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Abstract

This paper investigates the embedding problem for resolvable
group divisible designs with block size 3. The necessary and suf-
ficient conditions are determined for all A > 1.
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1 Introduction

Let A and v be positive integers, K and M be sets of positive integers. A
group divisible design (GDD) of order v and index ), denoted by GD(XK, A,
M;v), is a triple (X, G, B) which satisfies the following conditions.

1. X is a v-set of points,

2. G is a set of subsets (called groups) of X which forms a partition of X,
and |G| € M for each G € G,

3. B is a collection of subsets (called blocks) of X such that |B| € K for
each B € B, and each pair of points from distinct groups occurs in exactly
A blocks,

4. |GN B| <1 for each G € G and each B € B.
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A GD(K, A, M;v) is also called a (K,))-GDD of type T where T =
{IG| : G € G} is a multiset. T is called the group-type or type of the GDD.
We usually use an “exponential” notation to describe group-type: a type
19293k ... means i occurrences of 1, j occurrences of 2, etc.

When A = 1, we simply write GD(K, M; v) or K-GDD of type T. When
K = {k}, or M = {m}, we simply write k for {k}, or m for {m}.

A GD(k, A\, m; km) is called a transversal design and denoted by TD(k, A;
m). When A = 1, we simply write TD(k, m).

Let (X,G,B) be a GD(K, A\, M;v), P C B. If P forms a partition of X,
then P is called a parallel class. If B can be partitioned into parallel classes,
then the GDD is called resolvable, and denoted by RGD(K, A, M;v). A
resolvable TD(k, A;m) is denoted by RTD(k, A; m). An RGD(k, A, 1;v) is
denoted by RB(k, A; v).

The existence problem for resolvable group divisible designs with block
size three has been completely solved.

Theorem 1.1 (1, 11, 12, 13] There ezists an RGD(3, A, g;v) if and only
fv>23g,v=0 (mod3),v=0 (modg), M(v—g)=0 (mod2), and
(A? g’ v) # (1’2, 12)’ (11 6’ 18)7 (2j+ 1’2) 6), (4j + 27 1,6)7j Z 0‘

Let (X1,G1,81) be an RGD(K, A, M;v), and (X3, G2, B2) be an RGD(K,
A M) If Xy € Xa, Gi C Ga, By is a subcollection of Bs, and each parallel
class of B; is a part of some parallel class of By, then we say (X1,G:,B1)
is embedded in (X5, G2, Bs), or (X2, G2, B2) contains (X;, G, B;) as a sub-
design.

Several authors have studied the embedding problem for resolvable
group divisible designs with block size 3. We summarize these known re-
sults in the following theorem.

Theorem 1.2 [3, 4, 5, 15, 14, 16, 17, 18, 19] (1) An RGD(3,g;v) can be
embedded in an RGD(3,g;u) if and only if u —g=v—g=0 (mod 2),
v=v=0 (mod3),u=v=0 (modyg), v=3g, u2>3v, and (g,v) #
(2,6), (2,12), (6, 18).

(2) An RB(3,);v) can be embedded in an RB(3,A;u) if and only if
Mu-=1)=AMv—-1)=0 (mod2),u=v=0 (mod3), u> 3v, and
(M) # (45 +2,6),5 2 0.

In this paper we will study the remaining cases for A > 1 and completely
solve the problem.

2 Recursive Constructions

An incomplete group divisible design (IGDD) is a quadruple (X, H,G, B)
which satisfies the following conditions.
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1. X is the point set, H C X. H is called a hole,

2. G is a set of subsets (called groups) of X which forms a partition of X,
3. B is a collection of subsets (called blocks) of X such that each pair of
points from distinct groups containing at least one member in X \ H occurs
in exactly A blocks,

4. |GNB| <1 for each G € G and each B € B,

5. no block contains two members of H.

If |B| € K for each B € B, then an IGDD is called a (X, )-IGDD of
type T where K is a given set of positive integers and T' = {(|G|,|GNH]) :
G € G}. T is called the type of the IGDD. As with GDDs, we use an
“exponential” notation to describe the type. When A = 1, we simply write
K-IGDD. When K = {k}, we simply write k for {k}.

A (K, ))-IGDD is said to be resolvable and is denoted by (X, A)-IRGDD
if its blocks can be partitioned into parallel classes and holey parallel classes,
the latter partitioning X \ H.

In this paper, we will only use IRGDDs of type (g,0)™ "(g, g)"™ where
g>0and m >n > 0. So, we will use g{™" to denote the types of
such IRGDDs. It is obvious that a (k, A\)-IRGDD of type g(™™ contains
Ag(m — n)/(k — 1) parallel classes and Ag(n — 1)/(k — 1) holey parallel
classes. We note that a (k, \)-IRGDD of type g(™1) is just a (k,\)-RGDD
of type g™.

It is easy to show that the necessary conditions for the existence of a
(3, \)-IRGDD of type g{*/9¥/9) are u > 3v,u =0 (mod3),u=v=0
(mod g), M(u—g) =A(v—g) =0 (mod 2), and any of the following.

l.v=g,
2.v=29, \g=0 (mod2), andg=0 (mod 3),
3.v>3g, andv=0 (mod 3).

The following two lemmas are obvious but important in solving the
embedding problem.

Lemma 2.1 Suppose there is a (k,\)-IRGDD of type g(*/9%/9) and an
RGD(k, )\, g;v). Then an RGD(k, ), g;v) can be embedded in an RGD(k, A,

g;u).

