Embeddings of resolvable group divisible designs with block size 3 and for all λ^*

Jun Shen (ppshen@gmail.com)
College of Fundamental Studies,
Shanghai University of Engineering Science,
Shanghai 201620, People's Republic of China
Hao Shen (haoshen@sjtu.edu.cn)
Department of Mathematics,
Shanghai Jiao Tong University
Shanghai 200240, People's Republic of China

Abstract

This paper investigates the embedding problem for resolvable group divisible designs with block size 3. The necessary and sufficient conditions are determined for all $\lambda \geq 1$.

Keywords group divisible design; resolvable; embedding AMS Classifications 05B05

1 Introduction

Let λ and v be positive integers, K and M be sets of positive integers. A group divisible design (GDD) of order v and index λ , denoted by $\mathrm{GD}(K, \lambda, M; v)$, is a triple $(X, \mathcal{G}, \mathcal{B})$ which satisfies the following conditions.

- X is a v-set of points,
- 2. \mathcal{G} is a set of subsets (called *groups*) of X which forms a partition of X, and $|G| \in M$ for each $G \in \mathcal{G}$,
- 3. \mathcal{B} is a collection of subsets (called *blocks*) of X such that $|B| \in K$ for each $B \in \mathcal{B}$, and each pair of points from distinct groups occurs in exactly λ blocks,
- 4. $|G \cap B| \leq 1$ for each $G \in \mathcal{G}$ and each $B \in \mathcal{B}$.

^{*}Research supported by NSFC Grant 10471093

A GD($K, \lambda, M; v$) is also called a (K, λ) -GDD of type T where $T = \{|G|: G \in \mathcal{G}\}$ is a multiset. T is called the *group-type* or *type* of the GDD. We usually use an "exponential" notation to describe group-type: a type $1^i 2^j 3^k \cdots$ means i occurrences of 1, j occurrences of 2, etc.

When $\lambda = 1$, we simply write GD(K, M; v) or K-GDD of type T. When $K = \{k\}$, or $M = \{m\}$, we simply write k for $\{k\}$, or m for $\{m\}$.

A $GD(k, \lambda, m; km)$ is called a *transversal design* and denoted by $TD(k, \lambda; m)$. When $\lambda = 1$, we simply write TD(k, m).

Let $(X, \mathcal{G}, \mathcal{B})$ be a $\mathrm{GD}(K, \lambda, M; v)$, $\mathcal{P} \subset \mathcal{B}$. If \mathcal{P} forms a partition of X, then \mathcal{P} is called a *parallel class*. If \mathcal{B} can be partitioned into parallel classes, then the GDD is called *resolvable*, and denoted by $\mathrm{RGD}(K, \lambda, M; v)$. A resolvable $\mathrm{TD}(k, \lambda; m)$ is denoted by $\mathrm{RTD}(k, \lambda; m)$. An $\mathrm{RGD}(k, \lambda, 1; v)$ is denoted by $\mathrm{RB}(k, \lambda; v)$.

The existence problem for resolvable group divisible designs with block size three has been completely solved.

Theorem 1.1 [1, 11, 12, 13] There exists an RGD(3, λ , g; v) if and only if $v \ge 3g$, $v \equiv 0 \pmod{3}$, $v \equiv 0 \pmod{g}$, $\lambda(v - g) \equiv 0 \pmod{2}$, and $(\lambda, g, v) \ne (1, 2, 12), (1, 6, 18), (2j + 1, 2, 6), (4j + 2, 1, 6), j \ge 0$.

Let $(X_1, \mathcal{G}_1, \mathcal{B}_1)$ be an RGD $(K, \lambda, M; v)$, and $(X_2, \mathcal{G}_2, \mathcal{B}_2)$ be an RGD $(K, \lambda, M; u)$. If $X_1 \subset X_2$, $\mathcal{G}_1 \subset \mathcal{G}_2$, \mathcal{B}_1 is a subcollection of \mathcal{B}_2 , and each parallel class of \mathcal{B}_1 is a part of some parallel class of \mathcal{B}_2 , then we say $(X_1, \mathcal{G}_1, \mathcal{B}_1)$ is embedded in $(X_2, \mathcal{G}_2, \mathcal{B}_2)$, or $(X_2, \mathcal{G}_2, \mathcal{B}_2)$ contains $(X_1, \mathcal{G}_1, \mathcal{B}_1)$ as a subdesign.

Several authors have studied the embedding problem for resolvable group divisible designs with block size 3. We summarize these known results in the following theorem.

Theorem 1.2 [3, 4, 5, 15, 14, 16, 17, 18, 19] (1) An RGD(3, g; v) can be embedded in an RGD(3, g; u) if and only if $u - g \equiv v - g \equiv 0 \pmod{2}$, $u \equiv v \equiv 0 \pmod{3}$, $u \equiv v \equiv 0 \pmod{g}$, $v \geq 3g$, $u \geq 3v$, and $(g, v) \neq (2, 6), (2, 12), (6, 18)$.

(2) An RB(3, λ ; v) can be embedded in an RB(3, λ ; u) if and only if $\lambda(u-1) \equiv \lambda(v-1) \equiv 0 \pmod{2}$, $u \equiv v \equiv 0 \pmod{3}$, $u \geq 3v$, and $(\lambda, v) \neq (4j+2,6), j \geq 0$.

In this paper we will study the remaining cases for $\lambda > 1$ and completely solve the problem.

2 Recursive Constructions

An incomplete group divisible design (IGDD) is a quadruple $(X, H, \mathcal{G}, \mathcal{B})$ which satisfies the following conditions.

- 1. X is the point set, $H \subset X$. H is called a hole,
- 2. G is a set of subsets (called groups) of X which forms a partition of X,
- 3. \mathcal{B} is a collection of subsets (called *blocks*) of X such that each pair of points from distinct groups containing at least one member in $X \setminus H$ occurs in exactly λ blocks,
- 4. $|G \cap B| \leq 1$ for each $G \in \mathcal{G}$ and each $B \in \mathcal{B}$,
- 5. no block contains two members of H.

If $|B| \in K$ for each $B \in \mathcal{B}$, then an IGDD is called a (K, λ) -IGDD of type T where K is a given set of positive integers and $T = \{(|G|, |G \cap H|) : G \in \mathcal{G}\}$. T is called the *type* of the IGDD. As with GDDs, we use an "exponential" notation to describe the type. When $\lambda = 1$, we simply write K-IGDD. When $K = \{k\}$, we simply write k for $\{k\}$.

A (K, λ) -IGDD is said to be *resolvable* and is denoted by (K, λ) -IRGDD if its blocks can be partitioned into parallel classes and *holey parallel classes*, the latter partitioning $X \setminus H$.

In this paper, we will only use IRGDDs of type $(g,0)^{m-n}(g,g)^n$ where g>0 and m>n>0. So, we will use $g^{(m,n)}$ to denote the types of such IRGDDs. It is obvious that a (k,λ) -IRGDD of type $g^{(m,n)}$ contains $\lambda g(m-n)/(k-1)$ parallel classes and $\lambda g(n-1)/(k-1)$ holey parallel classes. We note that a (k,λ) -IRGDD of type $g^{(m,1)}$ is just a (k,λ) -RGDD of type g^m .

