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Abstract

A graph G is said to be k-degenerate if for every induced
subgraph H of G, 6(H) < k. Clearly, planar graphs with-
out 3-cycles are 3-degenerate. Recently, it was proved that
planar graphs without 5-cycles or without 6-cycles are also 3-
degenerate. And for every £ = 4 or k > 7, there exist planar
graphs of minimum degree 4 without k-cycles. In this paper,
it is shown that each C7-free plane graph in which any 3-cycle
is adjacent to at most one triangle is 3-degenerate. So it is
4-choosable.
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1 Introduction

In this paper, unless stated otherwise, graph means simple plane
(finite) graph. Undefined symbols and concepts can be found in [1].

Let G = (V, E, F) be a plane graph, where V, E and F denote the
set of vertices, edges and faces of G, respectively. Ng(v), or N(v)
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if there is no possibility of confusion, denotes the set of vertices
adjacent to v in G, and 9f denotes the set of vertices incident with
the face f. The degree of a vertex v is denoted by d(v). A vertex is
called a k-vertez or a k™ -vertezif d(v) = k or if d(v) > k, respectively.
We denote by 6(G), the minimum degree of G. A face of a graph
is said to be incident with all edges and vertices on its boundary.
Two faces sharing an edge e are called adjacent at e. The degree of
a face f of plane graph G, denoted by dg(f), is the number of edges
incident with it, where each cut edge is counted twice. A k-faceor a
k*-face is a face of degree k or of degree at least k, respectively. A
triangle is synonymous with a 3-face. A graph is called C;-free graph
if it contains no i-cycle.

A graph G is said to be k-degenerate if for every induced subgraph
H of G, §(H) < k. Clearly, planar graphs without 3-cycles are 3-
degenerate. Wang and Lih!® proved that planar graphs without
5-cycles are 3-degenerate. Fijavz, Juvan, Mohar and Skrekovskil®l
proved that planar graphs without 6-cycles are 3-degenerate. There
exist planar graphs of minimum degree 4 without cycles of length 4.
An example of such a graph is obtained by taking the line graph of
a cubic planar graph of grith 5, e.g., the line graph of dodecahedron.
Also, for every k > 7, there is a planar graph of minimum degree 4
without k-cycles. Such an example is the octahedron graph.

One of the main motivations to study degenerate graphs is the
theory of graph colorings. A list coloring of G is an assignment of
colors to V' such that each vertex v receives from a prescribed list
L(v) of colors and adjacent vertices receive distinct colors. L(G) =
{L(v)lv € V'} is called a color-list of G. G is called k-choosable if G
admits a list-coloring for all color-lists L with k colors in each list.
Graph-choosability is a generalization of graph-colorability. It was
first introduced by Vizingl”l and independently by Erdés, Rubin, and
Taylarl? nearly two decades ago. Thomasson %6 proved that every
plane graph is 5-choosable and every plane graph with grith at least
5 is 3-choosable. Lam, Shiu, and Xul4l proved that if G is free of
k-cycle for some k € {3,4,5,6}, or if any two triangles in G have
distance at least 2, then G is 4-choosable.

In this paper, we prove the following theorems.

Theorem 1. Every Cy-free plane graph in which any 3-cycle is
adjacent to at most one triangle is 3-degenerate.
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Theorem 2. Every C7-free plane graph in which any 3-cycle is
adjacent to at most one triangle is 4-choosable.

2 Proof of Theorems

Proof of Theorem 1. By contradiction. Let G = (V,E,F) be
a counterexample with |V| + |E| minimal. Thus G is a connected
C7-free plane graph in which any 3-cycle is adjacent to at most one
triangle, and with §(G) > 4.

Euler’s formula |V| + |F| — |E| = 2 can be rewritten as (]%l -
¥y 4+ (LB _ IEly = _1. 1t follows from 3 dl) = Epd( f) = 2|E|

that ] 1 1 ]
> (zd(v) = 5)+ D (zd(f) - 5) = -1
veV 8 2 fer 8 2
For each z € VU F, let w(z) = 3d(z) — 5 be a weight assigned
to z. So the sum of the charges for all vertices and faces is —1. We
are going to redistribute these charges, not changing their sum, so
that the new charge w*(z) becomes non-negative for all z € VU F.
Thus a contradiction is produced below and henceforth the proof is