Lemma 2.2 Suppose there ezists a (k, A\)-IRGDD of type g(*/9:*/9) and an
RTD(k,m). Then there ezists a (k, \)-IRGDD of type (mg)(*/9:2/9).

A frame is a GD(K, A, M;v) (X, G, B), with the property that B can be
partitioned into holey parallel classes, each of which forms a partition of
X\ G, for some G € G. It is denoted by (K, A)-frame of type T where T is
the type of the underlying GDD.

The existence of (3, A)-frame of type g* has been determined.
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Theorem 2.3 [1, 10, 18] There exists a (3, A)-frame of type g* if and only
fu>4,glu—1)=0 (mod3), A\glu—1) =0 (mod 2), and Agu =0
(mod 2).

An incomplete (K, )\)-frame is a (K, \)-1IGDD (X, H,G, B) where the
block set B can be partitioned into holey parallel classes, each of which
forms a partition of X \ G for some G € G, or a partition of X \ (G U H)

for some G € §. When K = {k} there are exactly 5',?}15[ holey parallel

classes that partition X \ G and A%Iﬂ holey parallel classes that partition
X\ (GUH).

The following construction is called the fundamental incomplete frame
construction (FIFC, see e.g. [6]).

Construction 2.4 (FIFC) Let (X, H,G,B) be a K-IGDD with indez one
and let w: X — Z+U{0} be a weight function on X. Suppose that for each
block B € B, there exists a (k, \)-frame of type {w(z) : = € B}. Then there
ezists an incomplete (k,)-frame of type {( X cq (%), Y zecny w(T)) :
G e G}

Setting H = @ in Construction 2.4 gives Stinson’s fundamental frame
construction (SFFC, [18]).

Construction 2.5 (SFFC) Let (X,G,B) be a group divisible design with
index one and let w : X — Z+ U {0} be a weight function on X. Suppose
for each block B € B there exists a (k,\)-frame of type {w(z) : = € B}.
Then there exists a (k, A)-frame of type {3_ o w(z) : G € G}.

The following “filling in holes” construction is a powerful tool in con-
structing IRGDDs (see [6]).

Construction 2.6 Suppose there is a (k,X)-frame of type T = {t; : i =
1,2,...,n}. Let t|t; and b > 0. Suppose there also erists a (k,A)-IRGDD
of type t&/t0) for i = 1,2,...,n — 1, then there ezists a (k,\)-IRGDD
of type t(W/t+bita/t+b) yhere 4 = S0  t;. Furthermore, if there ezists a

i=1

(k, \)-IRGDD of type t{tn/t+5b)  then there exists a (k,A\)-IRGDD of type
$(u/t+bb)

The following construction is a generalization of the construction used
in 8, Lemma 5.4}

Construction 2.7 Suppose there is an incomplete (k,))-frame of type
t3(t2, t2) (t3,84)!. Let g|t; and b > 0. Suppose there also exists a (k,\)-
IRGDD of type g(t1/9+5%) and a (k,\)-IRGDD of type g(t2/9+ta/g+bita/g+b)
then there exists a (k,\)-IRGDD of type g(4/9+0t3/9+8) yhere u = - t; +
to + t3.
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Proof. Let (X, H, {Gl,Gz, .,Gz,B,C}, A) be an 1ncomplete (k, A)-frame
of type t”(tz,tz) (t3;t4) where |Gi| =t1fori=1,2,...,z,|B| = tg, IC| =

t3,C=C UC ,|C |=ts,and H = BucC”. There are exactly L holey
parallel classes, denoted by Pg, ;, j = 1,2,..., k-l’ which partition X \G;
fori=1,2,...,z. There are ﬁ\% holey pa.rallel classes, denoted by Pp ;,

i=12,...,2%, which partition X \ (BU H). There are &f%l holey

parallel classes, denoted by Py ;, j = 1,2,. ,ﬁi’—_f-‘l, which pa.rtition
X\ C, and 4 holey parallel classes, denoted by Pgw ;, j =1,2,..., 244,

which pa.rtltlon X\(CuH).

Let Y be a set of size gband X NY = 0.

Let D; be a (k,\)-IRGDD of type g*1/9+5%) on (G; UY,Y) for i =
1,2,...,, which has AL parallel classes, denoted by Q; ;, 7 = 1,2,..., Al
and M holey pa,rallel classes, denoted by Q, L i=1,2,. M,-Zk'lﬂ

Let 'D be a (k, A)-IRGDD of type g(t2/9+‘o/9+b ta/9+b) op (H u Y c’u
Y), which has 22 parallel classes, denoted by R;, j = 1,2,..., 22 and
JBM holey parallel classes, denoted by 'R ,i=12,..., i“—:”f—'ﬂ.

Now we construct a (k, A)-IRGDD of type g(“/ g+bita/ 9""’) on (XUY,CuU
Y) as follows. Pg, ;U Qij, j = 1,2,...,2%, i =1,2,...,z, form -j\?’%
parallel classes. The other 22 ones come from P _,UR_.,-, i= 1, 2,..., 2.
(UlS;SxQ;J-)UR;-, i=12,.. M form —(gb—ﬂ holey parallel classes.
Porjrdi=12..., —@“;t‘l form another M ones. The remaining 24

ones come from ’Pcu UR i+ A\(gb—g)/(k=1)’ i=1,2,. 1 ]

Lemma 2.8 If there is a TD(6,m), and 0 < s < m, m < w < 2m, then
there ezists a (3,2)-frame of type (3m)*(6m — 3s)! (3w)?.

