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Abstract

A total dominating set of a graph G with no isolated vertex is a
set S of vertices of G such that every vertex is adjacent to a vertex in
S. The total domination number of G is the minimum cardinality of
a total dominating set in G. In this paper, we present several upper
bounds on the total domination number in terms of the minimum
degree, diameter, girth and order.

Keywords: diameter, girth, minimum degree, total domination
AMS subject classification: 05C69

1 Introduction

Total domination in graphs was introduced by Cockayne, Dawes, and Hedet-
niemi [4] and is now well studied in graph theory (see, for example, [1, 5, 9]).
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The literature on this subject has been surveyed and detailed in the two
books by Haynes, Hedetniemi, and Slater [7, 8].

A total dominating set (TDS) of a graph G with no isolated vertex is a
set S of vertices of G such that every vertex is adjacent to a vertex in S.
Every graph without isolated vertices has a TDS, since S = V(G) is such a
set. The total domination number of G, denoted by 7:(G), is the minimum
cardinality of a TDS.

For notation and graph theory terminology we in general follow [7].
Specifically, let G = (V, E) be a graph with vertex set V of order n = |V/|
and edge set E of size m = |E|, and let v be a vertex in V. The open
neighborhood of v is N(v) = {u € V |uv € E} and its closed neighborhood
is the set N[v] = {v} UN(v). For a set S C V, the open neighborhood of S
is N(S) = UyesN(v), and its closed neighborhood is N[S] = N(S)US. The
boundary of S, denoted B(S), is N(S) \ S. The subgraph induced by S is
denoted by G[S]. We denote the degree of v in G by dg(v), or simply by
d(v) if the graph G is clear from context. The minimum degree (resp., max-
imum degree) among the vertices of G is denoted by §(G) (resp., A(G)).
We denote the girth of G by g(G). For disjoint subsets S and T of V, we
define G[S, T as the set of edges of G joining S and T

We call the tree obtained from a star K, by subdividing every edge
exactly once a subdivided star, which we denote by K7 .

If G does not contain a graph F' as an induced subgraph, then we say that
G is F-free. In particular, we say a graph is triangle-free if it is K3-free,
diamond-free if it is (K4 — e)-free, and quadrilateral-free if it is Cy-free.

In this paper, we present several upper bounds on the total domination
number in terms of the minimum degree, diameter, girth and order.

2 Known Results

The decision problem to determine the total domination number of a graph
is known to be NP-complete. Hence it is of interest to determine upper
bounds on the total domination number of a graph. Cockayne, Dawes and
Hedetniemi [4] obtained the following upper bound on the total domination
number of a connected graph in terms of its order.

Theorem 1 ([4]) If G is a connected graph of order n > 3, then 1(G) <
2n/3.
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A large family of graphs attaining the bound in Theorem 1 can be es-
tablished using the following transformation of a graph. The 2-corona of
a graph H is the graph of order 3|V (H)| obtained from H by attaching a
path of length 2 to each vertex of H so that the resulting paths are vertex
disjoint. The 2-corona of a connected graph has total domination number
two-thirds its order. Brigham, Carrington, and Vitray [2] obtained the fol-
lowing characterization of connected graphs of order at least 3 with total
domination number exactly two-thirds their order.

Theorem 2 ([2]) Let G be a connected graph of order n > 3. Then 1:(G) =
2n/3 if and only if G is Cs, Cg or the 2-corona of some connected graph.

If the minimum degree is at least 2, then the upper bound in Theorem 1
can be improved.

Theorem 3 ([9)) If G is a connected graph of order n with 6(G) > 2 and
G ¢ {C3,C5, Cs, Cio}, then 1(G) < 4n/7.

3 Preliminary Result
We shall need the following lemma about domination in bipartite graphs.

Lemma 4 Let G be a bipartite graph with partite sets (X,Y) whose vertices
inY are of degree at least § > 1. Then there exists a set A C X of size at
most 1(|Y| +|X|/8) that dominates Y.

Proof. Let |X| = z and |Y| = y. The proof is by induction on [V (G)| +
|E(G)|. The smallest graph described by the lemma is K 4, for which the
statement holds. This establishes our base case.

If there exists a vertex v in Y of degree at least § + 1, then delete any
edge e incident to v. The subset A of G — e guaranteed by the inductive
hypothesis dominates Y in G as desired. So we may assume the vertices in
Y are all of degree exactly d. If there exists an isolated vertex v € X, then
the set A in G — v dominates Y in G as desired. So we may assume each
vertex in X has degree at least 1. Since ¥ > 1 and = > §, we have that
, %(y + z/8) > 1. Hence if there is a vertex in X that dominates Y, then
the desired result follows readily. Thus we may assume that no vertex of
X dominates Y.
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If each vertex in X has degree 1, then G is a disjoint union of y copies
of K4, and so z = §y. For each vertex in Y, we now choose an adjacent
vertex in X to form the set A. Then, |A| = y = }(y + z/6), as desired.
Hence we may assume that at least one vertex v in X has degree 2.

