On 3-Degeneracy of Some C_7 -free Plane Graphs with Application to Choosability *

Jianfeng Hou Guizhen Liu[†] Jianliang Wu Shandong University School of Mathematics and System Sciences, Jinan, P. R. China, 250100, E-mail: gzliu@sdu.edu.cn

Abstract

A graph G is said to be k-degenerate if for every induced subgraph H of G, $\delta(H) \leq k$. Clearly, planar graphs without 3-cycles are 3-degenerate. Recently, it was proved that planar graphs without 5-cycles or without 6-cycles are also 3-degenerate. And for every k=4 or $k\geq 7$, there exist planar graphs of minimum degree 4 without k-cycles. In this paper, it is shown that each C_7 -free plane graph in which any 3-cycle is adjacent to at most one triangle is 3-degenerate. So it is 4-choosable.

Key words: degenerate; choosable; cycle; plane graph; triangle. AMS subject classification: 05C05

1 Introduction

In this paper, unless stated otherwise, graph means simple plane (finite) graph. Undefined symbols and concepts can be found in [1].

Let G = (V, E, F) be a plane graph, where V, E and F denote the set of vertices, edges and faces of G, respectively. $N_G(v)$, or N(v)

^{*}This work is supported by a research grant NSFC(10471078) and SRFDP(20040422004) of China.

[†]The corresponding author: Guizhen Liu, mail address: Department of Mathematics, Shandong University, Jinan, Shandong, P. R. China, 250100, E-mail: gzliu@sdu.edu.cn.

if there is no possibility of confusion, denotes the set of vertices adjacent to v in G, and ∂f denotes the set of vertices incident with the face f. The degree of a vertex v is denoted by d(v). A vertex is called a k-vertex or a k^+ -vertex if d(v) = k or if $d(v) \ge k$, respectively. We denote by $\delta(G)$, the minimum degree of G. A face of a graph is said to be incident with all edges and vertices on its boundary. Two faces sharing an edge e are called adjacent at e. The degree of a face f of plane graph G, denoted by $d_G(f)$, is the number of edges incident with it, where each cut edge is counted twice. A k-face or a k^+ -face is a face of degree k or of degree at least k, respectively. A triangle is synonymous with a 3-face. A graph is called C_i -free graph if it contains no i-cycle.

A graph G is said to be k-degenerate if for every induced subgraph H of G, $\delta(H) \leq k$. Clearly, planar graphs without 3-cycles are 3-degenerate. Wang and Lih^[8] proved that planar graphs without 5-cycles are 3-degenerate. Fijavž, Juvan, Mohar and Škrekovski^[3] proved that planar graphs without 6-cycles are 3-degenerate. There exist planar graphs of minimum degree 4 without cycles of length 4. An example of such a graph is obtained by taking the line graph of a cubic planar graph of grith 5, e.g., the line graph of dodecahedron. Also, for every $k \geq 7$, there is a planar graph of minimum degree 4 without k-cycles. Such an example is the octahedron graph.

One of the main motivations to study degenerate graphs is the theory of graph colorings. A list coloring of G is an assignment of colors to V such that each vertex v receives from a prescribed list L(v) of colors and adjacent vertices receive distinct colors. $L(G) = \{L(v)|v\in V\}$ is called a color-list of G. G is called k-choosable if G admits a list-coloring for all color-lists L with k colors in each list. Graph-choosability is a generalization of graph-colorability. It was first introduced by Vizing^[7] and independently by Erdős, Rubin, and Taylar^[2] nearly two decades ago. Thomasson ^[5,6] proved that every plane graph is 5-choosable and every plane graph with grith at least 5 is 3-choosable. Lam, Shiu, and Xu^[4] proved that if G is free of k-cycle for some $k \in \{3,4,5,6\}$, or if any two triangles in G have distance at least 2, then G is 4-choosable.

In this paper, we prove the following theorems.

Theorem 1. Every C_7 -free plane graph in which any 3-cycle is adjacent to at most one triangle is 3-degenerate.

Theorem 2. Every C_7 -free plane graph in which any 3-cycle is adjacent to at most one triangle is 4-choosable.

2 Proof of Theorems

Proof of Theorem 1. By contradiction. Let G = (V, E, F) be a counterexample with |V| + |E| minimal. Thus G is a connected C_7 -free plane graph in which any 3-cycle is adjacent to at most one triangle, and with $\delta(G) \geq 4$.