It is easy to show that the necessary conditions for the existence of a $(3, \lambda)$ -IRGDD of type $g^{(u/g, v/g)}$ are $u \geq 3v$, $u \equiv 0 \pmod 3$, $u \equiv v \equiv 0 \pmod g$, $\lambda(u-g) \equiv \lambda(v-g) \equiv 0 \pmod 2$, and any of the following.

- 1. v = g
- 2. v = 2g, $\lambda g \equiv 0 \pmod{2}$, and $g \equiv 0 \pmod{3}$,
- 3. $v \ge 3g$, and $v \equiv 0 \pmod{3}$.

The following two lemmas are obvious but important in solving the embedding problem.

Lemma 2.1 Suppose there is a (k, λ) -IRGDD of type $g^{(u/g, v/g)}$ and an RGD $(k, \lambda, g; v)$. Then an RGD $(k, \lambda, g; v)$ can be embedded in an RGD $(k, \lambda, g; u)$.

Lemma 2.2 Suppose there exists a (k, λ) -IRGDD of type $g^{(u/g, v/g)}$ and an RTD(k, m). Then there exists a (k, λ) -IRGDD of type $(mg)^{(u/g, v/g)}$.

A frame is a $GD(K, \lambda, M; v)$ $(X, \mathcal{G}, \mathcal{B})$, with the property that \mathcal{B} can be partitioned into holey parallel classes, each of which forms a partition of $X \setminus G$, for some $G \in \mathcal{G}$. It is denoted by (K, λ) -frame of type T where T is the type of the underlying GDD.

The existence of $(3, \lambda)$ -frame of type g^u has been determined.

Theorem 2.3 [1, 10, 18] There exists a $(3, \lambda)$ -frame of type g^u if and only if $u \ge 4$, $g(u-1) \equiv 0 \pmod{3}$, $\lambda g(u-1) \equiv 0 \pmod{2}$, and $\lambda gu \equiv 0 \pmod{2}$.

An incomplete (K,λ) -frame is a (K,λ) -IGDD $(X,H,\mathcal{G},\mathcal{B})$ where the block set \mathcal{B} can be partitioned into holey parallel classes, each of which forms a partition of $X\setminus G$ for some $G\in\mathcal{G}$, or a partition of $X\setminus (G\cup H)$ for some $G\in\mathcal{G}$. When $K=\{k\}$ there are exactly $\frac{\lambda|G\setminus H|}{k-1}$ holey parallel classes that partition $X\setminus G$ and $\frac{\lambda|G\cap H|}{k-1}$ holey parallel classes that partition $X\setminus (G\cup H)$.

The following construction is called the fundamental incomplete frame construction (FIFC, see e.g. [6]).

Construction 2.4 (FIFC) Let $(X, H, \mathcal{G}, \mathcal{B})$ be a K-IGDD with index one and let $w: X \to Z^+ \cup \{0\}$ be a weight function on X. Suppose that for each block $B \in \mathcal{B}$, there exists a (k, λ) -frame of type $\{w(x): x \in B\}$. Then there exists an incomplete (k, λ) -frame of type $\{(\sum_{x \in G} w(x), \sum_{x \in G \cap H} w(x)): G \in \mathcal{G}\}$.

Setting $H = \emptyset$ in Construction 2.4 gives Stinson's fundamental frame construction (SFFC, [18]).

Construction 2.5 (SFFC) Let $(X, \mathcal{G}, \mathcal{B})$ be a group divisible design with index one and let $w: X \to Z^+ \cup \{0\}$ be a weight function on X. Suppose for each block $B \in \mathcal{B}$ there exists a (k, λ) -frame of type $\{w(x): x \in B\}$. Then there exists a (k, λ) -frame of type $\{\sum_{x \in G} w(x): G \in \mathcal{G}\}$.

The following "filling in holes" construction is a powerful tool in constructing IRGDDs (see [6]).

Construction 2.6 Suppose there is a (k, λ) -frame of type $T = \{t_i : i = 1, 2, ..., n\}$. Let $t|t_i$ and b > 0. Suppose there also exists a (k, λ) -IRGDD of type $t^{(t_i/t+b,b)}$ for i = 1, 2, ..., n-1, then there exists a (k, λ) -IRGDD of type $t^{(u/t+b,t_n/t+b)}$ where $u = \sum_{i=1}^n t_i$. Furthermore, if there exists a (k, λ) -IRGDD of type $t^{(t_n/t+b,b)}$, then there exists a (k, λ) -IRGDD of type $t^{(u/t+b,b)}$.

The following construction is a generalization of the construction used in [8, Lemma 5.4].

Construction 2.7 Suppose there is an incomplete (k,λ) -frame of type $t_1^x(t_2,t_2)^1(t_3,t_4)^1$. Let $g|t_i$ and b>0. Suppose there also exists a (k,λ) -IRGDD of type $g^{(t_1/g+b,b)}$ and a (k,λ) -IRGDD of type $g^{(t_2/g+t_4/g+b,t_4/g+b)}$, then there exists a (k,λ) -IRGDD of type $g^{(u/g+b,t_3/g+b)}$ where $u=x\cdot t_1+t_2+t_3$.

Proof. Let $(X, H, \{G_1, G_2, \ldots, G_x, B, C\}, A)$ be an incomplete (k, λ) -frame of type $t_1^x(t_2, t_2)^1(t_3, t_4)^1$, where $|G_i| = t_1$ for $i = 1, 2, \ldots, x$, $|B| = t_2$, $|C| = t_3$, $C = C' \cup C''$, $|C''| = t_4$, and $H = B \cup C''$. There are exactly $\frac{\lambda t_1}{k-1}$ holey parallel classes, denoted by $\mathcal{P}_{G_i,j}$, $j = 1, 2, \ldots, \frac{\lambda t_1}{k-1}$, which partition $X \setminus G_i$ for $i = 1, 2, \ldots, x$. There are $\frac{\lambda t_2}{k-1}$ holey parallel classes, denoted by $\mathcal{P}_{B,j}$, $j = 1, 2, \ldots, \frac{\lambda t_2}{k-1}$, which partition $X \setminus (B \cup H)$. There are $\frac{\lambda(t_3 - t_4)}{k-1}$ holey parallel classes, denoted by $\mathcal{P}_{C',j}$, $j = 1, 2, \ldots, \frac{\lambda(t_3 - t_4)}{k-1}$, which partition $X \setminus C$, and $\frac{\lambda t_4}{k-1}$ holey parallel classes, denoted by $\mathcal{P}_{C'',j}$, $j = 1, 2, \ldots, \frac{\lambda t_4}{k-1}$, which partition $X \setminus (C \cup H)$.

Let Y be a set of size ab and $X \cap Y = \emptyset$.

Let \mathcal{D}_i be a (k,λ) -IRGDD of type $g^{(t_1/g+b,b)}$ on $(G_i \cup Y,Y)$ for $i=1,2,\ldots,x$, which has $\frac{\lambda t_1}{k-1}$ parallel classes, denoted by $\mathcal{Q}_{i,j}, j=1,2,\ldots,\frac{\lambda t_1}{k-1}$, and $\frac{\lambda(gb-g)}{k-1}$ holey parallel classes, denoted by $\mathcal{Q}'_{i,j}, j=1,2,\ldots,\frac{\lambda(gb-g)}{k-1}$. Let \mathcal{D}' be a (k,λ) -IRGDD of type $g^{(t_2/g+t_4/g+b,t_4/g+b)}$ on $(H \cup Y,C'' \cup X)$

Let $\mathcal{D}^{'}$ be a (k, λ) -IRGDD of type $g^{(t_2/g+t_4/g+b,t_4/g+b)}$ on $(H \cup Y, C^{''} \cup Y)$, which has $\frac{\lambda t_2}{k-1}$ parallel classes, denoted by \mathcal{R}_j , $j=1,2,\ldots,\frac{\lambda t_2}{k-1}$, and $\frac{\lambda(t_4+gb-g)}{k-1}$ holey parallel classes, denoted by $\mathcal{R}_j^{'}$, $j=1,2,\ldots,\frac{\lambda(t_4+gb-g)}{k-1}$.

