicyclic greph C,(f) for
some k and l.

Proof. Both T'(a,b,c) and C’,(:) are obviously in the set Uy,(3).

Suppose that G € Upn(3). If G is a tree, from the definition of Uy, (3),
G must be a tree T'(a, b, c) for some a, b and c. Otherwise, assume that
G contains a cycle. If G contains two cycles Cp, and C,;. Then one of the
following three cases occurs:

(i) Cp and C, share one vertex;

(ii) Cp and C; share at least one edge;

(iii) Cp and C, are linked by a path.
Any case will contradicts to the uniqueness of maximum degree 3. So G
contains only one cycle, that is, G must be a C,(:) for some % and 1. a

Next we will consider the ordering of graphs in U,,(3). Firstly we deal
with the trees in U,(3). With loss of generality we always assume that
a < b < c for the trees T(a,b,c) in U, (3).

Theorem 3.2. For any integer k such that 1 < k < | 25| — 1, we have
that

n—-k—1 n-k-1
2 Jir 2

Proof. To prove the above inequality, we first show the following two
equalities.
®(T(k+ 1,k +1,n— 2k — 3)) = B(Pr+41)P(on—k-1); (5)
®(T'(k,m,m)) = ®(Pm)®(Pr+m+1)- (6)
where p+r+1 (h is a positive integer) is obtained from a path Prym41 =
V1V2 *  * UkVk41Vk42 * * - Ukt-h+1 DY 8ssigning a weight V2 to the edge Uk41Vk+2-
Note that the characteristic polynomial of T(k+ 1,k +1,n— 2k —3) is

o(T(k, |

) < p(T(k+1,k+1,n—2k~-3)). (4)

zl — A(Pr+1) O Oy
O :L‘I ot A(Pk+1) 01
of of ol — A(Pn_2k-2) |,
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0o 0 --- 0
o o0 -+ 0
where O; = . .
=1 0 - 0/ ry1)x(n-2k~2)

By adding (—1) Row 2(k + 1) to Row (k + 1), then adding Col k and
Col (k +1) to Col (2k + 1) and Col 2(k + 1), respectively, we have that
®(T(k+1,k+1,n — 2k — 3),z) equals

ol — A(Pey1) Oa 0

0 $I - A(Pk+1) 01

oT 20T zl — A(Pp-2k-2) axm,
00 --- 0 O 0
00 0 0 0

where Oy = ST
0 --- 0 -1 0

00 --- 0 zz -1
00 «- 0 0 0/ Gyt

After adding (—~1) Row (2k + 1) and (—1) Row 2k to Row k and Row
(k — 1), respectively, and then adding Col 1 to Col (k+2), the determinant
becomes to

ol — A(Pey1) O 0
0] zl - A(Pk+1) 01
0’{ 201{' zl — A(Pp_2k-2) X

By Laplace expansion, it equals to

.'cI - A(Pk.g.l) 01
20? zl — A(Pn_gk_z)

In the second determinant, first multiplying Col (k + 2) by v/2 and then
multiplying Row (k + 2) by 715, we get

loI — A(Pes)|

2l — A(Pey1) V204
V20T zl — A(Py—2k-2)

So, ®(T(k+ 1,k + 1,n — 2k — 3)) = ®(Pi+1)®(on—k-1).

The proof for (6) is similar, and so be omitted.

Now we are ready to prove (4). The proof is divided into two cases
depending on the parity of n — k — 1.

Case 1. n—k—1is even. Then |2=5=1| = [2=k=1] = 2=k=1  Accord-
ing to (6), we have
that &(T'(k, 2=k=1, n=k=ly) = Q(P_n%k—-_l_)é(pﬁik_—ti). Considering the fact

.
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that the largest root of the product of the two polynomials is the larger one
between the largest roots of the two polynomials, by Lemma 2.6, it follows
that p(T'(k, 2=4=1, 223=1)) = plpasesr) < p(@n-k-1) = p(T(k + 1,k +
1,n—2k - 3))

Case 2. n—k —1is odd. Then |2=%=1| = 2=k=2 [n=k-1] -
Similar to Case 1, we have that &(T(k, 25% nek nck )= <I>(P1;_k_ )@(pﬁ#)

T3
And by Lemma 2.6, p(T(k, | 2=5=L|, [2=£=21)) < o(T'(k, 255, 25%)) =
ppatpsa) < p(pn-k-1) = p(T(k+ 1,k +1,n — 2k - 3)).

This completes the proof of Theorem 3.2. O

The technique used in the proof of Theorem 3.2 is mainly taken from
[5]. The following corollary is a stronger result, which gives a complete
ordering of all the trees in U, (3).

Corollary 3.1. p(T(1,1,n—3)) < p(T(1,2,n—4)) < ------
< o(T(L, 1252, [2521)) < p(T(2,2,n— 5)) < p(T(2,3,n—6) < -+
< P(T(k, 1352, [2523D)) < p(T(k + 1,k + 1, — 2k~ 3)) -
< p(T(|252] - 1, | 2= | 12=lmdy)) < o252, | 252 ), mo)),
| 252) if n=1 (mod 3);
where mp = ["‘1] if n=2 (mod 3);
["_1] +1 if n=0 (mod 3).
Furthermore, if n = 0 (mod 3), there is one more ineguality to the last one:

A(T(125), 1234, 12521 + 1) < a(T(L25H ), 12540, T2511))-

Proof. Note that Z, = T'(1,1,7—3). From Lemma 2.3, we find that of all
the trees in Up(3), Z, has the minimal index p(Z,) = 2coszra—5y- Other
inequalities immediately follows from Lemma. 2.1 and Theorem 3.2. O

Now we will present a complete ordering for all the unicyclic graphs in

Ua(3).
Theorem 3.3. p(C",) < p(C, 2?2) << p(Cﬁ"—")) < p(C:g“_a)).