Proof. Take a TD(6, m), give weight 3 to the points in the first four groups,
weight 3 or 6 to the last two groups, then apply SFFC to get the desired
frame. The required (3,2)-frames of types 3462 and 356! are obtained by
applying SFFC with weight 1 to 4 GDDs of types 362 and 356! (see [2]),
respectively.O

Lemma 2.9 Letm > 1, m < w < 2m, and (m,w) & {(3,5),(4,7)}, then
there ezists a (3,2)-frame of type (3m)*(6m)!(3w)?*.

Proof. It is proved in [20] that if m > 1, m < w < 2m, and (m,w) ¢
{(3,5),(4,7)}, then there exists a 4-GDD of type (3m)*(6m)’(3w)!. Ap-
plying SFFC to this 4-GDD gives the desired frame. D

Theorem 2.10 [8] There exists a 4-GDD of type 6“m! for every u > 4
and m =0 (mod 3) with 0 < m < 3u — 3 except for (u,m) = (4,0) and
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except possibly for (u,m) € {(7,15), (11,21), (11,24), (11,27), (13,27),
(13,33), (17,39), (17,42), (19,45), (19,48), (19,51), (23,60), (23,63)}.

Theorem 2.11 [9] There exists a 4-GDD of type g*m?! with m > 0 if and
onlyifg=m=0 (mod 3) and 0 <m < 3g/2.

3 Existence of (3,2)-incomplete resolvable
group divisible designs of type 3(+/3/3)

With. the above preparations, now we prove the existence of (3,2)-IRGDDs
of type 3(4/3*/3)  First we give the following lemma for the convenient of
our description.

Lemma 3.1 Let (X,G,B) be a K-GDD of type T = {g; : i = 1,2,...,n}.
Let w > 0, 3lwg;, and b > 0. Suppose for each block B € B there ezxists a
(3,2)-frame of type w!Bl. Suppose there also exists a (3,2)-IRGDD of type
type 3(wsi/3+b0) for ;= 1,2 ... ,n— 1, then there ezists a (3,2)-IRGDD of
type 3(4/3+bwan/348) yhere y = 37 wg;. Purthermore, if there exists a

(3,2)-IRGDD of type 3(wan/3+b8) " then there exists a (3,2)-IRGDD of type
3(u/3+bb)

Proof. Applying Construction 2.5 (SFFC) with weight w gives a (3, 2)-
frame of type {wg; : ¢ =1,2,...,n}. Then applying Construction 2.6 gives
the result. O

Lemma 3.2 For (u,v) € {(18,6), (21,6), (24,6), (27,6), (33,6), (39,6),
(45,6), (51,6), (30,9), (54,15), (57,18), (72,21), (75, 24), (81, 24), (84,27),
(96,27)}, there exists a (3,2)-IRGDD of type 3(+/3.2/3),

Proof. For (u,v) € {(57,18),(75,24), (84,27),(96,27)}, see the proof of
[17, Lemma 3.4], where the desired designs are constructed. For (u,v) €
{(54,15),(72,21),(81,24)}, take a ({2,3},2)-RGDD of type 3(4~)/3 (see
the proof of [17, Lemma 3.4]), then add v ideal points to the blocks of size
2. For the remaining cases, see the Appendix. O

Lemma 3.3 Foru=v=3 (mod 6), there ezists a (3,2)-IRGDD of type
3(u/3,0/3)

Proof. Take a 3-IRGDD of type 3(¥/3%/3) and repeat its blocks twice to
get the desired design. O

Lemma 3.4 For any v =0 (mod 3) with v > 9 and any k > 3, there
ezists a (3,2)-IRGDD of type 3(kv/3:v/3)
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Proof. Take a (3,2)-RGDD of type v* and form a (3, 2)-RGDD of type 3%/3
on all but one of its groups. This gives a (3, 2)-IRGDD of type 3(kv/3:v/3),
a

Lemma 3.5 [3] For each odd = > 21, z ¢ {23,27,31}, there exists a

GDD on = points with block sizes at least four and group sizes from the set
{4,5,6,7}.

Define Tg = {n > 5} \ {6, 10,14, 18,22}. Then for every n € Ts, there
exists a TD(6, n).
The following lemma is obvious.

Lemma 3.6 If n € Tg, n > 7, then there exists an ny > n such that
ny € Tg and 4ny < 5n—1.

Lemma 3.7 (a) If there is a TD(k,t), k > 4, then for all s, 4t < s < kt,
s # 4t + 1, there exists a (3,2)-IRGDD of type 3(s+1t+1),

(b) If there is a TD(k,n), 1 <t <n, k> 5, then forall s, n+t < s <
(k—1)n+t, s #4n+t+1, there exists a (3,2)-IRGDD of type 3(s+1t+1),

Proof. For (a), take a TD(k,t), write s — 4t as a sum m(1) + m(2) +--- +
m(k — 4), where m(i) = 0 or 2 < m(i) < tfori = 1,2,...,k — 4. Now
truncate the ith group in the TD to m(Z) points fori = 1,2,...,k—4. This
gives a GDD with block sizes at least four. Now apply Lemma 3.1 with
(w,b) = (3,1).

