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Abstract

A Kirkman packing design KPD({w,s*,t*},v) is a Kirkman
packing with maximum possible number of parallel classes, such that
each parallel class contains one block of size s, one block of size ¢ and
all other blocks of size w. A (k,w)-threshold scheme is a way of dis-
tributing partial information (shadows) to w participants, so that
any k of them can determine a key easily, but no subset of fewer
than k participants can calculate the key. In this paper, the exis-
tence of a K PD({3,4*,5},v) is established for every v = 3 (mod 6)
with v > 51. As its consequence, some new (2, w)-threshold schemes
have been obtained.
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1 Introduction

Let X be a v-set of points. A packing of X of order v is a set of subsets
(called blocks) of X such that any pair of distinct points from X occur
together in at most one block in the set. A packing is called a Kirkman
packing (K P) of a v-set X if its blocks set admits a partition into parallel
classes, each parallel class being a partition of the point set X.

A Kikman packing design (K PD), denoted by K PD(K,v), is a Kirk-
man packing of a v-set by the maximum possible number m(v) of parallel
classes, each class containing the same number of blocks of each size in
K. If in every parallel class of a KPD(K,v) there is only one block of
size s, and all others have blocks of size w, then we denote this KPD by
KPD({w,s*},v). If K = {3, s} with s € {2,4}, then a KPD(K,v) is also
called a Kirkman school project design in [5, 7). When K = {3} and v =3
(mod 6), a KPD(K,v) is called a Kirkman triple system and denoted by
KTS(v). If K = {3} and v = 0 (mod 6), then a KPD(K,v) is called a
nearly Kirkman triple system and denoted by NKTS(v).

Let X be a set of v elements (shadows), and K be a set of m elements
(keys). A (k,w)-threshold scheme is a pair (8,8), where 8 is a set of b
distinct w-subsets of X (blocks), and g : 8 — K, such that

(i) any k shadows determine at most one key (i.e., for every k-subset S
of X, |{e(B): SC BeB}=0o0rl),

(ii) any set of fewer than k shadows that occur in a block do not de-
termine a unique key (i.e., for every k'-subset S of X, where k' < k,
|6(B): SC B ef|>1).

It is shown in [3] that a KPD({w,s"},v) can be used to construct a
(2, w)-threshold scheme when s > w. In this scheme, the number of keys
is the number of parallel classes in the K PD. Moreover, it has already
been pointed out in [4] that any K PD(K,v) can be used to construct a
(2, w)-threshold scheme if k > w for any £ € K. In this article, we shall
focus our attention on the problem of the existence of KPDs. As to the
relationship between K PDs and threshold schemes, we refer the reader to
3, 7).

The known results concerning a KPD({3,s},v) for s = 0,1 (mod 3)
are as follows.

Theorem 1.1 (Ray-Chaudhuri and Wilson [12]). There ezists a KST(v)
containing (v — 1)/2 parallel classes if and only if v=3 (mod 6).

Theorem 1.2 (Kotzig and Rosa [10], Baker (1], Brouwer (2], Rees and
Stinson [13]). There exists an NKTS(v) containing (v — 2)/2 parallel
classes if and only if v =0 (mod 6) and v > 18.
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Theorem 1.3 (Cerny et al. (6], Phillps et al. [11], Colbourn and Ling
[9], Cao and Du [3]). There is a KPD({3,4*},v) containing |(v — 3)/2]
parallel classes for every v =1 (mod 3) with v > 25.

The known results concerning a K PD({3, s},v) for s = 2 (mod 3) are
as follows.

Theorem 1.4 (Cao and Zhu [5], Cao and Du [3]). For everyv =2 (mod 3)
andv ¢ {23,26,29,83,107,155,173, 179,197}, there erists a K PD({3,5*},v)
containing | (v — 7)/2] parallel classes.

Let KPD({3,4**},v) denote a K PD in which each parallel class con-
sists of two blocks of size 4 and (v —8)/3 blocks of size 3, where v = 2 (mod
3). We have the following results for the existence of a KPD({3,4**},v).

Theorem 1.5 (Cao and Tang [4]). There exists a KPD({3,4**},v) con-
taining |(v — 5)/2) parallel classes for every v =2 (mod 3) with v > 32.

For v > 9, now let K P({3,4*,5*},v) denote a K P in which each parallel
class consists of one block of size 4, one block of size 5 and (v —9)/3 blocks
of size 3. Let KPD({3,4*,5*}, v) denote a K P({3,4*,5*}, v) which has
maximum possible number m(v) of paralle] classes. Clearly, we have the
following Lemma.