Proof. For k € {1,2,---,n — 4}, it suffices to show that p(C(k)k) <

p(C,(zk_";:_)l). Since G’(k)k can be obtained from C(k"'l) by subdividing an
edge on the cycle Cp, ;1 and deleting its pendant vertex, by Lemma 2.4
and Lemma, 2.6, the above inequality holds. The proof for this theorem is
completed. o

How to order all the graphs in Un(3)? Since T(1, | 252],[252]) and
T(|252), 1252 ], mo) (where my is as defined in Corollary 3.1) are proper

subgraphs of C{"), and C“?:.Jz » respectively, we have p(T(1,1252], [2521))
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< p(C)) and p(T 2zl |25 ), mo)) < p(C(l—f_Jz ). Thus the first
125!

["‘2J ones and the last n — 2 ["'3_| ones are determined, respectively, in
the ordering of Uy (3). But when = is small, p(T'(1, | 252, ["‘2])) may not
be the sharp lower bound for p(C(1 1)- By Lemma 2.3, p(T'(2,2,2)) = 2,
and p(Cél)) > 2, so it is easy to give a complete ordering of all the
graphs in Uz(3). For the other example, by calculation with the software
MATLAB, we find that p(T'(3,3,3)) = 2.0743 < 2.0785 = p(C{"), and
p(T(3,3,4)) = 2.0840 > 2.0743 = p(Cftl,)). So, by Theorem 3.2 and 3.3, the
complete ordering is determined for all the graphs in U;(3), but the com-
plete ordering is not obtained easily for all the graphs in Uy;(3). In the gen-
eral case, not the maximal index of the trees in U, (3) is always smaller than
the minimal one of unicyclic graphs in U, (3). When n = 13, by calculation
with MATLAB, we find that p(T'(4,4,4)) = 2.1010 > 2.0684 = p(Cg)),
even p(T(2,5,5)) = 2.0840 > p(Cg)). Generally, by Lemma 2.2 and Re-
mark 2.1, we have the following conclusion.

Corollary 3.2. When n > 10, p(C",) > p(T(2,2,n — 5)).

Naturally we will ask : where is the right position for p(C'( )k) in the
ordering of all graphs in U,(3)? As a partial result, we give the following
conclusion.

Theorem 3.4. When n is large enough, and k is fized such that 1 < k <
[252] - 1, we have that p(C(k)k) <p(T(k+1,k+2,n—2k—4)).

Proof. By the equation (3) in Section 2, we have ®(T'(k + 1,k + 2,n —
2% — 4),t} + e h)n/2(t — 1)3 = 043 — onH2 g gnk gkl 245
tn—2k=2 _ gktd _¢k+3 4 9t _ 1 Applying Lemma 2.5 to C¥, at that cut
edge by which the unique cycle C,,_j and the pendant path P; are linked,
we obtain that (C), ) = &(Cp—x)®(Pe) — ®(Pa—t—1)®(Ps_1). So, by the
equations (1) and (2) in Section 2, we get <I>(C’,("°_)k, t5 )i+t —-1)2 =
g3 _gpnt2 | gkl _ gp 2R3 4 op 42 | 2t£5_k+2 2 PFHL 4 gh+3
2t2 4 t. Denote ®(T(k + 1,k + 2,n — 2k — 4),t% + ¢t~ 3)¢t"/2(t — 1) and
@(C(k)k,tz +t$)t3+1(¢ — 1)2 by B7(t) and B¢ (2), respectively. Then we
have

Bo(t) — dp(t) = tr—*-1(2 — t — 1) — 2(t — 1)(t*F*+2 — 275 +1)

+ tk+3(2 +t— t2k+2) —ot2 _ ¢ +1.

Let ¢tz and tc be the largest roots of ®7(t) and ®c(t), respectively.
Since C( )k contains C( ) Z as a subgraph, by Lemma 2.6 and Remark 2.1,
to > %. Thus t% — tc — 1 > 0, and B¢ (tc) — Br(tc) > 0 if n is
large enough, and k is fixed such that 1 < &k < ["T‘l-j ~ 1. Considering
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®c(tc) = 0, we have p(tc) < 0, that is, t7 > tc. Note that (T'(k +
1,k+2,n — 2k — 4),t} +t~%) and ®r(t) have the same largest root, so
do ®(CE_,,t4 + t=%) and ®c(t). Let f(t) = t? +¢-%, then f/(t) =
t"%t"l > 0 fort 2 1. So f (t) strictly increases in [1,00). Therefore,
p(C(k)k) =i+t <ti+ip? = p(T(k+1,k+2,n—2k—4)). The proof
for Theorem 3.4 is completed. O

By Corollary 3.2 and Theorem 3.4, we can determine the first n — 3(=
| 252 + | 252]) ones in the orderlng of U,(3) by their indices: p(T'(1,1,n—
3)) < p(T(L2n—4) << p(T(l 12521, 12521) < p(T(2,2,n ~ 5)) <
o(C) < AT(2,3,n— 6) < - < p(T(3, 152], [252T). Bt a lrge
number of computational results sugg&st that a similar conclusion to corol-
lary 3.2 is also probably true. Therefore we would like to present the
following general conjecture.

Conjecture 3.1. When n > 10 is large enough and k € {1,2,--+, | 252 —

1} is fized, we have that p(T(k+1,k+1,n—2k—3)) < p(C(k)k) < p(T(k+
1,k +2,n— 2k — 4)).

If the above conjecture is true, the ordering of U,(3) will be extended
to more graphs in this set, and be close to the complete ordering.
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