The proof for (b) is similar. O

Lemma 3.8 Let t > 1, n € Tg, n > maz{T7,t}, then for all s > 4n +1,
s#4n+t+1, there esists a (3,2)-IRGDD of type 3(++1t+1),

Proof. By repeatedly using Lemma 3.7(b) (with ¥ = 6) and Lemma 3.6,
we obtain the result. O

Lemma 8.9 Foru=0 (mod 3), andu > 18, there ezists a (3,2)-IRGDD
of type 3(v/3:2),

Proof. We write u = 3s+ 3, s > 5. Lemma 3.2 covers 5 < s < 8 and
s = 10,12,14,16. Lemma 3.8 (with n=7) covers s=29 and s > 31. For
s odd, s > 9, apply Lemma 3.1 with a 4-GDD of type 63!, x > 4 (see
Theorem 2.10), and (w, b) = (1,1). For s even, s > 22, s # 24, 28, 32, take a
GDD in Lemma 3.5, and apply Lemma 3.1 with (w, b) = (3,2). For s=18,
construct a (3,2)-IRGDD of type 3(52) on the hole of a (3,2)-IRGDD of
type 3(196)(see Lemma 3.2). For s = 20, 24, 28, take a (3,2)-frame of type
154, 184, 214, apply Construction 2.6 with b = 1 to get a (3,2)-IRGDD
of type 3(21:6), 3(25,7) 3(29.8) then construct a (3,2)-IRGDD of type 3(6:2),
3(7:2) 3(82) op the hole, respectively. O
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Lemma 3.10 Let s = 4t + 1, t > 5, then there exists a (3,2)-IRGDD of
type 3(s+1,t+1).

Proof. Apply Lemma 3.1 with a 4-GDD of type (3t — 3)412! (see Theorem
2.11) and (w,b) = (1,2). O

Lemma 3.11 Fort =10,14,18,22, 4t < s < 5t, s # 4t + 1, there exists a
(3,2)-IRGDD of type 3(s+1it+1),

Proof. Take a TD(5,t/2), give weight 6 to the points in the first four groups,
weight 0,3 or 6 to the last group, then apply SFFC to get a (3,2)-frame of
type (3t)4(3(s — 4t))!. (the required (3,2)-frame of type 643! is obtained
by applying SFFC with weight 1 to a 4-GDD of type 63!.) Now apply
Construction 2.6 with b= 1. O

Lemma 3.12 Suppose there is a TD(6,t + 1), where t > 6. Then there
ezists a (3,2)-IRGDD of type 3Gt+r+Lt+1) for r = 1,2, 3,5,

Proof. 1t is proved in [3] that there exist a GD({4, 5,t+7—-3,t+1},{3,4,t};
5t +7) for r = 1,2,3, and a GD({4,5,6,t}, {4,5,t}; 5t + 5). Apply Lemma
3.1 to this GDD with (w,b) = (3,1). O

Theorem 3.13 Suppose t > 7 and s > 4t. Then there exists a (3,2)-
IRGDD of type 3(s+1it+1),

Proof. When t > 7, t € Tg, the result follows from Lemma 3.7(a) (with
k = 6), Lemma 3.8 (with n = t), and Lemma 3.10. When ¢t > 7, ¢t € Tg,
the result follows from Lemma 3.8 (with n = ¢t + 1), Lemmas 3.10-3.12. O

Theorem 3.14 Foreveryu=v =0 (mod 3) withv > 24 andu > 4v-9,
there erists a (3,2)-IRGDD of type 3(4/3:v/3),

Proof. Write v = 3t+3,t > 7, and © = 3s + 3. Then the condition
u 2> 4v — 9 is equivalent to s > 4¢. Apply Theorem 3.13 to get the result.
a

Now we consider the cases 2 <t < 6 (i.e., v =3t +3=9, 12, 15, 18, 21)
and s > 3t + 2 (i.e., u = 3s + 3 > 3v). We have the following lemma.

Lemma 3.15 For v =0 (mod 3), v < 21, there ezists a (3,2)-IRGDD
of type 3(/3¢/3) if and only if u > 3v, andu=0 (mod 3).

Proof. v=9. Lemma 3.2 covers s=9. For s even, s > 8, see Lemma 3.3.

For s odd, s > 11, apply Lemma 3.1 with a 4-GDD of type 6*9!, z > 4
(see Theorem 2.10), and (w,b) = (1,1).
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v = 12. Lemma 3.8 (with n=7) covers s=31 and s > 33. Lemma
3.7 (b) (with k=6, n=>5) covers s=23 and 25 < s < 28. Lemma 3.4
covers s = 11,19. For s = 0 (mod 3), s > 12, take a (3,2)-frame of
type 9°/3 and apply Construction 2.6 with b = 1. For s = 20,29, take
a GD({4,5},{3,4};20) (see [3]), GD({4,5},{3,5};29) (see [17]), and apply
Lemma 3.1 with (w,b) = (3,1). For s = 13,14,16,17,32, take a 4-GDD
of type 691, 9461, 94121, 956!, 98241 (see [9]), and apply Lemma 3.1 with
(w,b) = (1,1). For =22, take a (3,2)-frame of type 9412'18! (see Lemma
2.9), and apply Construction 2.6 with b = 1.

v = 15. Lemma 3.2 covers s=17. Lemma 3.8 (with n=7) covers s=32
and s > 34. Lemma 3.7 (a) (with k=5) covers s=16 and 18 < s < 20.
Lemma 3.7 (b) (with k=6, n=>5) covers s=24 and 26 < s < 29. Lemma 3.3
covers s = 14, 22, 30. For s=15, take a (3,2)-frame of type 6%9112! (see
Lemma 2.9), and apply Construction 2.6 with b = 1. For s = 21,23, 31, 33,
take & GD({4,5}, {4,5};21), GD({4,5},{3,4};23), GD({4,5}, (3,4}, 31),
GD({4,5}, {4, 5},33) (see [17]), and apply Lemma 3.1 with (w,b) = (3,1).
For s = 25, take a GD({5,6}, {4,5};25) (see [3]), and apply Lemma 3.1
with (w,b) = (3,1).