Lemma 1.6 If there exists a KPD({3,4*,5*},v) forv > 9, then v =0
(mod 3) and m(v) < [(v—8)/2+28/(v+7)].

Suppose that v = 3 (mod 6), v > 51 and there is a KPD({3,4*,5*}, v)
with m(v) parallel classes, then it is easy to see that m(v) < (v—9)/2 from
Lemma 1.6. The main purpose of this paper is to establish the existence of
a KPD({3,4*,5*},v) containing (v — 9)/2 parallel classes for every v = 3
(mod 6) with v > 51.

2 Basic construction techniques

In this section, we will introduce some basic techniques for constructing
KPD({3,4*, 5*},v)s, and generalize the idea of [3-6, 12].

Firstly, we need the following some definitions. We refer the reader to
(8] for more information on design theory if necessary.

A group-divisible design (GDD) is a triple (X, G, B) which satisfies the
following properties: (i) X is a finite set of points, (ii) G is a partition of
X into subsets called groups, (iii) B is a set of subsets (called blocks) of
X, such that a group and a block contain at most one common point, and
every pair of points from distinct groups occur in exactly one block.
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The type of a GDD is the multset {|G|,G € G}. We denote the type
by 1%12%2... where there are precisely u; occurrences of ¢ for any i > 1.
The set of block sizes is denoted by K.

A GDD(X,G,B) is called frame resolvable if its block set B can be
partitioned into frame parallel classes, each class being a partition of X - G;
for some G; € G. A Kirkman frame is a frame resolvable GDD in which all
the blocks have size three. It is well known that to each G; there are exactly
|G;|/2 frame parallel classes of triples so that each class is a partition of
X = Gj. The groups in a Kirkman frame are often referred to as holes.

For the existence of Kirkman frames, we require the following results.

Lemma 2.1 (Stinson [14]). There exists a Kirkman frame of type g* if
and only if u > 4, g is even and g(u — 1) =0 (mod 3).

Lemma 2.2 (Cao and Tang [4]). For each positive integer v with v =0
(mod 6) and v > 234, there is a Kirkman frame of type 42236°30°, where
v=42a+36b+30c,a >4 and b,c>00ra=0,b>4 andc> 0.

Lemma 2.3 (Cao and Tang [4]). There ezists a Kirkman frame of type
(29)4(2m)! withm > 0 if and only if g = m = 0 (mod 3) and 0 < m < 3g/2.

For given positive integers v and h withv = h =3 (mod 6) and 2 > 9, an
incomplete Kirkman packing design, denoted by IK PD({3,4*%,5*},v,h), is
a triple (V, H, B) which satisfies the following properties:

(1) V is a v-set of points, H(called a hole) is a h-subset of V and B is
a set of subsets (called blocks) of V, each block having size of 3, 4 or 5;

(2) |HN B| <1 for each B € B;

(3) any two points of V appear either in H or in at most one block of
B, but not both;

(4) B admits a partition into (v — h)/2 parallel classes, each consisting
of one block of size 4, one block of size 5 and (v — 9)/3 triples on V, and
(h — 9)/2 auxiliary parallel classes, each consists of (v — h)/3 triples on
V\H.

The following “filling in holes” construction is analogous to [Cao and
Zhu [5], Lemma 4.1]. It provides a very useful tool for the existence of an
incomplete Kirkman packing design.

Theorem 2.4 Suppose that there exists a Kirkman frame of type g1g2 - - - gu.
If g = 0 (mod 6) and there is an IKPD({3,4*,5*},9: + h,h) for any
1 <@ < u, then there is an IKPD({3,4*,5*},h + > ;_, 9, h). Further, if
h=9and Y}, 9;: > 42, then the IKPD is also a KPD.

Proof: Suppose that (X ',G,B') is a Kirkman frame of type gig2- - gu.
Lett; =g;/2for 1 <i<uandt=(h-9)/2. For each 1 < ¢ < u, there are
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exactly ¢; frame parallel classes PI,P,z, --,P,-ti’ each missing the group
G; of size g;. Let H be a h-set and HNX =®. Foreachl <i <, let
(G; U H,H,B;) be an IKPD({3,4*,5*},h + g;, h) with ¢; parallel classes

" 1"

P;, Py, -+, Py,” and t auxiliary parallel classes AP;;, AP;2,- - -, AP;;. Now
let
X =X UH,and
B=(JB)uB,
i=1

then it is easy to check that the (X,B) is an IJKPD({3,4",5"},h +

S i1 9ir k) with Y5, ¢; parallel classes B-, = P P,J, 1<i<y,1<5<

t; and t auxiliary parallel classes AP; = U AP;,1<j<t.