complete.
0< Z w*(z) = Z w(z) = -1
zeVUF zeVUF
Weights will be transferred according to the following rules:
(R1) From each 5-vertex v to an incident triangle f, transfer
(R1.1) -18-, if v is incident with exactly one triangle.
(R1.2) 15, if v is incident with exactly two triangles.
(R1.3) 15, if v is incident with three triangles and f is adjacent
to a triangle which is incident with v.
(R2) From each 6™ -vertex v to an incident triangle f, transfer
(Ra.1) &, if v is incident with at least four 4*-face.
(R2.2) 35, otherwise.
(Rs) From each 5-face f to an adjacent triangle f’, transfer §.
(R4) From each 6-face to an adjacent triangle, transfer §.
(Rs) Suppose that a 8"-face f and a triangle f’ are incident to
e =uv, w € 8f'\ 8f. From f to f’, transfer
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(Rs.1) -é-, if f' are incident to exactly one triangle, one 4-face,
and d(u) = d(v) = 4, or f’ is adjacent to exactly two 4-faces, and
d(u) =d(v) =4.

(Rs.2) 15, otherwise.

We shall first make the following observations. Note that G is
C7-free plane graph in which any 3-cycle is adjacent to at most one
triangle, and 6(G) > 4.

(1) A 5-vertex v is incident with at most three triangles. If v is
incident with three triangles fi, f, f3, there are two triangles, say
f1, f2, such that f3 is neither adjacent to f; nor fo, and fi, fo are
adjacent to each other.

(2) If a 5-vertex v is incident with a 4-face, then v is incident
with at most two triangles.

(3) A k-vertex, where k > 6, is incident with at most |2k] trian-
gles.

(4) A 5-face is adjacent to at most one triangle.

Proof. Otherwise, let f;, fo be two triangles which are adjacent
to a 5-face f. Since G does not contain 7-cycles, G must contain one
of the following two structures(See Fig. 1).

Case 4.1 Case 4.2
Fig. 1

In Case (4.1) and Case (4.2), we can find a 3-cycle which is ad-
jacent to two triangles, contradicting that any 3-cycle is adjacent to
at most one triangle.

(5) A 6-face is adjacent to at most two triangles, and if a triangle
f' is adjacent to 6-face f, then the vertices incident with f’ are
incident with 6-face f.

(6) If a triangle f is adjacent to exactly one triangle, one 4-face,
then the remaining face which f is adjacent to is a 8%-face, and it
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must be the following structure(See Fig. 2).

] Case 6 v

Fig. 2

(7) If a triangle f is adjacent to exactly two 4-faces fi, f2, then
it must be one of the following two structures(See Fig. 3).

v . Y
f2
t u 5
fa
v

s X
Case 7.1 Case 7.2
Fig. 3

In Case (7.1), d(f3) > 8. In Case (7.2), d(f3) > 5. And if
d(f3) =5, then f3 is adjacent to exactly one triangle.

We shall now establish the following claim. Suppose that st, tu
and uv are three consecutive edges on the boundary of a face f with
d(f3) # 6 (See Fig. 2 and Fig. 3).

Claim. Suppose that the face f3, where d(f3) # 6, is adjacent
to a triangle f at tu. If é- is transferred from face f3 across tu to f,
then f3 is adjacent to a 4% -face at st and at ww, respectively. So 0
is transferred across st and uv.

Proof. If d(f3) = 5, it must be Case (7.2). From the Observation
(4), we are done. Otherwise, d(f3) > 8.

If Case (6) happens, then f3 is adjacent to a 4*-face at st and
at uv, respectively. Otherwise, if f3 is adjacent to any triangle at st,
then the triangle must be stt’, because of d(t) = 4. That is impossible
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because G is Cq-free. Therefore the weight to be transferred across
st is 0. Similarly, the face adjacent to f3 at uv is a 4*-face.

If Case (7.1) happens, then f3 is adjacent to a 4*-face at st and
at uv, respectively. Otherwise, if f3 is adjacent to any triangle at
st, then the triangle must be stt/, because of d(t) = 4. That is
impossible because any 3-cycle is adjacent to at most one triangle.
If f3 is adjacent to any triangle at uv, then the triangle must be
uu'v, because of d(u) = 4. That is impossible, because G is C7-free.

If Case (7.2) happens, then f3 is adjacent to a 4*-face at st and
at uv, respectively. Otherwise, if f3 is adjacent to any triangle at
st, then the triangle must be stz, because of d(t) = 4. That is
impossible because any 3-cycle is adjacent to at most one triangle in
G. Therefore the weight to be transferred across st is 0. Similarly,
the face adjacent to f3 at uv is a 4*-face and the weight to be
transferred across uv is 0.