Let G' = G — N[v] and let X' and Y’ be the restriction of X and Y,
respectively, to G'. Then, |X'| =z — 1 and |Y'| < y — 2. By the inductive
hypothesis, there exists a subset A’ of X' that dominates Y’ in G’ with
|4 < 5(1Y'|+|X'1/8) < 3(y — 2+ (2 —1)/8) < 3(y +/8) — 1. Thus, the
set A= A'U{v} dominates Y in G with |A| < 1(y + z/6), as desired. D

4 Upper bounds in terms of minimum degree

Flach and Volkmann [6] proved that if G is a graph of order n with min-
imum degree § > 2, and if A C V(G) is an arbitrary subset, then v(G) <
1 (n+|A] - (452)|B(4)]) where 7(G) denotes the domination number of
G. In this section, we present an analogous result for the total domination
number.

Theorem 5 If A is an arbitrary subset of vertices in a graph G of order n
with minimum degree 6 > 2, then

4(G) < § (n +2/4] - (g:—f + 4(5_%-1)) |B(A)|) :

Proof. Let Vi be the set of isolated vertices in G — N[A] and let V,
be the set of vertices that belong to a Kz-component of G — N[A]. Let
G1 = G[N[AJu V1 U V;] and let G2 = G — V(G;). Each component of
G2 has order at least 3. Thus by Theorem 1, %(G2) < 2[V(G2)|/3 =
2(n — [Vi] - |Va| - |A] - IB(A)])/3. If Vi = V; =0, then

1(G) < %(G1)+7(Gs)

< 2141+ 5 (n— Al - B(4)))

Z (n+2|4] - |B(4)))

Wi

(n+ 2141 - (32 + 74 1BA))

< 3(n+241- (2 + hyy) BA)).
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which is the desired bound. Hence we may assume that V3 U V2 # 0.

Let H be the bipartite subgraph of G with partite sets (V1 UV2, N(V1)U
B(V2)) and with edge set defined by G[V1 U V2, N(V;) UB(V2)]. Then each
vertex in V; U V2 has degree at least 6 —1 > 1 in H. Thus by Lemma 4,
there exists a set A' C N(V1)UB(V%) of size at most 1(|Vi]+|Ve|+|N (V1)U
B(12)|/(6 — 1)) that dominates V; U V5. Since N(V1) UB(V2) C B(4), we
have |A'] < 3(IVa| + |Va| + [B(4)l/(6 - 1)).

The set A’ C B(A) can be extended to a TDS of G; by adding to it the
set A and adding for each vertex, if any, in A\ N(A4') one of its neighbors.
Since there are at most |A| — 1 vertices in A not dominated by A', 7(G1) <
2|A] - 1+ |A'| < 2|4] - 1+ L(Vi| + |Va| + IB(A4)|/(8 — 1)). Hence,

%(G) < 7(G1) +7(G2)
< 2041-1+} (1%l +1Val + £ 1B(A))) +
% (n—Vi| = |Va| - |A] - |B(4)))
= 2(n+204]- (522 + i) BN - (Wl +1Va) - §
3 6-1 4(0—-1 4 2
< 2(n+241- ($2 + gy ) B 0

Taking the set A to consist of a singleton vertex of maximum degree in
G, we have the following immediate consequence of Theorem 5.

Corollary 6 If G is a graph of order n with minimum degree 6 > 2 and
mazimum degree A, then

Archdeacon et al. [1] showed that if G is a graph of order n with §(G) > 3,
then 1(G) < n/2. We remark that if § = 3 and A is large (namely, if
A > 2(n+8)/5), then the bound in Corollary 6 improves on the Archdeacon
bound of one-half the order for the total domination number.
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5 Upper bounds in terms of diameter

Volkmann [10] presented upper bounds on the domination number of a con-
nected graph in terms of the diameter and minimum degree. In this section,
we present analogous upper bounds on the total domination number. We
shall prove:

Theorem 7 If G is a connected graph of order n with diameter d and
minimum degree § > 2, then

o <3 o= (£2) (1+[4)-

Proof. Let vg,v1,...,v4 be a shortest path between two diametrical ver-

tices vy and vq of G. Let
14/3]

A= U {‘Ua,’}.
i=0
Then, |A| = 1+ |d/3] and N(4)N A = 0. Thus, |B(4)| > &]4|. By
Theorem 5,

%G) < E(n+204l- (82 + miy) BA))

TAY
wp
=
+
~»
.E
—~

°l

32 + qatry) 014)

1l
wieo

If G is a triangle-free, then the result of Theorem 7 can be improved.