Now we construct a (k,λ) -IRGDD of type $g^{(u/g+b,t_3/g+b)}$ on $(X \cup Y,C \cup Y)$ as follows. $\mathcal{P}_{G_i,j} \cup \mathcal{Q}_{i,j}, \ j=1,2,\ldots,\frac{\lambda t_1}{k-1}, \ i=1,2,\ldots,x, \ \text{form} \ \frac{\lambda x t_1}{k-1}$ parallel classes. The other $\frac{\lambda t_2}{k-1}$ ones come from $\mathcal{P}_{B,j} \cup \mathcal{R}_j, \ j=1,2,\ldots,\frac{\lambda t_2}{k-1}$. $(\cup_{1 \leq i \leq x} \mathcal{Q}'_{i,j}) \cup \mathcal{R}'_j, \ j=1,2,\ldots,\frac{\lambda (gb-g)}{k-1}, \ \text{form another} \ \frac{\lambda (t_3-t_4)}{k-1} \ \text{ones}.$ The remaining $\frac{\lambda t_4}{k-1}$ ones come from $\mathcal{P}_{C'',j} \cup \mathcal{R}'_{j+\lambda(gb-g)/(k-1)}, \ j=1,2,\ldots,\frac{\lambda t_4}{k-1}$. \square

Lemma 2.8 If there is a TD(6, m), and $0 \le s \le m$, $m \le w \le 2m$, then there exists a (3, 2)-frame of type $(3m)^4(6m - 3s)^1(3w)^1$.

Proof. Take a TD(6, m), give weight 3 to the points in the first four groups, weight 3 or 6 to the last two groups, then apply SFFC to get the desired frame. The required (3,2)-frames of types 3^46^2 and 3^56^1 are obtained by applying SFFC with weight 1 to 4-GDDs of types 3^46^2 and 3^56^1 (see [2]), respectively.

Lemma 2.9 Let $m \ge 1$, $m \le w \le 2m$, and $(m, w) \notin \{(3, 5), (4, 7)\}$, then there exists a (3, 2)-frame of type $(3m)^4(6m)^1(3w)^1$.

Proof. It is proved in [20] that if $m \ge 1$, $m \le w \le 2m$, and $(m, w) \notin \{(3,5),(4,7)\}$, then there exists a 4-GDD of type $(3m)^4(6m)^1(3w)^1$. Applying SFFC to this 4-GDD gives the desired frame. \square

Theorem 2.10 [8] There exists a 4-GDD of type $6^u m^1$ for every $u \ge 4$ and $m \equiv 0 \pmod{3}$ with $0 \le m \le 3u - 3$ except for (u, m) = (4, 0) and

except possibly for $(u, m) \in \{(7, 15), (11, 21), (11, 24), (11, 27), (13, 27), (13, 33), (17, 39), (17, 42), (19, 45), (19, 48), (19, 51), (23, 60), (23, 63)\}.$

Theorem 2.11 [9] There exists a 4-GDD of type g^4m^1 with m > 0 if and only if $g \equiv m \equiv 0 \pmod{3}$ and $0 < m \le 3g/2$.

3 Existence of (3,2)-incomplete resolvable group divisible designs of type $3^{(u/3,v/3)}$

With the above preparations, now we prove the existence of (3,2)-IRGDDs of type $3^{(u/3,v/3)}$. First we give the following lemma for the convenient of our description.

Lemma 3.1 Let $(X, \mathcal{G}, \mathcal{B})$ be a K-GDD of type $T = \{g_i : i = 1, 2, ..., n\}$. Let w > 0, $3|wg_i$, and b > 0. Suppose for each block $B \in \mathcal{B}$ there exists a (3,2)-frame of type $w^{|B|}$. Suppose there also exists a (3,2)-IRGDD of type type $3^{(wg_i/3+b,b)}$ for i = 1,2,...,n-1, then there exists a (3,2)-IRGDD of type $3^{(u/3+b,wg_n/3+b)}$ where $u = \sum_{i=1}^n wg_i$. Furthermore, if there exists a (3,2)-IRGDD of type $3^{(wg_n/3+b,b)}$, then there exists a (3,2)-IRGDD of type $3^{(wg_n/3+b,b)}$.

Proof. Applying Construction 2.5 (SFFC) with weight w gives a (3,2)-frame of type $\{wg_i: i=1,2,\ldots,n\}$. Then applying Construction 2.6 gives the result. \square

Lemma 3.2 For $(u, v) \in \{(18, 6), (21, 6), (24, 6), (27, 6), (33, 6), (39, 6), (45, 6), (51, 6), (30, 9), (54, 15), (57, 18), (72, 21), (75, 24), (81, 24), (84, 27), (96, 27)\}, there exists a <math>(3, 2)$ -IRGDD of type $3^{(u/3, v/3)}$.

Proof. For $(u, v) \in \{(57, 18), (75, 24), (84, 27), (96, 27)\}$, see the proof of [17, Lemma 3.4], where the desired designs are constructed. For $(u, v) \in \{(54, 15), (72, 21), (81, 24)\}$, take a $(\{2, 3\}, 2)$ -RGDD of type $3^{(u-v)/3}$ (see the proof of [17, Lemma 3.4]), then add v ideal points to the blocks of size 2. For the remaining cases, see the Appendix. □

Lemma 3.3 For $u \equiv v \equiv 3 \pmod{6}$, there exists a (3, 2)-IRGDD of type $3^{(u/3, v/3)}$.

Proof. Take a 3-IRGDD of type $3^{(u/3,v/3)}$ and repeat its blocks twice to get the desired design. \square

Lemma 3.4 For any $v \equiv 0 \pmod{3}$ with $v \geq 9$ and any $k \geq 3$, there exists a (3,2)-IRGDD of type $3^{(kv/3,v/3)}$.

Proof. Take a (3,2)-RGDD of type v^k and form a (3,2)-RGDD of type $3^{v/3}$ on all but one of its groups. This gives a (3,2)-IRGDD of type $3^{(kv/3,v/3)}$.

Lemma 3.5 [3] For each odd $x \ge 21$, $x \notin \{23, 27, 31\}$, there exists a GDD on x points with block sizes at least four and group sizes from the set $\{4, 5, 6, 7\}$.

Define $T_6 = \{n \geq 5\} \setminus \{6, 10, 14, 18, 22\}$. Then for every $n \in T_6$, there exists a TD(6, n).

The following lemma is obvious.

Lemma 3.6 If $n \in T_6$, $n \geq 7$, then there exists an $n_1 > n$ such that $n_1 \in T_6$ and $4n_1 \leq 5n - 1$.

Lemma 3.7 (a) If there is a TD(k,t), $k \ge 4$, then for all s, $4t \le s \le kt$, $s \ne 4t + 1$, there exists a (3,2)-IRGDD of type $3^{(s+1,t+1)}$.