Moreover, suppose that there is an IK PD({3 4*,5*},9+ >0 96, 9),
then the TK PD has only ((9+ Y i, gi) —9)/2 parallel classes. By Lemma
1.6, there are (v — 9)/2 parallel classes if there exists a KPD({3,4*,5*},v)
for v = 3 (mod 6) with v > 51. Therefore, the IKPD is also a KPD if
9+ > 9 =51, ie, > g > 42. This completes the proof.

Lemma 2.5 There is a KP({3,4*,5%},27).

Proof: Take the point set Za7. The blocks of the initial parallel class are
listed below, where all base blocks are developed +3 modulo 27.

01237 481117 51321 61922

91823 101525 122024 141626

Lemma 2.6 There is an IKPD({3,4*,5*},39,9).

Proof: Take the point set Zy5 % {1,2} U {a;,bi,c;|i € Z3}. The blocks of
the initial parallel class are listed below, where the subscripts on a, b, c are
developed modulo 3.

1;81102132 0721021565 7110122 321lsap 3114sa4

51910,2 11142b0 41 141b1 5272b2 619200

8212261 12113162

Lemma 2.7 There is an IKPD({3,4%,5*},45,9).

Proof: Take the point set Zyg x {1,2}U{o0;|1 < i < 7}U{a;|i € Zo}. The
blocks of the initial parallel class are listed below, where the subscripts on
a are developed modulo 2.

21295262 1171771;13500 5;10;162 95152172 12;15;16;

0171a0 12820.1 61112001 14142002 31122003

41142004 8132005 13;102006 9179007
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Lemma 2.8 There is an IKPD({3,4*,5*},141,27).

Proof: Take the point set Zs7 x {1,2} U {o0;]1 < i < 24} U {ai|i € Z3}.
Nine auxiliary parallel classes can be generated mod 57 from the following
three initial classes Sy, S; and S3, each generating three auxiliary parallel
classes.
Sl . 011151 021252
©S2: 0;11;28; 0,11528,
5'3 H 8110192 015272
The blocks of the initial parallel class are listed below, where the sub-
scripts on a are developed modulo 3.
13213229, 2;15;29,32552, 11,20,30; 3,6,28;

814,32, 5;13,25; 124,28, 0262252
52122272 22112232 241391212 17133172
46,110,345 56;22,47, 161421145  35;432562
4,31245, 501192372 23142982 0:71a0

121 1820.1 92172(12 551552001 541482002
311402003 471332004 511462005 401532006
361502007 341 152008 521412009 2614420010
1913920011 914920012 4313520013 4412020014
5313020015 1812220016 2713820017 2113620018
451 1020019 4115120020 381 5420021 4912420022

481 2620023 371 1620024

3 Main Results

In this section, we will give some K PDs for small orders by direct con-
structions firstly, then we shall prove our main results by using Theorem
2.4.

Lemma 3.1 There ezists a KPD({3,4*,5*},v) for any v € {57, 87, 99}.

Proof: We take the point set Z(,_gy/2 x {1,2} U {00;|1 <i <3} U {asfi €
Z3} U {b;]i € Z3}. The blocks of the initial parallel class for each v are
listed as follows, where the subscripts on ¢ and b are developed modulo 3.

v=2>57:

010211204; 194552107 519221, 3213218, 3:8;18,

2112919, 61112222 62161227 71145205 73152a0

91201a1 102231(12 14117260 16223261 151171b2

82111001 131192002 121212003
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v=287:
107154555
72205264
8221,34,
315112,
171252002
221321 bg
v=299:
12455210
3216525,
13221,28;
8,13,35;
12120240,
342441&2
27,372002

0111410222
142292362
6214,33;
3224,30,
251152003
23,28:b1

010217204;
17232239,
9,15:30,
2111244,
14,33,42;
219382bp
272411003

11,35,162
13,27:38;
15,20,26,
7116128,
172272a0
23,3722

9223928,
17,32,359
7218238,
323,34,
18,261312
221299b,

6,137,345
9,31,38;
8124232,
11522529,
191361a1

62229432
16136242,
11,1533,
6112230,
19:29;4a0
24,37,by

10219533,
9,13,312
2118,21,
121352001
30,183a2

517139,
14224440,
8220736,
10,31,43;
192262a1
25141200]

Lemma 3.2 There erists a KPD({3,4*,5*},v) for any v € {93, 105}.