v = 18. Lemma 3.2 covers s=18. Lemma 3.8 (with n=7) covers s=33
and s > 35. Lemma 3.4 covers s=17. Lemma 3.7 (a) (with k=6) covers
=20 and 22 < s < 30. Lemma 3.10 covers s=21. For s=19, apply Lemma
3.1 with a 4-GDD of type 6512115 (see [9]) and (w, b) = (1,1). For s=31,
apply Lemma 3.1 with a 4-GDD of type 6°9' (see Theorem 2.10) and
(w,b) = (2,2). For s = 32,34, delete 1 or 3 points from a group in a
{5,7}-GDD of type 57, then apply Lemma 3.1 with (w,b) = (3,1).

v = 21. Lemma 3.2 covers s=23. Lemma 3.8 (with n=7) covers s=34
and s > 36. Lemma 3.4 covers s=20, 27. Lemma 3.3 covers s = 22, 24,
26, 28, 30. Lemma 3.12 covers 31 < s < 33 and s=35. For s = 21, apply
Lemma 3.1 with a 4-GDD of type 3°6! (see [2]) and (w,b) = (3,1). For
s = 25, apply Lemma 3.1 with a 4-GDD of type 1512! (see Theorem 2.11)
and (w,b) = (1,2). For s=29, apply Lemma 3.1 with a 4-GDD of type
18415! (see Theorem 2.11) and (w,b) = (1,1). D

Theorem 3.16 Supposeu=v=0 (mod 3), v > 30, and u > 3.5v, then
there ezists a (3,2)-IRGDD of type 3(4/3:9/3),

Proof. By Theorem 3.14 we only need to consider u < 4v — 9. We divide
the proof into two cases.
Case 1: v=3 (mod 6).

Take a (3,2)-frame of type (3m)*(6m)!'(3w)!, m < w < 2m, m > 5
(see Lemma 2.9), and apply Construction 2.6 with b = 1 to yield a (3,2)-
IRGDD of type 3(/3:/3) where v =6m + 3 > 33, u = 18m + 3w + 3, and
35v-7T5<u<4v-9
Case 2: v=0 (mod 6).
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Take a (3,2)-frame of type (3m)*(6m — 3)}(3w)!, m < w < 2m, m > 5,
m # 6, 10, 14, 18, 22 (see Lemma 2.8), and apply Construction 2.6 with
b =1 to yield a (3,2)-IRGDD of type 3(*/3*/3) where v = 6m > 30,
v # 36, 60, 84, 108, 132, u = 18m + 3w, and 3.5v < u < 4v.

Take a (3,2)-frame of type (3m)*(6m)!(3w)!, m < w < 2m,m > 5
(see Lemma 2.9), and apply Construction 2.6 with b = 2 to yield a (3,2)-
IRGDD of type 3(¥/3:%/3) where v = 6m + 6 > 36, v = 18m + 3w + 6, and
35v—-15<u<4v—18.

Take a (3,2)-frame of type (3m)*(6m—9)!(3w)!, m < w < 2m,m =11,
15, 19, 23 (see Lemma 2.8), and apply Construction 2.6 with b = 1 to yield
a (3,2)-IRGDD of type 3(#/3:%/3) where v = 6m — 6 = 60, 84, 108, 132,
and u = 4v — 15, 4v — 12.

For v = 36, u = 4v—12, apply Lemma 3.1 with a 4-GDD of type 24433!
(see Theorem 2.11) and (w, b) = (1, 1).

For v = 36, u = 4v — 15, apply Lemma 3.1 with a 4-GDD of type
98331211 (see [5]) and (w,b) = (1,1).

With the above discussion, the theorem is proved. O
Lemma 3.17 For v = 0 (mod 3), and v < 36, there exists a (3,2)-

IRGDD of type 3(+/3:%/3) if and only if u =0 (mod 3), and u > 3v.

Proof. For v < 21, see Lemma 3.15.

v = 24, and u € {72,75,78,81,84}. Lemma 3.2 covers u = 75,81.
Lemma 3.4 covers u=72. For u=78, take a (3,2)-frame of type 18* and
apply Construction 2.6 b = 2. For u=84, apply Lemma 3.1 with a 4-GDD
of type 15421! (see Theorem 2.11) and (w,b) = (1,1).

v =27, and u € {81,84,87,90,93,96}. Lemma 3.3 covers u = 81, 87,
93. Lemma 3.2 covers u = 84,96. For u = 90, take a (3, 2)-frame of type
214 and apply Construction 2.6 with b = 2.

v = 30, and u € {90,93,96,99,102}. For u # 99, take a (3,2)-frame
of type 12424} (3w)!, 4 < w < 8, w # 7 (see Lemma 2.9), and apply
Construction 2.6 with b = 2. For u=99, apply Lemma 3.1 with a 4-GDD
of type 96151271 (see [17]) and (w, b) = (1,1).

v = 33. By the proof of Theorem 3.16, we only need to consider u €
{99,102,105}. Lemma 3.3 covers u=99, 105. For u=102, take a 4-IGDD
of type 96(15, 15)1(30, 3)? (see [17]), and apply FIFC to get an incomplete
(3,2)-frame of type 96(15,15)1(30,3)%, then apply Construction 2.7 with
b=1.

