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Abstract

We provide many new edge-magic and vertex-magic total label-
ings for the cycles Cni, where n > 3 and & > 3 are both integers and
n is odd. Our techniques are of interest since known labelings for Ci
are used in the construction of those for Cnx. This provides signifi-
cant new evidence for a conjecture on the possible magic constants
for edge-magic and vertex-magic cycles.

1 Introduction

Let G be a graph with vertex set V and edge set E. A total labeling A of
G is a bijective map A : VUE — {1,2,3,...,(|V| + |E|)}. The A-weight,
wtx(v) of a vertex v € V is defined to be wtx(v) = A(v) + EA(e), where the
sum is over all edges e incident with v. The A-weight wty(u,v) of an edge
(u,v) with ends u and v is the sum A(w) + A((u,v)) + A(v). We say that
A is a vertez-magic total labeling (VMTL) if the vertex weight wtx(v) does
not depend on the choice of vertex v. In this case we write hy = wtr(v)
and we say that h, is the magic constant of A. We say that X is edge-
magic if the edge weight wty(e) does not depend on the choice of edge e.
In the case of cycles, one can easily obtain a VMTL from an edge-magic
total labeling (and vice versa), by moving each vertex label over to one
of its incident edges, and moving each edge label over to one of its end
vertices, as shown in Figure 1. In [4], it was shown that every cycle has an
edge-magic total labeling, and therefore also a VMTL. It was shown again
in [3] with a different labeling. Similar work was done independently in (7]
and {1]. In this paper we will only be concerned with cycles, and henceforth
we will only discuss VMTLs, rather than edge-magic total labelings. Two
“dual” VMTL’s of Cs are shown in Figure 2. This means that the labels in
the second graph are obtained from the first by replacing each label A(z)
with |V| + |E| + 1 — A(z). For regular graphs, including cycles, this will
also be a magic labeling. Indeed, if we let A be the magic constant for A
and d be the degree of a regular graph, it is straightforward to show that
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(d+1)(|V]|+|E|+1) — h would be the magic constant for the new labeling.
To get an idea for the range of possible magic constants for Cy,, assume A
is a VMTL and consider the sum X,evwty(v). Note that the edge label
A(u,v) is a summand in the defining equation for both wty () and wty(v).
Hence |V |hy = Sy + 28., where S, is the sum of all vertex labels and S, is
the sum of all edge labels. Thus to get a large (respectively small) magic
constant one uses large (respectively small) labels on the edges. For a cycle
with n vertices,

Sp+25.<(1+2+ - +n)+2((n+1)+(n+2)+---+2n)

and so,
[V]hy =nhy < -T-l-(-n;—l) +n(3n+1)
ie., . 3
n +
< .
hy < 5
A similar argument shows that
5n+3
hy > .
A=

The integral values of hy within this range are called the feasible magic
constants for VMTL’s of the graph C,. The spectrum of the graph is the
set of integers which can be realized as the magic constant of some VMTL.
It is known [3] that Cs has a spectrum of {14, 16,17,19}. The two feasible
values 15 and 18 are missing. It is conjectured [3] that for all other cycles
Cp, n # 5, the set of feasible values coincides with the spectrum. They
verified the conjecture by computer up to n = 10. The goal of this paper
is to provide a new tool for attacking the spectrum problem for cycles, as
well as providing new direct evidence for this conjecture. Our methods are
similar to some of those used in [6], where the spectrum problem for odd
complete graphs was solved. For those graphs, the spectrum does indeed
coincide with the set of feasible values [6]. In that paper, we found it
convenient to find magic labelings using consecutive integers starting at 0,
rather than 1. Then we obtained a VMTL by adding 1 to each label. This
did not interfere with the magic property because of the regular property.
We will do the same in this paper (c.f. Propostion 2.2).

Our main result (Corollary 3.1) is the construction of many VMTL’s
for the graph Crg, (n odd) having different magic constants, in terms
of a VMTL for Ck. Since VMTL’s for all cycles have already been con-
structed [4] and (3], our construction automatically uses these to produce
new ones for Cpr provided that n > 3 is odd and k& > 3 is any integer.
Our constructions result in VMTL’s with different magic constants then
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Figure 2: A VMTL with magic constant b = 14 (left) and a VMTL with
magic constant k = 19 (right).

those found in both [4] and (3]. In section 2, we will provide the framework
for our approach. It is interesting that from this point of view, the two
different constructions in [4] and [3] for C,, n odd, appear to be closely
related. In section 4 we show how these methods can be used to almost im-
mediately obtain VMTL’s for most of the magic constants in the spectrum
for Cy. An excellent exposition for both vertex-magic and edge-magic total
labelings is [8]. The definition of VMTL, duality, feasible magic constants
and other important ideas were introduced in [5]. Lists of graphs known to
have edge-magic total labelings, and VMTL’s can be found in [2].

