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ABSTRACT. In this paper it is shown that there are exactly 5 non-
isomorphic abstract ovals of order 9, all of them projective. The
result has been obtained via an exhaustive search, based on the
classification of the 1-factorizations of the complete graph with 10
vertices.
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1. INTRODUCTION

An oval Q in a projective plane of order n is a set of n + 1 points, no three
of which are collinear. Ovals in projective planes have been intensively
investigated since 1954. The starting point was the famous theorem of
Segre, stating that in a finite desarguesian plane of odd order, every oval
is an irreducible conic (see [9, Ch. 8] and the references therein).

Buekenhout {3] has shown how to define the structure of an oval without
reference to the plane containing it. Buekenhout defines an abstract oval
of order n as a pair (M, I) where M is a set of n+ 1 > 3 elements called
points, and I is a set of n? permutations of M called involutions, such that

(i) every o € I has order at most 2;

(ii) for any (ay,as), (b1,b2) € M x M with a; # b; (4,7 = 1,2), there
exists a unique involution which permutes a; with a2 and b; with
bo.

Note that by (ii) the identity involution belongs to I if and only if n is
even. For n odd, any involution in I fixes either no or two points of M.
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Any oval  in a projective plane « gives rise to an abstract oval (2, I). The
set I consists of the involutions {op | P € 7\ }, where op acts as follows:
a point @ € Q is either permuted with the point of 2 collinear with P and
Q if such a point exists, or fixed otherwise.

An isomorphism between two abstract ovals (M, ;) and (M», I,) is a bi-
jection ¢ of M) onto Mz such that Io = {@fep~! | f € I,}. An abstract
oval isomorphic to an oval in a projective plane is called projective. It’s
easy to prove that all abstract ovals of order n < 5 are projective. Also,
there are no abstract ovals of order 6 ([3], [2]) and there is a unique ab-
stract oval of order 7, which is projective [7]. Among the abstract ovals of
order 8 there are exactly two projective abstract ovals [3] and the first two
examples of non-projective abstract ovals ([8],[4]). By using some previous
results by Mathon {11, Faina (6] proved that there are no other abstract
ovals of order 8.

The aim of this paper is to classify all the abstract ovals of order 9. By
[5] there are exactly 5 non-isomorphic projective ovals, which give rise to
5 non-isomorphic projective abstract ovals, listed in Table 1. We show
that there are no other abstract ovals of order 9 by means of a computer
assisted exhaustive search. The algorithm is based on the classification of
the 1-factorizations of the complete graph with 10 vertices.

O, conic in PG(2,9)

Oy oval in the Hall plane of order 9
O3 | oval in the dual Hall plane of order 9
O4 | oval in the Hughes plane of order 9
Os5 | oval in the Hughes plane of order 9

Table 1

2. ABSTRACT OVALS OF ODD ORDER AND 1-FACTORIZATIONS OF GRAPHS

Firstly we recall some basic definitions from graph theory.

Let K5, be the complete graph with 2n vertices. A 1-factor of K, is a set
of vertex disjoint edges which cover the vertices of Ka,. An edge disjoint
set of 1-factors covering the edges of K5, is said to be a 1-factorization of
K3,. Note that a 1-factorization of K3, consists of (2n — 1) 1-factors. An
automorphism of a 1-factorization of K>, is a permutation of the vertices
of the graph that maps 1-factors onto 1-factors of the 1-factorization.
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Now let (M,I) be an abstract oval of odd order n, and let K11 be the
complete graph with n + 1 vertices, labelled as 0,1,...,n. Write M =
{ao,ay,...,an}, and define Iy as the set of those involutions fixing ap. To
each o € I can be associated a 1-factor f, of K,..1, defined as follows: [
is an edge of f, if either | = {4,5} and o(a;) = a;, or | = {0,140} and a;,
is fixed by o and different from ag. By property (ii) of abstract ovals, it
follows that the edge set Fa r(a0) = {fo | o € Ip} is a 1-factorization of
Kp1.

Let (M’, I’) be another abstract oval of order n, with M’ = {ag, a1, ...,a,}.
Any isomorphism ¢ of (M, I) onto (M’, I’) such that ¢(ag) = aj induces
an isomorphism ¢* of the 1-factorizations Fis ;(ag) and Fav r(ag), defined
by ¢*(i) = j < ¢(a;) = a}. This proves the following lemma, which will
play a crucial role in the sequel.

Lemma 2.1. Let F be a complete set of representatives for the isomor-
phism classes of 1-factorizations of Kn41. Then for any isomorphism class
A of abstract ovals of order n there exist F € F and (M, I) € A, such that
F is isomorphic to F(M,I)(a;) for somei € {1,...,n}.

3. AN ALGORITHM FOR THE CLASSIFICATION OF ABSTRACT OVALS OF
ORDER 9

From now on (M, I) denotes a generic abstract oval of order 9. Without
loss of generality assume M = {0,1,...,9}. Let Fjo be a complete set of
representatives for the isomorphism classes of 1-factorizations of Kjo. It is
known (see e.g. (1]) that the size of Fyo is 396.

By Lemma 2.1, any abstract oval of order 9 is isomorphic to an abstract
oval such that the involutions of I; correspond to the 1-factors of F, for
some F € Fjo and for some ¢ =0,...,9.

Then the basic idea of the algorithm is the following: fixed a 1-factorization
F € Fyo and an integer i € {0,1,...,9}, find all abstract ovals of order 9
such that I; corresponds to F. In the sequel, the following definition will
be useful.

Definition 3.1. Let o; and o2 be two permutations on {0,1,...,9}. Then
oy and o, are said to be compatible if o1(j) = o2(j) for at most one j €
{0,1,...,9}.

Note that by property (ii) of an abstract oval, any two involutions have to
be compatible.
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We are now in a position to give a more detailed description of the algo-
rithm. As a matter of terminology, an abstract oval of order 9 in which
I; corresponds to a 1-factorization F € Fyg, will be said an (F,7)-abstract
oval. The algorithm consists of three steps:

(A) Fix Fe Fpand i€ {0,1,...,9}.

(B) For any 5 € {0,1,...,9}, 7 # 1, find all the sets of involutions that
can possibly coincide with I; for some (F,z)-abstract oval. More
precisely, find all the sets L of 9 permutations on {0, 1,...,9} such
that:

(a) each o € L has order 2 and fixes j;

(b) each o € L is compatible with any T € I;;
(c) the involutions in L are pairwise compatible.
Define Z; as the set containing all such L.

(C) Consider all the sets I of type I = (U;5 LOYY L with LD € Z;.
For each of such I, check whether (M, I) is an abstract oval, i.e.
whether the involutions in I are pairwise compatible.

Step (B) is worth some more comments. The set Z; is constructed as
follows. First, find all permutations satisfying both (a) and (b). Then,
define a graph G; whose vertices are such permutations, two of which being
adjacent if and only if they correspond to compatible permutations. Finally,
search all the complete subgraphs of G; with 9 vertices. In fact, such
subgraphs correspond to the elements of Z;.

The algorithm was implemented using the computer algebra package
MAGMA. As a result, we obtained 67 abstract ovals, each of them iso-
morphic to some projective oval, namely

3 abstract ovals isomorphic to Oy;
28 abstract ovals isomorphic to Os;
30 abstract ovals isomorphic to Ojs;
3 abstract ovals isomorphic to Oy;
3 abstract ovals isomorphic to Os.

Hence the following result is proved:

Theorem 3.2. There are ezactly 5 non-isomorphic abstract ovals of order
9, all of them projective.
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