Theorem 8 If G is a connected triangle-free graph of order n with diam-
eter d and minimum degree § > 2, then

wor<3o-ee ) (15 [f+)
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Proof. Let vp,v1,...,v4 be a shortest path between two diametrical ver-
tices vp and v4 of G. Let

Ld/4] [(d—1)/4}
= ( U {v4i}) 9] ( U {vqi+1}) .

=0 i=0

Then, |A| = [d/4] + |(d — 1)/4] + 2. Since G is triangle-free, |B(A)] >
(6 — 1) |A|. By Theorem 5,

@) < 3(n+24 - (E+my) 1BA)I)

< 3 (n+204- (2 +5y) G-Dl4)
= j(n-d+%) 4

(
(m-6+%) (151+ 142 +2) O

Il
o

If G is a quadrilateral-free and diamond-free graph, then the result of
Theorem 7 can be improved.

Theorem 9 If G is a connected (Cy, Ky — e)-free graph of order n with
diameter d and minimum degree § > 2, then

<3ty (- D)

Proof. Let vp,v;,...,v4 be a shortest path between two diametrical ver-

tices vp and vq of G. Let
ld/2]

A= {vu}.

i=0

Then, |A] = 1+ |d/2]. Since the graph G is Cy-free and diamond-free,
there are |A| — 1 common neighbors of vertices in A, namely the vertices in

the set
ld/2]-1

U {‘Uzi+1 }

i=0
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Hence, [B(A4)| > §|A| — (JA] — 1) = (6 - 1)|A| + 1. By Theorem 5,

%G) < %(n+2141- (2 + i) IBAN)

< §(n+2lAl—(§%f+m’i—17) ((6—1)|A|+1))

I
ol

n— —(6-4+1) 14))

(
_ g(n 1+ iy - (6 - )(1+L%J))
(n+

6 Upper bounds in terms of maximum degree
and girth

In this section, we present an upper bound on the total domination number
of a graph with girth at least 6 in terms of its maximum degree.

Theorem 10 If G is a graph with 6(G) > 2 and g(G) > 6, then 1(G) <
2(n+2-AG).

Proof. Let v be a vertex of maximum degree A(G), and let G, = G[V —
Nv]]. Since g(G) > 6, N(v) is independent and v is the only common
neighbor of any pair of vertices in N(v), that is, no component of G, is
an isolate. If any component of G, has exactly two vertices, then since
0(G) > 2 each of these vertices has a neighbor in N(v) and a 5-cycle is
formed, contradicting the fact that g(G) > 6. Hence every component of
G, has order at least three, and so by Theorem 1, %(G,) < 2|V(G,)| =
2(n -1 - A(G)). Adding the vertex v along with a nelghbor of v to a

7¢(Gy)-set produces a TDS of G, and so, 11(G) <2+ 2(n—1- A(G)) =
2(n+2 A(G)). O

If we restrict the girth of the graph G in the statement of Corollary 6 to
be at least 6, then the upper bound of that result can be improved.

250



Theorem 11 If G is a graph of order n with minimum degree 6 > 2 and

girth g(G) > 6, then
4  (6-2)

unless G € {Cs,Ci0}.

Proof. If § = 2, then the result follows from Theorem 3. Hence we may
assume that § > 3. Since G is triangle-free, the open neighborhood of every
vertex is an independent set of vertices, and so B(G) > A. Let S be an
independent set of § ~ 2 > 1 vertices. Since G is triangle-free and Cy-free,
every vertex in N(S) is adjacent to at least one vertex of V(G) \ N[S]. Let
F =G - N[S).

For each vertex v € V(F), let N, = N(v) N N(S). Since G is Cy-free,
[Ny| < 6 — 2 for every v € V(F), and so §(F) > 2. Furthermore, if
|Ny| = & — 2 for some v € V(F), then G[SUN, U {v}] = Kj;,. In
particular, the vertex v is at distance 2 from every vertex of S.