Proof: We take the point set Z,_g)/2 x {1,2} U {a;,b;,c;|i € Z3}. The
blocks of the initial parallel class for each v are listed as follows, where the
subscripts on a, b and ¢ are developed modulo 3.

v=93:
12455210,
9,18,25,
121191244
2131541,
8114536,
20125561
v=105:
12455210,
318238
12115537,
135,29,40,
102405464
18,3545a9
34,421b,

0,021,224,
105242364
11;232345
317227,
15:3410a¢
23,37:b9

0102112044
13;23;28;
112302392
12919927,
14,20,372
23239101
22236100

14,29,329
8215940,
13,2230,
3926,32;
1623324,
215265¢9

7120233,
11,32,382
952947,
15124531,
161351472
30141102
34,45,c;

115175404
71222399
12220928,
5118129,
161302a2
33135101

5116244,
8,22,44,
9,121,257
2,19,26,
17,315,362
212435bo
43145162

13228237,
6117,38,
9231,39,
6221141,
192352b9
279381c2

326,26,
72282412
18,2533,
6214224,
17932242,
279461b,

Lemma 3.3 There exists a KPD({3,4%,5*},v) for enyv € {51, 75, 123}.

Proof: We take the point set Z,_g)/2 % {1,2} U {o0;|]1 < i < 9}. The
blocks of the initial parallel class for each v are listed as follows.
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v=>51:
0,510,8;
10215217,
201 122004
171 162009
v="75:
0,0211212,
153517,
25131;21;
28130200,
24182006
v=123:
017210515,
7117142
4,20,38,
829,36,
19525443,
35140154,
561242415
28,129,507
421512002
39129006

2:3:614213, 1,7,14, 1572115 4,13,15;
1912232 121 182001 101192002 81202003
16192005 11152005 9162007 181142008
3:6116,7213, 1,12,13; 4,18,20, 2,9;17;
2252152 9216024, 711146, 21,26119,
29151232 23128232, 10,262315 14;20229,
221252002 191272003 301102004 81222005
321 182007 271 142003 15142009
11101121142392 219112 5113132

31153549 6119142,  8;23,40,

16,34,12, 18138110 11,326,

13522533, 162182312 232272492
43,4714, 51152,21; 24,27;49
30,36,53; 33147202 46130237,

25146252 221342482 50,55221,

261 262452 441202322 481562001
291352003 411522004 371532005

451 282007 311172003 551442009

Lemma 3.4 There ezists a KPD({3,4*,5*},v) for any v € {63, 69, 81,

111, 117, 135}.

Proof: We take the point set Z(,_gy/2 X {1,2} U {o0;]1 <i <6} U {a;i €
Z3}. The blocks of the initial parallel class for each v are listed as follows,
where the subscripts on a are developed modulo 3.

v==63:
212213,14,
16220425,
10,18,69
121172002
v==69:
212213214,
262029,
2114564

82 1520.2
291222005

1411445211,
811232
017100

131 192003

114y 14152112
20,122,118,
26,10220,
241292001
281232006

5:16,17; 1
6123242 2
31 1220.1 8
91222004 2

513,17,
18127117,
16,19,3,
25, 15009

226

1,15;20,
4;26118, 1
215202
2192005

6111112,
8119,27,
017100
10,285003

21224572

9,25,0,

231262001
211102006

16221224,
9:23,25,
31 1220.1
15172004



v=2_81:

010211204; 12425210, 12:33;35; 11521;28; 7:14529,
6216232, 5;13;19;7 3215926, 2;27;31, 11;16,28,
10222,335  9:175235 72182342  3;19226, 6,18;24,
81171341 82132302 92301ao 12220201 15131102
14;35200; 203252002 219293003 22525;004 24,272005

231322006

v=111:

4115145195 2;11,13;152405, 29;36,48; 45;50,9;
38,42;12; 21;24,44, 229322445 38245510
12,215,362 056220, 14,22,31, 30,46,27-
26,132,259 47,118,429 35149,33; 6;19,49,
41,8,29, 39,:5:8¢ 43;16,39, 17,35517,
3415224, 25,300,415 28;34047, 31743513,
23,3723, 271122, 104462505 071349
3142&1 729202 151232001 71182002
201482003 331162004 401262005 371282006
v=117:

4;115145190  271171371152400 25,2851, 411457
16,21,40, 6,18,31, 3023920, 25926948,
312415529 279332532 23129:22, 30,37,16,
19,127,174 49,546, 36,50,32, 33,4828,
9126729, 44,8,38, 22;43:3;  52,20,44,
42,502139 3512520, 47147212, 32,6510,
39;128, 171232352 151240375 1474525,
461182342 0111a0 314201 7292a2
381432001 101212002 241362003 341512004
121492005 531422006

v=135:

0172102159 3;12,14,162415 20,6225 13525442,
16,40,49,  13,32,50, 34,41,61; 21,3748,
32,4826 39,44-1, 5616123; 4;25,30
475545129 81145362 28,31,59; 44,58,10,
33,43,29, 52;1;33, 47,59,20, 29,54,17,
19:371582 2119945, 49,0245 22,4616,
18;382532  62;21,552 36,42;34, 45:5:35,
302312612 43256232 531571529 24727246,
11;51529 27135245 7126157  60,60300;
151232002 91182003 55182004 171282005
401225006 50151;1a0 381392a; 9211za9

Obviously, any KPD({3,4*5*},v) constructed in Lemmas 3.1-3.4 i
also an IKPD( {3,4*,5*},v,9). Now we are in a position to prove ou
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main results.

Theorem 3.5 There exists a K PD({3,4*,5*},v) containing (v—9)/2 par-
allel classes for every v =3 (mod 6) with v > 51.

Proof: For v > 243, let v = v — 9. By Lemma 2.2, there exists a
Kirkman frame of type 42°36°30°, where v = 42a + 36b + 30c, a > 4,
bc>0ora=20,b2>4,¢c>0. Touse an IKPD({3,4*,5%},39,9),
an IKPD({3,4*,5%},51,9), and an JKPD({3,4*,5%},45,9) from Lem-
mas 2.6-2.7 and Lemma 3.3, to fill all holes of size 6u € {30, 36,42},
we obtain an IKPD({3,4*5"},v,9) which contains (v — 9)/2 parallel
classes, so it is actually a KPD({3,4*,5*},v). Now it remains to consider
the cases while v < 237. For v = 231,237, with frames of types 48436}
and 48%30! from Lemma 2.3, to apply Lemma 2.4 with A = 9 to fill in
"holes” by using ITK PD({3,4*,5*},57,9)s, IKPD({3,4*,5*},45,9)s and
IKPD({3,4* 5"}, 39,9)s, thus we obtain an ITKPD({3,4*,5*},231,9) and
an IKPD({3,4*,5*},237,9) which are also K PDs. A similar construction
using frames of types 424(6z)?, 36%(6z)! and 30%(6z)!, 5 < = < 7, solves
the cases when 159 < v < 171, 183 < v < 195 and 207 < v < 219. Also
the case for any v € {129, 153,177,201, 225} comes from Kirkman frames of
types 424, 36%, 304, 48% and 54*. The required IK PDs come from Lemmas
3.1-3.4 and 2.6-2.7. Adding 9 new points to a Kirkman frame of type 30418!
from Lemma 2.3 and filling in IK PD({3,4*,5*}, 39,9)s and a K P(27) kills
the case v = 147. Adding 27 new points to an JKPD({3,4*,5*},141,27)
from Lemma 2.8 and filling in a K P({3,4*,5*},27) covers the case v = 141.
The case for v € {n|51 < n < 123,n = 3(mod6)} U {135} comes from Lem-
mas 3.1-3.4. This completes the proof.

4 Conclusions

Resolvable packings have been studied extensively and found to have a
number of applications. Especially, many researchers have given some ap-
plications in threshold schemes (see, e.g. {3,7,15]). In this paper, we have
determined the existence of a K PD({3,4*,5*},v) for any v = 3 (mod 6)
with v > 51. These results can be used to construct some new (2,w)-
threshold schemes. For the existence of K PD({3,4%,5*},v)’s, it is easy to
see that there is a K PD({3,4*,5*}, v) for v € {9,15}, but we are not able
to give a KPD({3,4*,5*},v) for v € {21, 27,33, 39,45}. Moreover, how to
construct a K PD({3, 4*, 5*},v) for v = 0 (mod 6) in general is also an open
problem. In this case, we give the construction of a KPD({3,4*,5*},54)
with 23 maximum parallel classes to close this paper.

Point set: Z23 x {1,2} U {o0;|1 <% < 8}

Base blocks:
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019110225 1,5:82162192 238512, 4,9:13, 16,1851,
3:11;14, 15:20,22, 52142150 2092242 21;21200;
6172009 17,02003 181110004 12165005 73132006
13105007 191175008
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