Euler's formula |V| + |F| - |E| = 2 can be rewritten as $(\frac{|E|}{4} - \frac{|V|}{2}) + (\frac{|E|}{4} - \frac{|F|}{2}) = -1$. It follows from $\sum_{v \in V} d(v) = \sum_{f \in F} d(f) = 2|E|$ that

 $\sum_{v \in V} (\frac{1}{8}d(v) - \frac{1}{2}) + \sum_{f \in F} (\frac{1}{8}d(f) - \frac{1}{2}) = -1.$

For each $x \in V \cup F$, let $w(x) = \frac{1}{8}d(x) - \frac{1}{2}$ be a weight assigned to x. So the sum of the charges for all vertices and faces is -1. We are going to redistribute these charges, not changing their sum, so that the new charge $w^*(x)$ becomes non-negative for all $x \in V \cup F$. Thus a contradiction is produced below and henceforth the proof is complete.

 $0 \le \sum_{x \in V \cup F} w^*(x) = \sum_{x \in V \cup F} w(x) = -1.$

Weights will be transferred according to the following rules:

 (R_1) From each 5-vertex v to an incident triangle f, transfer

 $(R_{1.1})$ $\frac{1}{8}$, if v is incident with exactly one triangle.

 $(R_{1.2})$ $\frac{1}{16}$, if v is incident with exactly two triangles.

 $(R_{1.3})$ $\frac{1}{16}$, if v is incident with three triangles and f is adjacent to a triangle which is incident with v.

 (R_2) From each 6⁺-vertex v to an incident triangle f, transfer

 $(R_{2.1})$ $\frac{1}{8}$, if v is incident with at least four 4⁺-face.

 $(R_{2.2})$ $\frac{1}{16}$, otherwise.

(R₃) From each 5-face f to an adjacent triangle f', transfer $\frac{1}{8}$.

 (R_4) From each 6-face to an adjacent triangle, transfer $\frac{1}{8}$.

 (R_5) Suppose that a 8⁺-face f and a triangle f' are incident to e = uv, $w \in \partial f' \setminus \partial f$. From f to f', transfer

 $(R_{5.1})$ $\frac{1}{8}$, if f' are incident to exactly one triangle, one 4-face, and d(u) = d(v) = 4, or f' is adjacent to exactly two 4-faces, and d(u) = d(v) = 4.

 $(R_{5.2})$ $\frac{1}{16}$, otherwise.

We shall first make the following observations. Note that G is C_7 -free plane graph in which any 3-cycle is adjacent to at most one triangle, and $\delta(G) \geq 4$.

- (1) A 5-vertex v is incident with at most three triangles. If v is incident with three triangles f_1, f_2, f_3 , there are two triangles, say f_1, f_2 , such that f_3 is neither adjacent to f_1 nor f_2 , and f_1, f_2 are adjacent to each other.
- (2) If a 5-vertex v is incident with a 4-face, then v is incident with at most two triangles.
- (3) A k-vertex, where $k \geq 6$, is incident with at most $\lfloor \frac{2}{3}k \rfloor$ triangles.
 - (4) A 5-face is adjacent to at most one triangle.

Proof. Otherwise, let f_1, f_2 be two triangles which are adjacent to a 5-face f. Since G does not contain 7-cycles, G must contain one of the following two structures (See Fig. 1).

Case 4.1

Case 4.2

Fig. 1

In Case (4.1) and Case (4.2), we can find a 3-cycle which is adjacent to two triangles, contradicting that any 3-cycle is adjacent to at most one triangle.

- (5) A 6-face is adjacent to at most two triangles, and if a triangle f' is adjacent to 6-face f, then the vertices incident with f' are incident with 6-face f.
- (6) If a triangle f is adjacent to exactly one triangle, one 4-face, then the remaining face which f is adjacent to is a 8^+ -face, and it

must be the following structure (See Fig. 2).

(7) If a triangle f is adjacent to exactly two 4-faces f_1, f_2 , then it must be one of the following two structures (See Fig. 3).

In Case (7.1), $d(f_3) \geq 8$. In Case (7.2), $d(f_3) \geq 5$. And if $d(f_3) = 5$, then f_3 is adjacent to exactly one triangle.

We shall now establish the following claim. Suppose that st, tu and uv are three consecutive edges on the boundary of a face f with $d(f_3) \neq 6$ (See Fig. 2 and Fig. 3).