(b) If there is a TD(k, n), $1 \le t \le n$, $k \ge 5$, then for all s, $4n + t \le s \le (k-1)n + t$, $s \ne 4n + t + 1$, there exists a (3, 2)-IRGDD of type $3^{(s+1,t+1)}$.

Proof. For (a), take a TD(k,t), write s-4t as a sum $m(1)+m(2)+\cdots+m(k-4)$, where m(i)=0 or $1\leq m(i)\leq t$ for $1\leq m(i)\leq t$ for $1\leq m(i)\leq t$. Now truncate the *i*th group in the TD to m(i) points for $1\leq m(i)\leq t$. This gives a GDD with block sizes at least four. Now apply Lemma 3.1 with $1\leq m(k)$ with $1\leq m(k)$ sizes at least four.

The proof for (b) is similar. \Box

Lemma 3.8 Let $t \ge 1$, $n \in T_6$, $n \ge max\{7,t\}$, then for all $s \ge 4n + t$, $s \ne 4n + t + 1$, there exists a (3,2)-IRGDD of type $3^{(s+1,t+1)}$.

Proof. By repeatedly using Lemma 3.7(b) (with k=6) and Lemma 3.6, we obtain the result. \Box

Lemma 3.9 For $u \equiv 0 \pmod{3}$, and $u \geq 18$, there exists a (3, 2)-IRGDD of type $3^{(u/3,2)}$.

Proof. We write u = 3s + 3, $s \ge 5$. Lemma 3.2 covers $5 \le s \le 8$ and s = 10, 12, 14, 16. Lemma 3.8 (with n=7) covers s=29 and $s \ge 31$. For s odd, $s \ge 9$, apply Lemma 3.1 with a 4-GDD of type 6^x3^1 , $x \ge 4$ (see Theorem 2.10), and (w, b) = (1, 1). For s even, $s \ge 22$, $s \ne 24, 28, 32$, take a GDD in Lemma 3.5, and apply Lemma 3.1 with (w, b) = (3, 2). For s=18, construct a (3,2)-IRGDD of type $3^{(6,2)}$ on the hole of a (3,2)-IRGDD of type $3^{(19,6)}$ (see Lemma 3.2). For s=20, 24, 28, take a (3,2)-frame of type 15^4 , 18^4 , 21^4 , apply Construction 2.6 with b=1 to get a (3,2)-IRGDD of type $3^{(21,6)}$, $3^{(25,7)}$, $3^{(29,8)}$, then construct a (3,2)-IRGDD of type $3^{(6,2)}$, $3^{(7,2)}$, $3^{(8,2)}$ on the hole, respectively. □

Lemma 3.10 Let s = 4t + 1, $t \ge 5$, then there exists a (3,2)-IRGDD of type $3^{(s+1,t+1)}$.

Proof. Apply Lemma 3.1 with a 4-GDD of type $(3t-3)^412^1$ (see Theorem 2.11) and (w,b)=(1,2). \Box

Lemma 3.11 For $t = 10, 14, 18, 22, 4t \le s \le 5t, s \ne 4t + 1$, there exists a (3, 2)-IRGDD of type $3^{(s+1,t+1)}$.

Proof. Take a TD(5,t/2), give weight 6 to the points in the first four groups, weight 0,3 or 6 to the last group, then apply SFFC to get a (3,2)-frame of type $(3t)^4(3(s-4t))^1$. (the required (3,2)-frame of type 6^43^1 is obtained by applying SFFC with weight 1 to a 4-GDD of type 6^43^1 .) Now apply Construction 2.6 with b=1. \Box

Lemma 3.12 Suppose there is a TD(6, t + 1), where $t \ge 6$. Then there exists a (3, 2)-IRGDD of type $3^{(5t+r+1,t+1)}$ for r = 1, 2, 3, 5.

Proof. It is proved in [3] that there exist a GD($\{4,5,t+r-3,t+1\}$, $\{3,4,t\}$; 5t+r) for r=1,2,3, and a GD($\{4,5,6,t\}$, $\{4,5,t\}$; 5t+5). Apply Lemma 3.1 to this GDD with (w,b)=(3,1). \square

Theorem 3.13 Suppose $t \geq 7$ and $s \geq 4t$. Then there exists a (3,2)-IRGDD of type $3^{(s+1,t+1)}$.

Proof. When $t \geq 7$, $t \in T_6$, the result follows from Lemma 3.7(a) (with k = 6), Lemma 3.8 (with n = t), and Lemma 3.10. When $t \geq 7$, $t \notin T_6$, the result follows from Lemma 3.8 (with n = t + 1), Lemmas 3.10–3.12. \square

Theorem 3.14 For every $u \equiv v \equiv 0 \pmod{3}$ with $v \geq 24$ and $u \geq 4v-9$, there exists a (3,2)-IRGDD of type $3^{(u/3,v/3)}$.

Proof. Write v=3t+3, $t\geq 7$, and u=3s+3. Then the condition $u\geq 4v-9$ is equivalent to $s\geq 4t$. Apply Theorem 3.13 to get the result.

Now we consider the cases $2 \le t \le 6$ (i.e., v = 3t + 3 = 9, 12, 15, 18, 21) and $s \ge 3t + 2$ (i.e., $u = 3s + 3 \ge 3v$). We have the following lemma.

Lemma 3.15 For $v \equiv 0 \pmod{3}$, $v \leq 21$, there exists a (3,2)-IRGDD of type $3^{(u/3,v/3)}$ if and only if $u \geq 3v$, and $u \equiv 0 \pmod{3}$.

Proof. v = 9. Lemma 3.2 covers s=9. For s even, $s \ge 8$, see Lemma 3.3. For s odd, $s \ge 11$, apply Lemma 3.1 with a 4-GDD of type 6^x9^1 , $x \ge 4$ (see Theorem 2.10), and (w, b) = (1, 1).

v=12. Lemma 3.8 (with n=7) covers s=31 and $s\geq 33$. Lemma 3.7 (b) (with k=6, n=5) covers s=23 and $25\leq s\leq 28$. Lemma 3.4 covers s=11,19. For $s\equiv 0\pmod 3$, $s\geq 12$, take a (3,2)-frame of type $9^{s/3}$ and apply Construction 2.6 with b=1. For s=20,29, take a GD($\{4,5\},\{3,4\};20$) (see [3]), GD($\{4,5\},\{3,5\};29$) (see [17]), and apply Lemma 3.1 with (w,b)=(3,1). For s=13,14,16,17,32, take a 4-GDD of type 6^59^1 , 9^46^1 , 9^412^1 , 9^56^1 , 9^824^1 (see [9]), and apply Lemma 3.1 with (w,b)=(1,1). For s=22, take a (3,2)-frame of type $9^412^118^1$ (see Lemma 2.9), and apply Construction 2.6 with b=1.

v=15. Lemma 3.2 covers s=17. Lemma 3.8 (with n=7) covers s=32 and $s\geq 34$. Lemma 3.7 (a) (with k=5) covers s=16 and $18\leq s\leq 20$. Lemma 3.7 (b) (with k=6, n=5) covers s=24 and $26\leq s\leq 29$. Lemma 3.3 covers s=14, 22, 30. For s=15, take a (3,2)-frame of type $6^{4}9^{1}12^{1}$ (see Lemma 2.9), and apply Construction 2.6 with b=1. For s=21,23,31,33, take a GD($\{4,5\},\{4,5\};21$), GD($\{4,5\},\{3,4\};23$), GD($\{4,5\},\{3,4\},31$), GD($\{4,5\},\{4,5\},33$) (see [17]), and apply Lemma 3.1 with (w,b)=(3,1). For s=25, take a GD($\{5,6\},\{4,5\};25$) (see [3]), and apply Lemma 3.1 with (w,b)=(3,1).