Suppose that F contains two adjacent vertices u and v both having de-
gree 2 (in F). Then, § < dg(v) = dr(v) + [N < 2+ (6 -2) = 4.
Consequently, |N,| = § — 2. Similarly, |Ny| = § — 2. Thus each of u and
v is at distance 2 from every vertex of S, and so there is a common cycle
of length at most 5 containing both u and v, contradicting the fact that
g(G) > 6. Hence, no two adjacent vertices of F' both have degree 2. In
particular, F' has no cycle component. Thus, since §(F) > 2, we have by
Theorem 3 that v, (F) < 4|V (F)|/7 = 4(n — |N[S]})/7.

Let S* be the set of vertices in N(S) that are adjacent to two or more
vertices of S. Since S is an independent set and G is Cy-free, every pair
of vertices in S has at most one common neighbor. Thus, |S*| < (°;%). It
follows that

VS| 1S+ IN(S)]

= |S|+ (Zde(x)) - 157

z€S
> (6-2)+d6(6-2)— (%53

= L(6-2)(@E+5).
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For each = € S, let =’ be a neighbor of z in G. Let S’ = U{z'} where the
union is taken over all vertices x € S. Then, |S'| < |S|. Every v:(F)-set
can be extended to a TDS of G by adding to it the vertices in the set SUS’.
Hence,

1(G) < 2|S|+ n(F)
< 2(6-2)+ 5~ INIS)
< 206-2) +$ (n— %(5-2)(5+5))
A/ (-2
5 ? (n - —2—) . ]

We remark that if the maximum degree A is sufficiently large relative to
the order n and minimum degree &, namely if A > 2 + }(n + 3(6 — 2)2),
then the upper bound for the total domination number given in Theorem 10
improves on that given in Theorem 11. However if the maximum degree is
small relative to the order and minimum degree, then the upper bound for
the total domination number given in Theorem 11 improves on that given
in Theorem 10. In particular, for a regular graph, the upper bound for the
total domination number given in Theorem 11 improves on that given in
Theorem 10.

7 Upper bounds in terms of order and girth

Brigham and Dutton [3] showed that if G is a graph of order n, minimum
degree 6 > 2 and girth g > 5, then ¥(G) < [(3n — g)/6]. This bound was
recently improved slightly by Volkmann [10] who showed that if the graph
G is neither a cycle nor one of two exceptional graphs, then this upper
bound can be reduced by 1.

Our aim in this section is to establish an upper bound on the total domi-
nation of a graph with girth at least 7 in terms of its order and girth. First
we recall the total domination number of a cycle C,, on n vertices.

Observation 12 [9] For n > 3, v(Cy) = |n/2] + [n/4] — |n/4].
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By Observation 12, v:(Cy) < (n + 2)/2 with equality if and only if n =
2 (mod 4).

Figure 1: The graph G4

We are now in a position to present our main result of this section.

Theorem 13 If G # C, is a connected graph with order n, girth g > 7,
and 6(G) > 2, then v(G) < (4n — g)/6 unless G = Gy, where G, is the
graph shown in Figure 1, in which case v(G) = 8 = (4n + 2 — g)/6.

Proof. Let C be a g-cyclein G, and let H = G—V(C). By Observation 12,
7%(C) < (g + 2)/2 with equality if and only if g = 2 (mod4). Since g > 4,
every vertex of H is adjacent to at most one vertex on the cycle C. Thus,
since 6(G) > 2, the graph H has minimum degree §(H) > §(G) —1 > 1.

Suppose H has a K,-component consisting of two vertices w and z. Then
each of w and z has exactly one neighbor on C, say w' and 2', respectively.
Since g > 7, the two w'—2' paths on C both have length at least 4. Replacing
a w'-z' path on C by the path w',w, 2,2’ produces a cycle of length less
than g, a contradiction. Hence every component of H has order at least 3.

By Theorem 1, y:(H) < 2|V(H)|/3 = 2(n — g)/3. Hence, 1(G) <
1(C) +7(H) < (9+2)/2+2(n—g)/3 = (4n — g)/6 + 1. With a bit more
work, we show that this bound of (4n—g)/6+ 1 can be reduced by 1, unless
G = Gl.

Since G is connected, there is an edge wv in G with u € V(C) and
v € V(H). Among all such vertices v of H that are joined to a vertex of
C, we choose v so that

(1) v has smallest possible degree in H.

(2) Subject to (1), v belongs to a component of H of order congruent
to 0 modulo 3 if possible.

(3) Subject to (2), v belongs to a -y, (H)-set, if possible.
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Let S, be a v;(C)-set containing the vertex u, and let D,, be a v,(C — u)-
set. Then, |S.| < (g+ 2)/2 with equality if and only if g = 2 (mod 4), while
|Du| £ (g9 + 1)/2 with equality if and only if g = 3 (mod4). Among all
v (H)-sets, let S, be chosen so that, if possible, v € S,. With this choice of
the set Sy, if v ¢ Sy, then there is no v;(H)-set that contains the vertex v.
It follows that in this case, every component of H — v has order at least 3,
and so ¢ (H —v) < 2\lV(H -v)|/3=2(n-g—-1)/3. fv ¢ S,,let D, bea
v:(H — v)-set. Then, |D,| < 2(n—g—1)/3. We consider three possibilities.