2 Preliminaries
For the rest of this paper, m will denote a positive integer and n = 2m +1
will be an odd integer. We will follow the methods of [6]. For the reader’s

convenience we will summarize some of the definitions and propositions
here. The idea is that we use “magic surjections” to build VMTL’s. These

259



labelings can be easier to find. The proofs are easy exercises.

Definition 2.1 [6]/ Let a: VUE — {0,1,2,...,(s — 1)} be a surjective
map, with the magic property, i.e., wt,(v) does not depend on the choice
of vertex v € V. Then we say that o is a magic s-surjection and wty(v) is
called the magic constant of a, denoted by h.

Definition 2.2 [6]/ Let G be a graph with |V U E| = st. Let a be a magic
s-surjection and let 8 be a magic t-surjection. We say that o and B are
compatible if for each q,7r € Z, 0 < ¢ <s—-1,0<r <t-1, we have
la=Y(g) N B~ (r)| = 1.

Compatibility ensures that we can build VMTL’s from the magic sur-
jections, using the next two propositions.

Proposition 2.1 [6] Let G be a graph with |V UE| = st. Let a be a magic
s-surjection with magic constant ho, and let B be a magic t-surjection with
magic constant hg. Assume that o and 3 are compatible. Then

1. ta + B is a magic st-surjection with magic constant the + hg,

2. s+ a is a magic st-surjection with magic constant shg + hq.

An example of compatible magic surjections for Cs is shown in Figure 3.

Letting s = 5 and t = 2, we use each part of the above proposition to
obtain a different magic 10-surjection. These can be used to obtain VMTL’s
using the next proposition.

Proposition 2.2 [6] Let G be a regular graph of degree d with |VUE| = L.
Then, X is a magic l-surjection with magic constant h if and only if A +1
s a vertex-magic total labeling with magic constant h+d + 1.

Notation 2.1 Let vg,vy,...,vom be the vertices of C,. In order that we
may write each edge in the form (v;,v;41) we also set vamy1 = vo and

V_] = Vgy,. For the rest of this paper, a will be a magic n-surjection of Cy,
defined by the rule:

1. a(v;) =73, for 0 < j < 2m,
2. ovgi-1,v2:) =m —1, for 0 < i <m,

3. a(vei,vai41) =2m—1i, for 0 <i < m.
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Figure 3: « for the graph Cs (left) and a compatible 2-surjection (right).

We check that a(v—1,v0) = a(Vom,V2m+1) = m (same edge!), and we
see immediately that for 0 < i <m,

wta(ve) = o(vei—1,v2) + o(vai) + a(vai, vais1)
= (m—-1)+2i+(2m —1) =3m.
Furthermore, for 0 <7 < m — 1 we have

wie(v2ir1) = ofvai, v2i41) + v2it1) + (Vo(ir1)-1, V2(i+1))
= (2m—i)+ 2i+1)+ (m—(i+1)) =3m.

Therefore « is indeed magic, as we claimed. We summarize a few prop-
erties of o as follows:

Proposition 2.8 For the magic n-surjection o of C, defined above:

1. the magic constant of o is 3m,

2. each of the numbers 0,1,2,...,2m is the label of precisely one vertex
of Cy,

3. each of the numbers 0,1,2,...,2m is the label of precisely one edge of
Cn.
The example of n = 5 is shown in Figure 3.

Proposition 2.4 Let B8 be defined by B(v;) = 1, for 0 < ¢ < 2m and
B(vi,vi41) =0, 0 < i < 2m. Then B is a magic 2-surjection for C,, which
is compatible with c.

261



Proof idea. 3 gives the same label to all vertices (respectively edges).
To ensure compatibility with «, we must check that all vertices (respec-
tively edges) are given different labels by «. But this is the content of
Proposition 2.3.

If one uses Proposition 2.1(1) together with Proposition 2.2, one obtains
the construction in [4]. On the other hand, if one uses Proposition 2.1(2)
together with Proposition 2.2, one obtains the construction in [3].

3 Inflation of Cycles

Let k& be a positive integer k£ > 3, and assume that we are given a VMTL
of Ci. By Proposition 2.2, we can subtract 1 from each label and obtain
a magic 2k-surjection which we will call 8 whose magic constant will be
denoted by h. In this section we will “inflate” a to obtain a magic n-
surjection a* for Cpx with magic constant 3m, and then “inflate” B to
obtain a 2k-surjection 8* for Cpx whose magic constant is . We will prove
that o* and 3* are compatible. Once we have done this, Proposition 2.1
immediately yields the following.