Claim. Suppose that the face f_3 , where $d(f_3) \neq 6$, is adjacent to a triangle f at tu. If $\frac{1}{8}$ is transferred from face f_3 across tu to f, then f_3 is adjacent to a 4^+ -face at st and at uv, respectively. So 0 is transferred across st and uv.

Proof. If $d(f_3) = 5$, it must be Case (7.2). From the Observation (4), we are done. Otherwise, $d(f_3) \ge 8$.

If Case (6) happens, then f_3 is adjacent to a 4^+ -face at st and at uv, respectively. Otherwise, if f_3 is adjacent to any triangle at st, then the triangle must be stt', because of d(t) = 4. That is impossible

because G is C_7 -free. Therefore the weight to be transferred across st is 0. Similarly, the face adjacent to f_3 at uv is a 4^+ -face.

If Case (7.1) happens, then f_3 is adjacent to a 4^+ -face at st and at uv, respectively. Otherwise, if f_3 is adjacent to any triangle at st, then the triangle must be stt', because of d(t) = 4. That is impossible because any 3-cycle is adjacent to at most one triangle. If f_3 is adjacent to any triangle at uv, then the triangle must be uu'v, because of d(u) = 4. That is impossible, because G is C_7 -free.

If Case (7.2) happens, then f_3 is adjacent to a 4^+ -face at st and at uv, respectively. Otherwise, if f_3 is adjacent to any triangle at st, then the triangle must be stx, because of d(t) = 4. That is impossible because any 3-cycle is adjacent to at most one triangle in G. Therefore the weight to be transferred across st is 0. Similarly, the face adjacent to f_3 at uv is a 4^+ -face and the weight to be transferred across uv is 0.

We shall now show that $w^*(x) \geq 0$ for all $x \in V \cup F$. Suppose that v is a k-vertex. Clearly $w^*(v) = w(v) = 0$ if k = 4. Now we consider k = 5. If v is incident with exactly one triangle, then $w^*(v) = w(v) - \frac{1}{8} = 0$; If v is incident with two triangles, then $w^*(v) = w(v) - 2 \times \frac{1}{16} = 0$; If v is incident with three triangles, then $w^*(v) = w(v) - 2 \times \frac{1}{16} = 0$. Assume that $k \geq 6$. If v is incident with at least four 4^+ -face, then $w^*(v) \geq w(v) - (d(v) - 4) \times \frac{1}{8} = 0$. Otherwise, because of Observation (3), $w^*(v) \geq w(v) - \frac{2}{3} \times \frac{k}{16} \geq 0$.

Let the face f be a triangle. If f is adjacent to a 6-face, then $w^*(f) \geq w(f) + \frac{1}{8} = 0$. If there is a vertex $v \in \partial f$ incidents with at least four 4^+ -faces, then $w^*(f) \geq w(f) + \frac{1}{8} = 0$. Otherwise, let f = uvw be adjacent to f_1, f_2, f_3 , respectively, where $d(f_1) \leq d(f_2) \leq d(f_3)$, and $\partial f \cap \partial (f_1) = \{u, w\}$, $\partial f \cap \partial (f_2) = \{w, v\}$, $\partial f \cap \partial (f_3) = \{u, v\}$. If $d(f_2) \geq 5$, by (R_3) and (R_4) , $w^*(f) \geq w(f) + 2 \times \frac{1}{16} = 0$. If $d(f_1) = 3$, $d(f_2) = 4$, then Case (6) happens. By Observation (6), $d(f_3) \geq 8$. If d(u) = d(v) = 4, then $w^*(f) = w(f) + \frac{1}{8} = 0$ by $(R_{4.1})$. If d(v) = 5, then v is incident with at most two triangles because of Observation (2). $w^*(f) \geq w(f) + 2 \times \frac{1}{16} = 0$. If $d(v) \geq 6$, then $w^*(f) \geq w(f) + 2 \times \frac{1}{16} = 0$ by $(R_{1.2})$. If d(u) = 5 and u is incident with two triangles, then $w^*(f) \geq w(f) + 2 \times \frac{1}{16} = 0$ by $(R_{1.2})$. If d(u) = 5 and u is incident with three triangles, then $w^*(f) \geq w(f) + 2 \times \frac{1}{16} = 0$ by $(R_{1.2})$. If d(u) = 5 and u is incident with three triangles, then $w^*(f) \geq w(f) + 2 \times \frac{1}{16} = 0$ by $(R_{1.2})$. If d(u) = 5 and u is incident with three triangles, then $w^*(f) \geq w(f) + 2 \times \frac{1}{16} = 0$ by $(R_{1.3})$. If $d(u) \geq 6$, then $w^*(f) \geq 0$