For v = 36, by Lemma 3.4 and the proof of Theorem 3.16, there’s no
remaining case. O

Theorem 3.18 For u = v = 0 (mod 3), and u > 3.4v, there ezisis a
(3,2)-IRGDD of type 3(#/3:2/3),
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Proof. Let m, z take the values listed in Table 1. By Theorem 3.16 and
Lemma 3.17 there exists a (3,2)-IRGDD of type 3((w+2)/3,2/3) where w =
m,m+1,...,2m. Take a (3, 2)-frame of type (3m)*(6m)! (3w)® (see Lemma
2.9), and apply Construction 2.6 with b = z/3 to yield a (3,2)-IRGDD of
type 3("/3"’/3), where v = 6m+z, u = 18m+3w+z, and Umin < ¥ < Umaz-
The interval [¥min, Umaz] covers [3.4v,3.50]. O

v m T i Umin Umaz
27t 4t 3t t>2 87t 99t

27t 4+3 | 4t+1 | 3t-3 | t>2 | 87t4+18 | 99t +21
27t +6 | 4t+1 | 3t t>1 | 87421 | 99t + 24
27t 4+9 |4t 4+2 | 3t -3 | t>2| 87t+39 | 99 +45
2Tt 412 | 4t +2 | 3¢ t>1 | 87t +42 | 99t + 48
2Tt 415 | 4t +2 | 3t +3 | t>1 | 87t +45 | 99t + 51
274+ 18 | 44 +3 | 3t t>1]87t+63 | 99472
27t +21 | 4+3 | 3t+3 | t>1 | 8Tt +66 | 99t + 75
27Tt 424 | 4t4+4 | 3t t>1] 87t +84 | 99t +- 96

Table 1

Lemma 3.19 Forv=3 (mod9), v > 12, and u = 3v + 3, there exisis a
(3,2)-IRGDD of type 3(+/3:2/3),

Proof. Adjoin a group of size 9(s — 1)/2 at infinity to a 3-RGDD of type 9°
to get a 4-GDD of type 9°(9(s — 1)/2)?, where s is odd, and s > 3. Then
apply Lemma 3.1 with (w,b) = (1,1). O

Lemma 8.20 For v =0 (mod 3), u = 3v,3v +3,3v +6, there exists a
(3,2)-IRGDD of type 3(#/34/9),

Proof. For u = 3v, see Lemma 3.4. For v < 36, see Lemma 3.17.
Case 1 u=3v+ 3.

Lemma 3.19 covers v = 39, 48,57,66,102. For v = 42,54, 72, take a 4-
GDD of type 12615136, 12815148!, 12111566 (see [5]), and apply Lemma
3.1 with (w,b) = (1,2). For v = 45, 51,60, 105, take a (3,2)-frame of type
184361211, 214421211, 24448127, 42484'45! (see Lemma 2.9), and apply
Construction 2.6 with b=3, 3, 4, 7, respectively. For v = 63, take a 4-GDD
of type 189211541 (see [17]), and apply Lemma 3.1 with (w, b) = (1,3). For
v = 69, take a 4-IGDD of type 914(15,15)*(66,3)" (see [17]), and apply
FIFC to get an incomplete (3,2)-frame of type 914(15,15)!(66,3)!, then
apply Construction 2.7 with b = 1. For v = 99, take a 4-IGDD of type
916(57,57)1(96,24)! (see {17]), and apply FIFC to get an incomplete (3, 2)-
frame of type 9'6(57, 57)!(96,24)!, then apply Construction 2.7 with b = 1.
For v = 108, take a 4-IGDD of type 12!6(27,27)!(102,6)" (see [5]), and
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apply FIFC to get an incomplete (3, 2)-frame of type 1216(27,27)1(102, 6),
then apply Construction 2.7 with b = 2.

Take a 4-IGDD of type 9%"(6¢t+9, 6t+9)(9n+3¢,3t)},n =0 (mod 4),
n #4,88,124,0 <t < n—1 (see [17]). Apply FIFC to get an incomplete
(3,2)-frame of type 92"(6t +9, 6t +9)!(9n + 3¢, 3t)*. Then apply Construc-
tion 2.7 with b = 1. This covers 75 < v < 96 and v > 111.
Case 2 u=3v + 6.

Forv=3 (mod 6), see Lemma 3.3.

For v =0 (mod 6), v > 42, and v # 54,66, take a 4-GDD of type
6°(3s ~ 6)! (see Theorem 2.10) and apply Lemma 3.1 with (w,b) = (1,1).
For v = 54, take a 4-IGDD of type 128(18,18)!(51,3)! (see [17]), and
apply FIFC to get an incomplete (3,2)-frame of type 12%(18, 18)}(51,3)?,
then apply Construction 2.7 with b = 1. For v = 66, take a (3,2)-frame of
type 27454130 (see Lemma 2.9) and apply Construction 2.6 with b = 4. O

Lemma 3.21 For everyv=9 (mod 15), v > 39, u = 3v+9, there ezists
a (3,2)-IRGDD of type 3(+/3:0/3),