Theorem 3.1 Assume that Cy has a magic 2k-surjection with magic con-
stant h. Then

1. Cuk has a magic 2nk-surjection with magic constant nh + 3m,

2. Cpr has a magic 2nk-surjection with magic constant 6km + h.
A few applications of Proposition 2.2 give us

Corollary 3.1 Assume that Cy has a VMTL with magic constant g. Then
1. Cox has a VMTL with magic constant ng — 3m,
2. Cur has a VMTL with magic constant 6km + g.

Now we will define a* and 8*, and prove that they are compatible by
looking at all things given the same label by 8* and showing that a* gives
them different labels. An example with » = 5 and k = 3 is shown in Figure
4 and Figure 5, for the reader’s convenience. Let vg,v1,...,v2m be the
vertices of Cy,, with edge set (v;, v:41) 0 £ ¢ < 2m, and for convenience we
set Vgm+1 = Vo as in section 2. Let wg, uy,...,ux—1 be the vertices of Cg,
with edge set (us,u;41) 0 < ¢ < k—1 and set ux = up and p—y = pp—y.
Finally let wo,ws, ..., Wnk—1 be the vertices of Cpi with edges (w;, wit1),
and for convenience we set wnkq; =wj, for j=0,1,...,n—~1.
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Let z be an integer, 0 < z < nk — 1. By the division algorithm, z
can be written uniquely in the form ¢ = gn+7r, 0 < ¢ < k-1,0 <
r < n—1. We definc o* as follows. a*(w;) = a(v,) and o*(wz, Wet1) =
a(vr,vp41). Note that o* inherits the magic property from ¢, and its magic
constant is also 3m. Now define 8*(wz) = B(u,). Note that the vertices
Wan, Wan+1, - - +y Wan4(n—1),» Which are given the same label by 3* are given
different labels by a* (by Proposition 2.3(2)). Finally, set

" _ ) B(ug,uq+1) if r is even,
A (we, i) {ﬂ(uq_l,uq) if 7 is odd.
In particular 8*(Won4(n—1), W(g+1)n) = BUg, ug+1). We see that for each
vertex w;, the summands for the 3*-weight are, in some order B(uq-1,u,),
B(ug) and B(ug,uqs1). Hence §* is magic with magic constant h. We
already observed that o* gives n different labels to the n vertices with the
same [$*-label. To complete the proof that a* and 8* are compatible, we
need to identify the n edges which are given the same label by * and
show that o* gives them different labels. From the “r is even” part of the
definition of 8*, we see that the m + 1 edges

(qu1 qu+1): (qu+2a qu+3)’ crey ('qu+2mv w(q-{-l)n)

all have the same 5*-label, namely B(uq, q+1). However, 8* also labels the
m edges

(w(q+1)n+l ’ w(q+1)n+2)7 (Wg+1)n+3 w(q+l)n+4)1
ceey (w(q+1)n+n—2a w(q+l)n+'n—l)

with the very same label 8(uq, 4q+1) due to the second part of the definition
of 8* (where r is odd). Therefore, we must show that o* gives n different
labels to these n edges. By the definition of o*, these labels are:

a(vg,v1), a(v2,v3), ..., &(Un-1,Vn), a(v1,v2),(v3,v4), ..., ¥(Vn—2,Vn_1).

These labels are indeed all different by Proposition 2.3(3). This proves
compatibility of o* and $8*, and the result follows.

4 Concluding Remarks
So far we have used n = 5 as a favorite example in our figures. However,
Proposition 2.1 is particularly effective for the case n = 3. While it is

an easy exercise to find all 6-surjections (and hence VMTL’s) for C3, we
point out that all four of them are consequences of Proposition 2.1, using o
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Figure 4: A 6-surjection, 8 for C3 (left) and the corresponding 6-surjection
pB* for Cy5 (right).

2
173 s
WA
o {4
7N
/ N,
2/ 2
7 N
g 3
..’/ \‘\
3 4 4.1
31y \‘L"}z

Figure 5: o* for the case n =5, k = 3.
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Figure 7: Two 2-surjections for Cj.

(Figure 6) and the two 2-surjections shown in Figure 7. For each resulting
choice of 6-surjection, we can immediately obtain magic 18-surjections for
Cy by the method of inflation (section 3). This results in a VMTL with each
of the following magic constants: 24, 27, 28, 29, 30 and 33. There are only
4 other feasible magic constants that require another method. Similarly
it is not too difficult to find VMTL’s for each feasible magic constant of
Cj4. Inflation then immediately provides VMTL'’s for C)2 with each of the
following magic constants: 33, 36, 37, 38, 39, and 42. There are only 6
other feasible magic constants and two of these, one with magic constant
32 and its dual with magic constant 43, are done in [3]. It also works very
nicely for n = 3, k = 7, as we can obtain VMTL’s for with magic constants
54, 57, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 72, and 75, leaving only 8 others
to a possible other method. We would welcome another method that will
fill in the gaps.
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