v=18. Lemma 3.2 covers s=18. Lemma 3.8 (with n=7) covers s=33 and $s\geq 35$. Lemma 3.4 covers s=17. Lemma 3.7 (a) (with k=6) covers s=20 and $22\leq s\leq 30$. Lemma 3.10 covers s=21. For s=19, apply Lemma 3.1 with a 4-GDD of type $6^512^115^1$ (see [9]) and (w,b)=(1,1). For s=31, apply Lemma 3.1 with a 4-GDD of type 6^69^1 (see Theorem 2.10) and (w,b)=(2,2). For s=32,34, delete 1 or 3 points from a group in a $\{5,7\}$ -GDD of type 5^7 , then apply Lemma 3.1 with (w,b)=(3,1).

v = 21. Lemma 3.2 covers s=23. Lemma 3.8 (with n=7) covers s=34 and $s \ge 36$. Lemma 3.4 covers s=20, 27. Lemma 3.3 covers s = 22, 24, 26, 28, 30. Lemma 3.12 covers $31 \le s \le 33$ and s=35. For s = 21, apply Lemma 3.1 with a 4-GDD of type 3^56^1 (see [2]) and (w,b) = (3,1). For s = 25, apply Lemma 3.1 with a 4-GDD of type 15^412^1 (see Theorem 2.11) and (w,b) = (1,2). For s=29, apply Lemma 3.1 with a 4-GDD of type 18^415^1 (see Theorem 2.11) and (w,b) = (1,1). □

Theorem 3.16 Suppose $u \equiv v \equiv 0 \pmod{3}$, $v \geq 30$, and $u \geq 3.5v$, then there exists a (3,2)-IRGDD of type $3^{(u/3,v/3)}$.

Proof. By Theorem 3.14 we only need to consider u < 4v - 9. We divide the proof into two cases.

Case 1: $v \equiv 3 \pmod{6}$.

Take a (3, 2)-frame of type $(3m)^4(6m)^1(3w)^1$, $m \le w \le 2m$, $m \ge 5$ (see Lemma 2.9), and apply Construction 2.6 with b = 1 to yield a (3, 2)-IRGDD of type $3^{(u/3,v/3)}$, where $v = 6m + 3 \ge 33$, u = 18m + 3w + 3, and $3.5v - 7.5 \le u \le 4v - 9$.

Case 2: $v \equiv 0 \pmod{6}$.

Take a (3,2)-frame of type $(3m)^4(6m-3)^1(3w)^1$, $m \le w \le 2m$, $m \ge 5$, $m \ne 6$, 10, 14, 18, 22 (see Lemma 2.8), and apply Construction 2.6 with b = 1 to yield a (3,2)-IRGDD of type $3^{(u/3,v/3)}$, where $v = 6m \ge 30$, $v \ne 36$, 60, 84, 108, 132, u = 18m + 3w, and $3.5v \le u \le 4v$.

Take a (3,2)-frame of type $(3m)^4(6m)^1(3w)^1$, $m \le w \le 2m$, $m \ge 5$ (see Lemma 2.9), and apply Construction 2.6 with b=2 to yield a (3,2)-IRGDD of type $3^{(u/3,v/3)}$, where $v=6m+6\ge 36$, v=18m+3w+6, and $3.5v-15\le u \le 4v-18$.

Take a (3,2)-frame of type $(3m)^4(6m-9)^1(3w)^1$, $m \le w \le 2m$, m=11, 15, 19, 23 (see Lemma 2.8), and apply Construction 2.6 with b=1 to yield a (3,2)-IRGDD of type $3^{(u/3,v/3)}$, where v=6m-6=60, 84, 108, 132, and u=4v-15, 4v-12.

For v = 36, u = 4v - 12, apply Lemma 3.1 with a 4-GDD of type 24^433^1 (see Theorem 2.11) and (w, b) = (1, 1).

For v = 36, u = 4v - 15, apply Lemma 3.1 with a 4-GDD of type $9^833^121^1$ (see [5]) and (w, b) = (1, 1).

With the above discussion, the theorem is proved.

Lemma 3.17 For $v \equiv 0 \pmod{3}$, and $v \leq 36$, there exists a (3,2)-IRGDD of type $3^{(u/3,v/3)}$ if and only if $u \equiv 0 \pmod{3}$, and $u \geq 3v$.

Proof. For $v \leq 21$, see Lemma 3.15.

v = 24, and $u \in \{72, 75, 78, 81, 84\}$. Lemma 3.2 covers u = 75, 81. Lemma 3.4 covers u=72. For u=78, take a (3, 2)-frame of type 18^4 and apply Construction 2.6 b = 2. For u=84, apply Lemma 3.1 with a 4-GDD of type 15^421^1 (see Theorem 2.11) and (w, b) = (1, 1).

v = 27, and $u \in \{81, 84, 87, 90, 93, 96\}$. Lemma 3.3 covers u = 81, 87, 93. Lemma 3.2 covers u = 84, 96. For u = 90, take a (3, 2)-frame of type 21^4 and apply Construction 2.6 with b = 2.

v = 30, and $u \in \{90, 93, 96, 99, 102\}$. For $u \neq 99$, take a (3, 2)-frame of type $12^424^1(3w)^1$, $4 \leq w \leq 8$, $w \neq 7$ (see Lemma 2.9), and apply Construction 2.6 with b = 2. For u=99, apply Lemma 3.1 with a 4-GDD of type $9^615^127^1$ (see [17]) and (w, b) = (1, 1).

v=33. By the proof of Theorem 3.16, we only need to consider $u \in \{99, 102, 105\}$. Lemma 3.3 covers u=99, 105. For u=102, take a 4-IGDD of type $9^6(15, 15)^1(30, 3)^1$ (see [17]), and apply FIFC to get an incomplete (3, 2)-frame of type $9^6(15, 15)^1(30, 3)^1$, then apply Construction 2.7 with b=1.

For v=36, by Lemma 3.4 and the proof of Theorem 3.16, there's no remaining case. \square

Theorem 3.18 For $u \equiv v \equiv 0 \pmod{3}$, and $u \geq 3.4v$, there exists a (3,2)-IRGDD of type $3^{(u/3,v/3)}$.