 $w(f)+2 imes rac{1}{16}=0$ by (R_2) . Now we consider that $d(f_1)=d(f_2)=4$, then Case (7.1) or Case (7.2) happens. Assume that Case (7.1) happens. If d(u)=d(v)=4, then $w^*(f)=w(f)+rac{1}{8}=0$ by $(R_{4.1})$. If d(u)=5, then u is incident with at most two triangles because of Observation (2). $w^*(f) \geq w(f)+2 imes rac{1}{16}=0$. If $d(u)\geq 6$, then $w^*(f)\geq w(f)+2 imes rac{1}{16}=0$ by (R_2) . If d(v)=5, then v is incident with at most two triangles because of Observation (2). $w^*(f)\geq w(f)+2 imes rac{1}{16}=0$. Assume that Case (7.2) happens. Proofs are similar, but, simpler, and are therefore omitted.

If f is a 4-face, then $w^*(f) = w(f) = 0$.

If f is a 5-face, by Observation (4), then $w^*(f) \ge w(f) - \frac{1}{8} = 0$. If f is a 6-face, by Observation (5), then $w^*(f) \ge w(f) - \frac{1}{8} = 0$.

Let f be a k-face, $k \geq 8$. Assume that $e_1, e_2, ..., e_k$ are consecutive edge on the boundary of f, and z_i is the weight transferred from f across e_i , for $1 \leq i \leq k$. If $z_i = 1/8$, then $z_{i-1} = z_{i+1} = 0$, by Claim, where z_{k+1} is identified with z_1 , z_0 is identified with z_k . So $z_i + z_{i+1} \leq \frac{1}{8}$ for all $i \in \{1, 2, ..., k\}$. Then $w^*(f) = w(f) - \sum_{i=1}^k z_i = 1/8$

 $w(f) - \frac{1}{2} \sum_{i=1}^{k} (z_i + z_{i+1}) \ge w(f) - \frac{1}{2} \sum_{i=1}^{k} 1/8 = w(f) - \frac{k}{16} \ge 0$. That is complete the proof of Theorem 1.

Proof of Theorem 2. By induction on the order of G = (V, E). It is trivial if |V| = 1. Assume that the theorem holds for |V| < n, where $n \ge 2$. Suppose that |V| = n, by Theorem 1, $\delta(G) \le 3$. Let $v \in V$ such that $d(v) = \delta(G)$. By the induction assumption, G - v is 4-choosable. There must exist a color $\alpha \in L(v)$ which is not appear in N(v), color v with α . Then G is 4-choosable.

In [4], it is proved that every planar graph without 4-cycles is 4-choosable. As we see, there is a planar graph G without 4-cycles, and G is not 3-degenerate. For further researching, we can consider the following problem:

Problem. Every plane graph without 7-cycles is 4-choosable.

References

- [1] J.A.Bondy and U.S.R.Murty. Graph Theory with Applications. Macmillan, New Yark, 1976.
- [2] P.Erdős, A.L.Rubin, and H.Taylor. Choosability in graphs. Congr. Numer. 26 (1979), 125-157.
- [3] G.Fijavž, M.Juvan, B.Mohar and R.Škrekovski. Planar graphs without cycles of specific lengths. European J. Combin. 23 (2002), 377-388.
- [4] Peter C.B.Lam, W.C.Shiu and B.Xu. On structure of some plane graphs with application to chooability. J. Combin. Theory Ser. B. 82 (2001), 285-296.
- [5] C.Thomassen. Every planar graph is 5-choosable. J. Combin. Theory Ser. B. 62 (1994), 180-181.
- [6] C.Thomassen. 3-list-coloring planar grahps of grith 5. J. Combin. Theory Ser. B. 64 (1995), 101-107.
- [7] V.G.Vizing. Vertex coloring with a given colors. Diskret. Anal. 29 (1976), 3-10.
- [8] W.Wang and K.W.Lih. Choosability and edge choosability of planar graphs without 5-cycles. Appl. Math. Lett. 15 (2002), 561-565.