Proof. For v=39, take a 4-GDD of type 983615! (see [5]), and apply
Lemma 3.1 with (w,b) = (1,1). For v=>54, take a (3,2)-frame of type
394 and apply Construction 2.6 with b = 5. For v=69, take a 4-GDD
of type 12!115!66! (see [5]), and apply Lemma 3.1 with (w,b) = (1,1).
For v=84, take a 4-IGDD of type 158(57,57)*(81,21)! (see [17])} and apply
FIFC to get an incomplete (3,2)-frame of type 158(57,57)!(81,21)!, then
apply Construction 2.7 with b = 1. For v=114, take a TD(8,11) and give
all the points on the first six groups weight 3 and all the points on a
seventh group weight 9, then give two points on the last group weight
6 and the remaining nine points weight 3, apply SFFC to get a (3,2)-
frame of type 33999!39!. Note that we need (3,2)-frames of types 379!
and 3%619!; the former is obtained by applying SFFC to a 4-GDD of type
379! (see [2]), while the latter to a {4,7}-GDD of type 3°6'9! (see [5]).
Then apply Construction 2.6 with b = 5. For v=159, take a 4-IGDD of
type 1225(27,27)1(156,6)! (see [5]), and apply FIFC to get an incomplete
(3,2)-frame of type 1225(27,27)(156, 6)!, then apply Construction 2.7 with
= 1. For v=189, take a (3, 2)-frame of type 129% and apply Construction
2.6 with b = 20. (the required (3,2)-IRGDD of type 3(63:20) is obtained by
letting (m,w) = (8,11) in Lemma 2.9 and applying Construction 2.6 with
b=4)
Forv=0 (mod 6), v > 144, take a 4-IGDD of type 12°—3(57, 57)1(6(s—
3) +18,18)!, s=3 (mod 5) and s > 23(see [5]), and apply FIFC to get
an incomplete (3, 2)-frame of type 12°~3(57,57)1(6(s — 3) + 18,18)?, then
apply Construction 2.7 with b = 2.
For v =3 (mod 6), v > 99, and v # 159,189, take a 4-GDD of type
12°151(6s)?, s € {16,21}U{n =1 (mod 5): n > 36} (see [5]), and apply
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Lemma 3.1 with (w,b) = (1,1). O

Lemma 3.22 For v = 0 (mod 3) and v < 192, there ezists a (3,2)-

IRGDD of type 3(#/3%/3} if and only if u=0 (mod 3) and u > 3v.

Proof. By Lemma 3.17 and Theorem 3.18, we only need to consider 39 <
v <192 and u < 3.4v.

Let m and z take the values listed in Table 2. The condition 3 < v < 192
implies t < 12 in Table 2. By Lemma 3.17 there exists a (3,2)-IRGDD of
type 3(3w+2)/3:2/3) where w = m,m+1,...,2m. Takea (3,2)-frame of type
(3m)*(6m)! (3w)!, m < w < 2m (see Lemma 2.9), and apply Construction
2.6 with b = z/3 to yield a (3,2)-IRGDD of type 3(*/3:*/3) where v =
6m+z, u = 18m+ 3w + z, Umin < U < Umaz, a0d Umar = 3.40.

The missing cases in Table 2 are covered by Lemmas 3.20-3.21. O

v m T t Umin Umaz missing cases

15¢ 2t 3t 3<t<12 | 45t 51t no

15t + 3 2t+1 | 3-3 | 2<t<12 | 45t+18 | 51t +21 | 3v,3v+3,
3v+6

15t + 6 2+1 | 3t 2<t<12 | 45¢t+21 | 51t+24 | 3v

15t +9 204+2 [ 3t-3 | 2<t<12 | 45t+39 | 51t +45 | 3v,3v+3,
3v+6,3v+9

15¢+12 | 2¢+2 | 3t 2<t<12 | 45¢+42 | 51t +48 | 3v,3v+3

Table 2

Theorem 3.23 There ezists a (3,2)-IRGDD of type 3(*/3¥/3) if and only
fu=v=0 (mod3) and u > 3v.

Proof. By induction on t. Write v = 15t + s, s = 0,3,6,9,12. We have
proved the cases ¢ < 12 in Lemma 3.22. Now suppose that for every
t < t; there exists a (3,2)-IRGDD of type 3(#/3:*/3) where v = 15t + s,
$§=0,3,6,9,12,2u=0 (mod 3), and » > 3v. For the values of m, z listed
in Table 3, we have z < 3t < 15¢;. By our induction hypothesis, there exists
a (3,2)-IRGDD of type 3((3w+2)/3:2/3) where w = m,m +1,...,2m. Now
take a (3,2)-frame of type (3m)%(6m)'(3w)!, m < w < 2m (see Lemma
2.9), and apply Construction 2.6 with b = z/3 to yield a (3,2)-IRGDD of
type 3(u/3:v/ 3), where v =6m + z, u = 18m + 3w + T, Umin < ¥ < Unaz,
and Umaz > 3.4v. The missing cases in Table 3 are covered by Lemma
3.20 and Lemma 3.21. Thus the result for ¢; < t < 5¢; is proved. This
completes the proof. O
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v m T t Umin Umazx missing cases

15t 2t 3t ty <t <5t | 45¢ 51t no

15t +3 2t+1 | 3t -3 | t1 <t <5t | 45¢+18 | 51t +21 | 3v,3v+ 3,
3v+6

15t 4+ 6 2t4-1 | 3t t; <t<5t; | 45t+21 | 51t +24 | 3v

15t +9 204+2 | 3t -3 | t1 <t <5t | 45t +39 | 51t +45 | 3v,3v+ 3,
3v+6,3v+9

15¢+12 | 2t +2 | 3t t) <t <5t | 45t+42 | 51t +48 | 3v,3v+3

Table 3

4 Main Results

Theorem 4.1 There exists a (3, \)-IRGDD of type g(/9:%/9) if and only
fu>3v,u=0 (mod3),u=v=0 (modg), Mu—g)=IMv—-—g)=0
(mod 2), and any of the following conditions is satisfied.