Proof. Let m, x take the values listed in Table 1. By Theorem 3.16 and Lemma 3.17 there exists a (3,2)-IRGDD of type $3^{((3w+x)/3,x/3)}$ where $w=m,m+1,\ldots,2m$. Take a (3,2)-frame of type $(3m)^4(6m)^1(3w)^1$ (see Lemma 2.9), and apply Construction 2.6 with b=x/3 to yield a (3,2)-IRGDD of type $3^{(u/3,v/3)}$, where v=6m+x, u=18m+3w+x, and $u_{min} \leq u \leq u_{max}$. The interval $[u_{min}, u_{max}]$ covers [3.4v, 3.5v]. □

v	m	\boldsymbol{x}	t	Umin	u_{max}
27t	4t	3t	$t \ge 2$	87t	99t
27t + 3	4t + 1	3t - 3	$t \geq 2$	87t + 18	99t + 21
27t + 6	4t+1	3t	$t \ge 1$	87t + 21	99t + 24
27t + 9	4t + 2	3t-3	$t \ge 2$	87t + 39	99t + 45
27t + 12	4t+2	3t	$t \geq 1$	87t + 42	99t + 48
27t + 15	4t+2	3t + 3	$t \ge 1$	87t + 45	99t + 51
27t + 18	4t + 3	3t	$t \ge 1$	87t + 63	99t + 72
27t + 21	4t + 3	3t + 3	$t \ge 1$	87t + 66	99t + 75
27t + 24	4t + 4	3t	$t \ge 1$	87t + 84	99t + 96

Table 1

Lemma 3.19 For $v \equiv 3 \pmod{9}$, $v \ge 12$, and u = 3v + 3, there exists a (3,2)-IRGDD of type $3^{(u/3,v/3)}$.

Proof. Adjoin a group of size 9(s-1)/2 at infinity to a 3-RGDD of type 9^s to get a 4-GDD of type $9^s(9(s-1)/2)^1$, where s is odd, and $s \ge 3$. Then apply Lemma 3.1 with (w,b) = (1,1). \square

Lemma 3.20 For $v \equiv 0 \pmod{3}$, u = 3v, 3v + 3, 3v + 6, there exists a (3, 2)-IRGDD of type $3^{(u/3, v/3)}$.

Proof. For u = 3v, see Lemma 3.4. For $v \le 36$, see Lemma 3.17. Case $1 \ u = 3v + 3$.

Lemma 3.19 covers v = 39, 48, 57, 66, 102. For v = 42, 54, 72, take a 4-GDD of type $12^615^136^1$, $12^815^148^1$, $12^{11}15^166^1$ (see [5]), and apply Lemma 3.1 with (w, b) = (1, 2). For v = 45, 51, 60, 105, take a (3, 2)-frame of type $18^436^121^1$, $21^442^121^1$, $24^448^127^1$, $42^484^145^1$ (see Lemma 2.9), and apply Construction 2.6 with b=3, 3, 4, 7, respectively. For v=63, take a 4-GDD of type $18^621^154^1$ (see [17]), and apply Lemma 3.1 with (w, b) = (1, 3). For v=69, take a 4-IGDD of type $9^{14}(15, 15)^1(66, 3)^1$ (see [17]), and apply FIFC to get an incomplete (3,2)-frame of type $9^{14}(15, 15)^1(66, 3)^1$, then apply Construction 2.7 with b=1. For v=99, take a 4-IGDD of type $9^{16}(57, 57)^1(96, 24)^1$ (see [17]), and apply FIFC to get an incomplete (3,2)-frame of type $9^{16}(57, 57)^1(96, 24)^1$ (see [17]), then apply Construction 2.7 with b=1. For v=108, take a 4-IGDD of type $12^{16}(27, 27)^1(102, 6)^1$ (see [5]), and

apply FIFC to get an incomplete (3,2)-frame of type $12^{16}(27,27)^1(102,6)^1$, then apply Construction 2.7 with b=2.

Take a 4-IGDD of type $9^{2n}(6t+9,6t+9)^1(9n+3t,3t)^1$, $n \equiv 0 \pmod{4}$, $n \neq 4,88,124$, $0 \leq t \leq n-1$ (see [17]). Apply FIFC to get an incomplete (3,2)-frame of type $9^{2n}(6t+9,6t+9)^1(9n+3t,3t)^1$. Then apply Construction 2.7 with b=1. This covers $75 \leq v \leq 96$ and $v \geq 111$. Case 2 = 3v + 6.

For $v \equiv 3 \pmod{6}$, see Lemma 3.3.

For $v \equiv 0 \pmod{6}$, $v \geq 42$, and $v \neq 54,66$, take a 4-GDD of type $6^s(3s-6)^1$ (see Theorem 2.10) and apply Lemma 3.1 with (w,b)=(1,1). For v=54, take a 4-IGDD of type $12^8(18,18)^1(51,3)^1$ (see [17]), and apply FIFC to get an incomplete (3,2)-frame of type $12^8(18,18)^1(51,3)^1$, then apply Construction 2.7 with b=1. For v=66, take a (3,2)-frame of type $27^454^130^1$ (see Lemma 2.9) and apply Construction 2.6 with b=4. \Box

Lemma 3.21 For every $v \equiv 9 \pmod{15}$, $v \ge 39$, u = 3v + 9, there exists a (3,2)-IRGDD of type $3^{(u/3,v/3)}$.

Proof. For v=39, take a 4-GDD of type $9^836^115^1$ (see [5]), and apply Lemma 3.1 with (w,b) = (1,1). For v=54, take a (3,2)-frame of type 39^4 and apply Construction 2.6 with b = 5. For v=69, take a 4-GDD of type $12^{11}15^{1}66^{1}$ (see [5]), and apply Lemma 3.1 with (w, b) = (1, 1). For v=84, take a 4-IGDD of type $15^8(57,57)^1(81,21)^1$ (see [17]) and apply FIFC to get an incomplete (3,2)-frame of type $15^8(57,57)^1(81,21)^1$, then apply Construction 2.7 with b = 1. For v=114, take a TD(8.11) and give all the points on the first six groups weight 3 and all the points on a seventh group weight 9, then give two points on the last group weight 6 and the remaining nine points weight 3, apply SFFC to get a (3,2)frame of type $33^699^139^1$. Note that we need (3,2)-frames of types 3^79^1 and 3⁶6¹9¹; the former is obtained by applying SFFC to a 4-GDD of type $3^{7}9^{1}$ (see [2]), while the latter to a $\{4,7\}$ -GDD of type $3^{6}6^{1}9^{1}$ (see [5]). Then apply Construction 2.6 with b = 5. For v=159, take a 4-IGDD of type $12^{25}(27,27)^{1}(156,6)^{1}$ (see [5]), and apply FIFC to get an incomplete (3,2)-frame of type $12^{25}(27,27)^1(156,6)^1$, then apply Construction 2.7 with b=1. For v=189, take a (3,2)-frame of type 129^4 and apply Construction 2.6 with b = 20. (the required (3, 2)-IRGDD of type $3^{(63,20)}$ is obtained by letting (m, w) = (8, 11) in Lemma 2.9 and applying Construction 2.6 with b = 4.

For $v \equiv 0 \pmod{6}$, $v \ge 144$, take a 4-IGDD of type $12^{s-3}(57,57)^1(6(s-3)+18,18)^1$, $s \equiv 3 \pmod{5}$ and $s \ge 23(\text{see }[5])$, and apply FIFC to get an incomplete (3,2)-frame of type $12^{s-3}(57,57)^1(6(s-3)+18,18)^1$, then apply Construction 2.7 with b=2.

For $v \equiv 3 \pmod 6$, $v \ge 99$, and $v \ne 159, 189$, take a 4-GDD of type $12^s 15^1 (6s)^1$, $s \in \{16, 21\} \cup \{n \equiv 1 \pmod 5 : n \ge 36\}$ (see [5]), and apply

Lemma 3.1 with (w, b) = (1, 1). \Box

Lemma 3.22 For $v \equiv 0 \pmod{3}$ and $v \leq 192$, there exists a (3,2)-IRGDD of type $3^{(u/3,v/3)}$ if and only if $u \equiv 0 \pmod{3}$ and $u \geq 3v$.