We shall now show that w*(z) > 0 for all z € VU F. Suppose
that v is a k-vertex. Clearly w*(v) = w(v) = 0if £k = 4. Now
we consider k = 5. If v is incident with exactly one triangle, then
w*(v) = w(v) — § = 0; If v is incident with two triangles, then
w*(v) = w(v) -2 x 16 = 0; If v is incident with three triangles, then
w*(v) = w(v) — 2 x & = 0. Assume that k > 6. If v is mmdent
with at least four 4*- face then w*(v) > w(v) — (d(v) — ) g =0.
Otherwise, because of Observation (3), w*(v) > w(v) — % x & "’ >0.

Let the face f be a triangle. If f is adjacent to a 6-face, then

w*(f) > w(f) + 5 = 0. If there is a vertex v € Of incidents with
at least four 47- faces then w*(f) > w(f) + } = 0. Otherwise, let
f = uvw be adjacent to f1, fo, f3, respectively, where d(f1) <d(f2) <
d(fs), and 87 N8(f1) = {0}, 67 N2(fa) = {w,v}, 8FNO(fs) =
{u,v}. If d(f2) > 5, by (R3) and (Ry), w*(f) > w(f) +2 x 16 = 0.
If d(f1) = 3,d(f2) = 4, then Case (6) happens. By Observation (6),
d(f3) > 8. If d(u) = d(v) = 4, then w*(f) = w(f) + § = 0 by
(R4.1). If d(v) = 5, then v is incident with at most two triangles
because of Observation (2). w*(f) = w(f) +2 x & =0. If d(v) > 6,
then w*(f) > w(f)+2x & = 0 by (Ry). If d(u) = 5 and u is
incident with two triangles, then w*(f) > w(f) +2 x 16 = 0 by
(Ri2). If d(u) = 5 a,nd u is incident with three triangles, then

w*(f) > w(f)+2x = 0 by (R13). If d(u) > 6, then w*(f) >
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w(f) + 2 X 3 = 0 by (Rz). Now we consider that d(f) = d(f2) = 4,
then Case (7.1) or Case (7.2) happens. Assume that Case (7.1)
happens. If d(u) = d(v) = 4, then w*(f) = w(f) + § = 0 by (Rs.1).
If d(u) = 5, then u is incident with at rnost two triangles because
of Observation (2). w*(f) > w(f) +2x % = 0. If d(u) > 6, then
w*(f) > w(f) +2x & =0by (Re). If d('v) = 5, then v is incident
with at most two triangles because of Observation (2). w*(f) >
w(f) +2x §5 = 0. If d(v) > 6, then w*(f) > w(f)+2x 3 = 0.
Assume that Case (7.2) happens. Proofs are similar, but, simpler,
and are therefore omitted.

If f is a 4-face, then w*(f) = w(f) =0.

If f is a 5-face, by Observation (4), then w*(f) > w(f) — 2 = 0.

If f is a 6-face, by Observation (5), then w*(f) > w(f) — § =0.

Let f be a k-face, k > 8. Assume that e;, ey, ..., e are consecutive
edge on the boundary of f, and z; is the weight transferred from f
across e;, for 1 < i < k. If z; = 1/8, then z_; = 241 = 0, by
Claim, where 2i.; is identified with 21, zp is identified with z;. So

k
zi +zip1 < g for all i € {1,2,...,k}. Then w*(f) =w(f) - X z =
i=1

w(f)——-_ 1(z,+z,+1)>w(f)—- z: 1/8 = w(f) — & > 0. That is

complete the proof of Theorem 1.

Proof of Theorem 2. By induction on the order of G = (V, E).
It is trivial if |V| = 1. Assume that the theorem holds for |V| < =,
where n > 2. Suppose that |V| = n, by Theorem 1, §(G) < 3. Let
v € V such that d(v) = 6(G). By the induction assumption, G — v is
4-choosable. There must exist a color @ € L(v) which is not appear
in N(v), color v with o. Then G is 4-choosable.

In [4], it is proved that every planar graph without 4-cycles is
4-choosable. As we see, there is a planar graph G without 4-cycles,
and G is not 3-degenerate. For further researching, we can consider
the following problem:

Problem. Every plane graph without 7-cycles is 4-choosable.
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