1. v=g, and (Au,v) #(1,12,2), (L,18,6), (2j + 1,6,2), (47 + 2,6, 1),
j20,

2.v=2g, \g=0 (mod2), and g=0 (mod 3),

3.v2>23g, andv=0 (mod 3).

Proof. A (3,)-IRGDD of type gt“/9'1) is just a (3,A)-RGDD of type g%/9.
Thus we only need to consider the cases v > 2g.

For A odd, or A, g even, take a 3-IRGDD of type g(*/9:?/9) (see [17]),
and repeat its blocks ) times to yield a (3, \)-IRGDD of type g(¢/9:¥/9)_ For
Aevenand g = 1,5 (mod 6), g > 1, take a (3,2)-IRGDD of type 1(*)
(i.e., an IRB(3, 2; u,v), see [16]), and repeat its blocks A/2 times to yield a
(3, )\) IRGDD of type 1(*¥), then apply Lemma 2.2 with an RTD(3, g). For
Aevenand g=3 (mod 6) g > 3, take a (3,2)-IRGDD of type 3(#/3:2/3),
and repeat its blocks A/2 times to yleld a (3,)-IRGDD of type 3(/3./ 3)
then apply Lemma. 2.2 with an RTD(3, g/3). This completes the proof.0

Combining Lemma 2.1 and Theorem 4.1 gives the following theorem.

Theorem 4.2 An RGD(3, A, g;v) can be embedded in an RGD(3, ), g; u)
ifand only if N(u—g) = A(v—-g)=0 (mod2),u=v=0 (mod3),u=
v=0 (modg), v >3g, u23v, and (A g,v) # (1,2,12),(1,6,18), (25 +
1,2,6), (45 +2,1,6), j > 0.
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Appendix

Several (3,2)-IRGDDs of type 3(*/3*/3) (X, H,G,B) are constructed as follows.
Let X = Zu_yU{ooi :i € Z,}, H={o0i:i€ Zv}, G = {{0,(u—-v)/3,2(u~—
v)/3}+i:4 € Zu_y}. The v— 3 holey parallel classes are obtained by developing
the blocks in Py mod ©—v. (Each block {a, b, ¢} in P; satisfies {a,b, ¢} = {0, 1,2}
(mod 3), so from {a, b, c} we can form 3 holey parallel classes.) The u— v parallel
classes are obtained by developing the base parallel class in P2 mod u — v.

(u,v) = (18,6). Pr: {0,1,2}.
Pa: {0,2, 000}, {3,6,001}, {7,10, 002},
{4,9,003}, {8,1,004}, {5,11,005}.

(u,v) = (21,6). Py: {0,1,2}.
Pa: {0, 2, 6}, {1,4, 000}, {7, 10,001}, {9, 13, 002},
{8, 14, 003}, {5, 12, 004}, {11, 3, 005}.

(u,v) = (24,6). P1: {0,1,2}.
P2: {0,2,7}, {1,4,8}, {9,12, 000}, {13,17,001},
{10, 15, 002}, {3,11, oo3}, {16, 6,004}, {5, 14, c05}.

(u,v) = (27,6). P1: {0,1,2}.
P2: {0,2,5}, {1,4, 10}, {3,7,13}, {11,15,000}, {14, 19,001},
{8,16, 002}, {12, 20, 003}, {9, 18, 004}, {17,6,005}.

(u,v) = (33,6). P1: {0,1,2}.
P2: {0,2,5}, {1,4,8}, {3,7,15}, {13, 18,26}, {11,17,24}, {16, 22, 000},
{9,19,001}, {10, 20, 002}, {12, 23, 003}, {14, 25, 004}, {21, 6, c0s}.

(u,v) = (39,6). P1: {0,1,2}.
Pa: {0,2,16}, {1,4,8}, {3,6,18}, {7,11,20}, {12,17, 24}, {13, 19, 27}, {23, 29, 5},
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{25,30,000}, {14,22,001}, {21, 31, 002}, {32,9, 003}, {15, 28, 004}, {10, 26, 005}.

(u,v) = (45,6). P1: {0,1,2}.

P2: {0,2,19}, {1, 4,8}, {8,6,21}, {7,11,23}, {5,10, 16}, {20, 25, 34},
{18,24, 33}, {15, 22,32}, {29, 37,9}, {27, 35, co0},

{28, 38, 00, }, {14, 26, 002}, {17, 31, 003}, {36, 13,004}, {12, 30,005}.

(u,v) = (51,6). P1: {0,1,2}.

Py: {0,2,22}, {3,6,24}, {1,4,8}, {9, 13,26}, {10, 15,29}, {12, 17,23},
{27,33,43}, {28, 35,44}, {34,42, 11}, {31,39,7}, {21, 30,40}, {5, 16, 000},
{20,32, 00, }, {25, 37, 002}, {19, 36, 003}, {41,14, 004}, {18, 38,005}.

(u,v) = (30,9). P1: {0,1,2}; {0,4,8}.

Pa: {0,3,8}, {2, 4, 000}, {6,9,001}, {11,16,002}, {12, 18, 003}, {14,20, 004},
{10,19, 005}, {13, 1, 00s}, {5, 15, 007}, {7, 17, 008}
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