Proof. By Lemma 3.17 and Theorem 3.18, we only need to consider $39 \le v \le 192$ and u < 3.4v.

Let m and x take the values listed in Table 2. The condition $3 \le v \le 192$ implies $t \le 12$ in Table 2. By Lemma 3.17 there exists a (3,2)-IRGDD of type $3^{((3w+x)/3,x/3)}$ where $w=m,m+1,\ldots,2m$. Take a (3,2)-frame of type $(3m)^4(6m)^1(3w)^1$, $m \le w \le 2m$ (see Lemma 2.9), and apply Construction 2.6 with b=x/3 to yield a (3,2)-IRGDD of type $3^{(u/3,v/3)}$, where v=6m+x, u=18m+3w+x, $u_{min} \le u \le u_{max}$, and $u_{max} \ge 3.4v$.

The missing cases in Table 2 are covered by Lemmas 3.20-3.21. □

υ	m	x	t	umin	umax	missing cases
15t	2t	3t	$3 \le t \le 12$	45t	51 <i>t</i>	no
15t + 3	2t+1	3t-3	$2 \le t \le 12$	45t + 18	51t + 21	3v, 3v + 3, $3v + 6$
15t + 6	2t + 1	3t	$2 \le t \le 12$	45t + 21	51t + 24	3v
15t + 9	2t+2	3t-3	$2 \le t \le 12$	45t + 39	51t + 45	3v, 3v + 3, 3v + 6, 3v + 9
15t + 12	2t+2	3t	$2 \le t \le 12$	45t + 42	51t + 48	3v, 3v + 3

Table 2

Theorem 3.23 There exists a (3,2)-IRGDD of type $3^{(u/3,v/3)}$ if and only if $u \equiv v \equiv 0 \pmod{3}$ and $u \geq 3v$.

Proof. By induction on t. Write v=15t+s, s=0,3,6,9,12. We have proved the cases $t\leq 12$ in Lemma 3.22. Now suppose that for every $t\leq t_1$ there exists a (3,2)-IRGDD of type $3^{(u/3,v/3)}$ where v=15t+s, $s=0,3,6,9,12, u\equiv 0\pmod 3$, and $u\geq 3v$. For the values of m,x listed in Table 3, we have $x\leq 3t\leq 15t_1$. By our induction hypothesis, there exists a (3,2)-IRGDD of type $3^{((3w+x)/3,x/3)}$ where $w=m,m+1,\ldots,2m$. Now take a (3,2)-frame of type $(3m)^4(6m)^1(3w)^1, m\leq w\leq 2m$ (see Lemma 2.9), and apply Construction 2.6 with b=x/3 to yield a (3,2)-IRGDD of type $3^{(u/3,v/3)}$, where $v=6m+x, u=18m+3w+x, u_{min}\leq u\leq u_{max}$, and $u_{max}\geq 3.4v$. The missing cases in Table 3 are covered by Lemma 3.20 and Lemma 3.21. Thus the result for $t_1< t\leq 5t_1$ is proved. This completes the proof. □

υ	m	\boldsymbol{x}	t	umin	umax	missing cases
15t	2t	3t	$t_1 < t \leq 5t_1$	45t	51t	no
15t + 3	2t+1	3t-3	$t_1 < t \le 5t_1$	45t + 18	51t + 21	3v, 3v + 3, 3v + 6
15t + 6	2t + 1	3t	$t_1 < t \le 5t_1$	45t + 21	51t + 24	3v
15t + 9	2t + 2	3t-3	$t_1 < t \le 5t_1$	45t + 39	51t + 45	3v, 3v + 3, 3v + 6, 3v + 9
15t + 12	2t + 2	3t	$t_1 < t \le 5t_1$	45t + 42	51t + 48	3v, 3v + 3

Table 3

4 Main Results

Theorem 4.1 There exists a $(3, \lambda)$ -IRGDD of type $g^{(u/g, v/g)}$ if and only if $u \geq 3v$, $u \equiv 0 \pmod{3}$, $u \equiv v \equiv 0 \pmod{g}$, $\lambda(u-g) \equiv \lambda(v-g) \equiv 0 \pmod{2}$, and any of the following conditions is satisfied.

- 1. v = g, and $(\lambda, u, v) \neq (1, 12, 2), (1, 18, 6), (2j + 1, 6, 2), (4j + 2, 6, 1), <math>j \geq 0$,
- 2. v = 2g, $\lambda g \equiv 0 \pmod{2}$, and $g \equiv 0 \pmod{3}$,
- 3. $v \ge 3g$, and $v \equiv 0 \pmod{3}$.

Proof. A $(3, \lambda)$ -IRGDD of type $g^{(u/g,1)}$ is just a $(3, \lambda)$ -RGDD of type $g^{u/g}$. Thus we only need to consider the cases $v \geq 2g$.

For λ odd, or λ , g even, take a 3-IRGDD of type $g^{(u/g,v/g)}$ (see [17]), and repeat its blocks λ times to yield a $(3, \lambda)$ -IRGDD of type $g^{(u/g,v/g)}$. For λ even and $g \equiv 1, 5 \pmod{6}$, g > 1, take a (3, 2)-IRGDD of type $1^{(u,v)}$ (i.e., an IRB(3, 2; u, v), see [16]), and repeat its blocks $\lambda/2$ times to yield a $(3, \lambda)$ -IRGDD of type $1^{(u,v)}$, then apply Lemma 2.2 with an RTD(3, g). For λ even and $g \equiv 3 \pmod{6}$, g > 3, take a (3, 2)-IRGDD of type $3^{(u/3,v/3)}$, and repeat its blocks $\lambda/2$ times to yield a $(3, \lambda)$ -IRGDD of type $3^{(u/3,v/3)}$, then apply Lemma 2.2 with an RTD(3, g/3). This completes the proof. \Box

Combining Lemma 2.1 and Theorem 4.1 gives the following theorem.

Theorem 4.2 An RGD(3, λ , g; v) can be embedded in an RGD(3, λ , g; u) if and only if $\lambda(u-g) \equiv \lambda(v-g) \equiv 0 \pmod{2}$, $u \equiv v \equiv 0 \pmod{3}$, $u \equiv v \equiv 0 \pmod{g}$, $v \geq 3g$, $u \geq 3v$, and $(\lambda, g, v) \neq (1, 2, 12), (1, 6, 18), (2j + 1, 2, 6), (4j + 2, 1, 6), <math>j \geq 0$.

References

[1] A.M. Assaf, A. Hartman, Resolvable group divisible designs with block size 3, Discrete Math. 77(1989) 5-20.