Case 1. % (H) < 2(n—g—1)/3. If %(C) < (9+1)/2, then 1(G) <
Y (H)4+7(C) £ 2(n—g-1)/3+ (9+1)/2 = (4n—g—1)/6. Hence we may
assume that 7;(C) = (g+2)/2, and so g = 2 (mod 4). Thus, |S,| = (g+2)/2
and |Dy| = g/2. v € §,, then the set S, U D, is a TDS of G, and so
1(G) £ 2(n-g-1)/3+g/2 = (4n—g—4)/6. Hence we may assume that
v ¢ Sy. Thus the set D,US, is a TDS of G. If |D,| < 2(n —g—1)/3, then
1(G) < (2(n—g) — 3)/3+ (g + 2)/2 = (4n — g)/6, as desired. Hence we
may assume that |D,| = 2(n — g—1)/3, that is, v,(H —v) = 2|V(H —v)|/3.
Therefore, by Theorem 2, every component of H — v is the 2-corona of
some connected graph (of girth at least g). Let H, be the component of H
containing v. Note that |V (H,)| > 4.

Suppose H, = P;. Let w be the end-vertex of this P, different from v.
Then w has exactly one neighbor on C, say z. Since g = 2(mod4) and
g 2 7, we must have that g = 10 and that z is the vertex at maximum
distance 5 from u on the cycle C. Hence, G[V(C)UV(H,)] = G;. If
H # H,, then by our earlier assumption, every component of H — H,, is the
2-corona of some connected graph. In particular, every every component of
H — H, has order congruent to 0 modulo 3 and contains a vertex of degree 1
(that is joined to a vertex of C). But this would contradict our choice of
the vertex v. Hence H = H,, whence G = G}.

Suppose that H, # P;. As observed earlier, every component of H — v is
the 2-corona of some connected graph. Hence it follows from our choice of
v, that H = H,. Thus |V(H)| > 7 and since v is in no ;(H)-set, we deduce
that H — v is the 2-corona of some (not necessary connected) graph F and
that the only possible vertices of H — v adjacent to v belong to the graph
F. But then every vertex of degree 1 in H — v that does not belong to F
is a vertex of degree 1 in H that is easily seen to belong to some ~;(H)-set,
contradicting our choice of v.

Case 2. %(H) = (2(n ~ g) — 1)/3. Thus, n — g = 2(mod3). Suppose

that v ¢ S,. Then, the set D, US, is a TDS of G. However, |D,| < |2(n—
9-1)/3) = (2(n—g-1)-2)/3,and s0 7:(G) < (2(n—g)—4)/3+(9+2)/2=
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(4n — g — 2)/6. Hence we may assume that v € S,. Then the set S, U D,
is a TDS of G. If |Dy| < g/2, then 1(G) < (2(n—g) —1)/3+g/2 =
(4n — g—2)/6. Hence we may assume that |Dy| = (g + 1)/2, implying that
g = 3(mod4). But then the set S, U {u} can be extended to a TDS of G
by adding to it (g — 3)/2 vertices from the path C — N[u] & P,_3, and so
2(G) < (2(n-g)-1)/3+1+(g—-3)/2=(4n-g-5)/6.

Case 3. %(H) = 2(n — g)/3. Then, by Theorem 2, H is the 2-corona
of some graph (of girth at least g). Thus every vertex of H is in some
¥t (H)-set. In particular, v € S,. If g = 2 (mod 4), then |D,| = ¢/2, and so
1(G) < |SyUDy| =2(n—g)/3+g/2= (4n—g)/6. If g = 3 (mod 4), then
%(G) £ 1Sy U {u}| +%(C — Nelu]) = 2(n — g)/3 + 1 + 1(Cy-s) = 2(n —
9)/3+1+(9—-3)/2 = (4n—g-3)/6. If g = 1 (mod 4), then |D,| = (g—-1)/2,
and s0 %(G) < Sy UDu| =2(n—g)/3+(g-1)/2=(4n — g - 3)/6. If
g = 0(mod4), then 1(G) < [SuUSy| = g/2+2(n — g)/3 = (4n — g)/6.
Hence in the case where v,(H) = 2(n— g)/3, we have 1 (G) < (4n—g)/6.0
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