- [2] C.J. Colbourn, J.H. Dinitz(eds.), Handbook of Combinatorial Designs, CRC Press, Boca Raton, Florida 1996. (New results are reported at http://www.emba.uvm.edu/~dinitz/hcd.html)
- [3] D. Deng, R. Rees, H. Shen, On the existence and application of incomplete nearly Kirkman triple systems with a hole of size 6 or 12, Discrete Math. 261(2003) 209-233.
- [4] D. Deng, R. Rees, H. Shen, Further results on nearly Kirkman triple systems with subsystems, Discrete Math. 270(2003) 99-114.
- [5] D. Deng, R. Rees, H. Shen, On the existence of nearly Kirkman triple systems with subsystems, Discrete Math., accepted.
- [6] S.C. Furino, Y. Miao, J.X. Yin, Frame and Resolvable Designs: Uses, Constructions and Existence, CRC Press, Boca Raton, Florida 1996.
- [7] G. Ge, C.W.H. Lam, Resolvable group divisible designs with block size four and group size six, Discrete Math. 268(2003) 139-151.
- [8] G. Ge, R. Rees, On group-divisible designs with block size four and group-type $6^u m^1$, Discrete Math. 279(2004) 247-265.
- [9] G. Ge, R. Rees, On group-divisible designs with block size four and group-type $g^u m^1$, Des. Codes Cryptogr. 27(2002) 5-24.
- [10] H. Hanani, On resolvable balanced incomplete block designs, J. Combin. Theory(A) 17(1974) 275-289.
- [11] E. Mendelsohn, H. Shen, A construction of resolvable group divisible designs with block size 3, Ars Combin. 24(1987) 39-43.
- [12] R. Rees, Two new direct product-type constructions for resolvable group divisible designs, J. Combin. Designs 1(1993) 15-26.
- [13] R. Rees, D.R. Stinson, On resolvable group-divisible desings with block size three, Ars Combin. 23(1987) 107-120.
- [14] R. Rees, D.R. Stinson, Kirkman triple systems with maximum subsystems, Ars Combin. 25(1988) 125-132.
- [15] R. Rees, D.R. Stinson, On the existence of Kirkman triple systems containing Kirkman subsystems, Ars Combin. 26(1988) 3-16.
- [16] H. Shen, Y. Wang, Embeddings of Resolvable Triple Systems, J. Combin. Theory(A) 89(2000) 21-42.

- [17] J. Shen, H. Shen, Embeddings of resolvable group divisible designs with block size 3, Des. Codes Cryptogr. 41(2006) 269-298.
- [18] D.R. Stinson, Frames for Kirkman triple systems, Discrete Math. 65(1987) 289-300.
- [19] S. Tang, H. Shen, Embeddings of nearly Kirkman triple systems, J. Stat. Plann. and Inference 94(2001) 327-333.
- [20] J. Wang, H. Shen, Existence of $(v, K_{1(3)} \cup \{w^*\})$ -PBDs and its applications, submitted.

Appendix

Several (3,2)-IRGDDs of type $3^{(u/3,v/3)}$ $(X,H,\mathcal{G},\mathcal{B})$ are constructed as follows. Let $X=Z_{u-v}\cup\{\infty_i:i\in Z_v\},\ H=\{\infty_i:i\in Z_v\},\ \mathcal{G}=\{\{0,(u-v)/3,2(u-v)/3\}+i:i\in Z_{u-v}\}.$ The v-3 holey parallel classes are obtained by developing the blocks in \mathcal{P}_1 mod u-v. (Each block $\{a,b,c\}$ in \mathcal{P}_1 satisfies $\{a,b,c\}\equiv\{0,1,2\}$ (mod 3), so from $\{a,b,c\}$ we can form 3 holey parallel classes.) The u-v parallel classes are obtained by developing the base parallel class in \mathcal{P}_2 mod u-v.

```
(u,v)=(18,6). \mathcal{P}_1: \{0,1,2\}.
\mathcal{P}_2: \{0, 2, \infty_0\}, \{3, 6, \infty_1\}, \{7, 10, \infty_2\},
\{4,9,\infty_3\}, \{8,1,\infty_4\}, \{5,11,\infty_5\}.
(u,v)=(21,6). \mathcal{P}_1: \{0,1,2\}.
\mathcal{P}_2: \{0, 2, 6\}, \{1, 4, \infty_0\}, \{7, 10, \infty_1\}, \{9, 13, \infty_2\},
\{8, 14, \infty_3\}, \{5, 12, \infty_4\}, \{11, 3, \infty_5\}.
(u,v)=(24,6). \mathcal{P}_1: \{0,1,2\}.
\mathcal{P}_2: \{0,2,7\}, \{1,4,8\}, \{9,12,\infty_0\}, \{13,17,\infty_1\},
\{10, 15, \infty_2\}, \{3, 11, \infty_3\}, \{16, 6, \infty_4\}, \{5, 14, \infty_5\}.
(u,v)=(27,6). \mathcal{P}_1: \{0,1,2\}.
\mathcal{P}_2: \{0, 2, 5\}, \{1, 4, 10\}, \{3, 7, 13\}, \{11, 15, \infty_0\}, \{14, 19, \infty_1\},
\{8, 16, \infty_2\}, \{12, 20, \infty_3\}, \{9, 18, \infty_4\}, \{17, 6, \infty_5\}.
(u,v)=(33,6). \mathcal{P}_1: \{0,1,2\}.
\mathcal{P}_2: \{0, 2, 5\}, \{1, 4, 8\}, \{3, 7, 15\}, \{13, 18, 26\}, \{11, 17, 24\}, \{16, 22, \infty_0\},
\{9, 19, \infty_1\}, \{10, 20, \infty_2\}, \{12, 23, \infty_3\}, \{14, 25, \infty_4\}, \{21, 6, \infty_5\}.
(u,v)=(39,6). \mathcal{P}_1: \{0,1,2\}.
\mathcal{P}_{2}: \{0, 2, 16\}, \{1, 4, 8\}, \{3, 6, 18\}, \{7, 11, 20\}, \{12, 17, 24\}, \{13, 19, 27\}, \{23, 29, 5\},
```

```
 \{25, 30, \infty_0\}, \{14, 22, \infty_1\}, \{21, 31, \infty_2\}, \{32, 9, \infty_3\}, \{15, 28, \infty_4\}, \{10, 26, \infty_5\}. 
 (u, v) = (45, 6).  \mathcal{P}_1: \{0, 1, 2\}. 
 \mathcal{P}_2: \{0, 2, 19\}, \{1, 4, 8\}, \{3, 6, 21\}, \{7, 11, 23\}, \{5, 10, 16\}, \{20, 25, 34\}, \{18, 24, 33\}, \{15, 22, 32\}, \{29, 37, 9\}, \{27, 35, \infty_0\}, \{28, 38, \infty_1\}, \{14, 26, \infty_2\}, \{17, 31, \infty_3\}, \{36, 13, \infty_4\}, \{12, 30, \infty_5\}. 
 (u, v) = (51, 6).  \mathcal{P}_1: \{0, 1, 2\}. 
 \mathcal{P}_2: \{0, 2, 22\}, \{3, 6, 24\}, \{1, 4, 8\}, \{9, 13, 26\}, \{10, 15, 29\}, \{12, 17, 23\}, \{27, 33, 43\}, \{28, 35, 44\}, \{34, 42, 11\}, \{31, 39, 7\}, \{21, 30, 40\}, \{5, 16, \infty_0\}, \{20, 32, \infty_1\}, \{25, 37, \infty_2\}, \{19, 36, \infty_3\}, \{41, 14, \infty_4\}, \{18, 38, \infty_5\}. 
 (u, v) = (30, 9).  \mathcal{P}_1: \{0, 1, 2\}; \{0, 4, 8\}. 
 \mathcal{P}_2: \{0, 3, 8\}, \{2, 4, \infty_0\}, \{6, 9, \infty_1\}, \{11, 16, \infty_2\}, \{12, 18, \infty_3\}, \{14, 20, \infty_4\}, \{10, 19, \infty_5\}, \{13, 1, \infty_6\}, \{5, 15, \infty_7\}, \{7, 17, \infty_8\}.
```