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Abstract

We examine a design D and a binary code C constructed from a
primitive permutation representation of degree 2025 of the sporadic
simple group M°L. We prove that Aut(C) = Aut(D) = M°L and
determine the weight distribution of the code and that of its dual.
In Section 6 we show that for a word w; of weight ¢, where ¢ €
{848, 896,912,972,1068,1100, 1232,1296} the stabilizer (M°L).,; is
a maximal subgroup of M°L. The words of weight 1024 split into
two orbits C(i024), and C(i024), respectively. For w; € Clio2q), we
prove that (M°L),, is a maximal subgroup of M°L.

1 Introduction

The binary codes obtained from the primitive permutation representations
of the sporadic simple groups have been examined in (3], [6], {9] and {10].
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See [7] for collected results. Here following a similar approach to that
of [9] and [10] we construct a 1-(2025,1232, 1232) self-dual symmetric de-
sign D from a primitive permutation representation of degree 2025 of the
sporadic simple group ML of McLaughlin [4]. Associated to this design
we construct a [2025, 22, 848]; self-orthogonal doubly-even binary code C
which is invariant under the M°L group. We determine the weight distri-
bution of C and that of Ct and show that Aut(C) = Aut(D) = M°L.
Also we show that C is the smallest non-trivial GF(2) module on which
M¢L acts irreducibly. Let C; denote the set of all words of C of weight i.
In Section 6, we determine the structures of the stabilizers (M©L),,, for
all nonzero weight i, where w; is a word of weight 7 (see Table 3). We
show that if i € {848,896,912,972,1068,1100,1232, 1296}, (M°L),, is a
maximal subgroup of M¢L. Note that the words of weight 1024 split into
two orbits, respectively C(i024), and Cyg24),. For w; € C{i024), We show
that (M<L),,, is a maximal subgroup of M°L. On the other hand if w; is
such that ¢ € {988, 1004, 1008, (1024)2, 1052}, we describe the structures of
(M€L),, for each i and we show that they are not maximal in M€L. Fi-
nally, in Section 6 for each w;, we take the support of w; and orbit it under
the action of G = M€L to form the blocks of the 1 — (2025, 1, k;) designs
Duw, where k; = |(w;)€| x 5g5z. Information on these designs is listed in Ta-
ble 4. We outline our notation in Section 2, and describe the background
results and a construction method in Section 3. A brief overview of the
simple sporadic group M¢L is given in Section 4. Our results are given in
Sections 5 and 6.

2 Terminology and notation

Our notation will be standard, and it is as in (1] and ATLAS [4]. For the
structure of groups and their maximal subgroups we follow the ATILAS
notation. The groups G.H, G : H, and G - H denote a general extension,
a split extension and a non-split extension respectively. For a prime p,
p™ denotes the elementary abelian group of order p™. We also denote the
particular cases of an extraspecial group by p'+2", p+2" or pl+2n,

An incidence structure D = (P, B, I), with point set P, block set B and
incidence T is a t-(v, k, A) design, if |P| = v, every block B € B is incident
with precisely k points, and every ¢ distinct points are together incident
with precisely A blocks. The dual structure of D is D* = (B,P,Z). Thus
the transpose of an incidence matrix for D is an incidence matrix for D'
We will say that the design is symmetric if it has the same number of
points and blocks, and self dual if it is isomorphic to its dual.

The code Cr of the design D over the finite field F is the space spanned
by the incidence vectors of the blocks over F. We take F to be a prime field
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F,, in which case we write also C;, for CFr, and refer to the dimension of C,
as the p-rank of D. In the general case of a 2-design, the prime must divide
the order of the design, i.e. r — A, where r is the replication number for the
design, that is, the number of blocks through a point. If the point set of D
is denoted by P and the block set by B, and if Q is any subset of P, then
we will denote the incidence vector of Q by 2. Thus Cr = (v2 | B € B),
and is a subspace of FP, the full vector space of functions from P to F.
For any code C, the dual or orthogonal code C+ is the orthogonal under
the standard inner product. The hull of a design’s code over some field
is the intersection C N CL. If a linear code over a field of order g is of
length n, dimension &, and minimum weight d, then we write [n, k,d], to
represent this information. If c is a codeword then the support of c is the
set of non-zero coordinate positions of ¢. A constant word in the code is
a codeword all of whose coordinate entries are either 0 or 1. The all-one
vector will be denoted by 7, and is the constant vector of weight the length
of the code. Two linear codes of the same length and over the same field
are equivalent if each can be obtained from the other by permuting the
coordinate positions and multiplying each coordinate position by a non-
zero field element. They are isomorphic if they can be obtained from one
another by permuting the coordinate positions. An automorphism of a
code is any permutation of the coordinate positions that maps codewords
to codewords. An automorphism thus preserves each weight class of C.

3 Preliminary results

The designs and codes in this paper come from the following standard
construction, described in [9, Proposition 1] and in (10]:

Result 1 [9, Proposition 1] Let G be a finite primitive permutation group
acting on the set Q of sizen. Let a € , and let A # {a} be an orbit of
the stabilizer G, of a. If

B={A%: ge G},

then B forms a self-dual 1-(n, |A|, |A]) design with n blocks, with G acting
as an automorphism group on this structure, primitive on the points and
blocks of the design.

Note that if we form any union of orbits of the stabilizer of a point,
including the orbit consisting of the single point, and orbit this under the
full group, we will still get a self-dual symmetric 1-design with the group
operating. Thus the orbits of the stabilizer can be regarded as building
blocks. Because of the maximality of the point stabilizer, there is only one
orbit of length 1: see [9].
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The following two theorems deal with the automorphism groups of the
designs and codes constructed from a finite primitive permutation group in
a manner described in Theorem 1.

Theorem 1 [12] Let D be a self-dual 1-design obtained by taking all the
images under G of a non-trivial orbit A of the point stabilizer in any of
G'’s primitive representations, and on which G acts primitively on points
and blocks, then the automorphism group of D contains G.

Proof: Suppose that G acts primitively on @ = G/G4. Primitivity of G
implies that G, is a maximal subgroup. Let B = {A9 : g € G} and suppose
that B = A9,and B’ = A9'. Then we have that (A9)97'9 = A997'9" = A9,
and so G acts transitively on B. Now, if h € G and a € A9 then o* € (A9)".

Hence, we have that o* € A% and therefore G C Aut(D). B

Theorem 2 If C is a linear code of length n of a symmetric 1 — (v, k, k)
design D over a finite field F,;, then the automorphism group of D is
contained in the automorphism group of C.

Proof: Suppose that D is a 1 — (v, k, k) design with P = {p1,p2,...,pv}
the point set of D and B = {B;, B,---, By} the block set. Let A be an
incidence matrix for D, then P determines uniquely the rows of A, since
each point is incident with precisely & blocks. If & € Aut(D), then « sends
pi to p; for 1 < 4,5 < v and By to By where 1 <4/,5' < v, and « preserves
the incidence relation. Now if C is a code from D, then we have that the
columns of A span C. Let R; and R; denote the i-th and j-th columns of
A respectively, with the entries of R; and R; labelled as the blocks indices.
Then R; and R; have each exactly k non-zero entries, since they represent
the incidence relation of a point with the corresponding k blocks of D .
Now the self-duality of D implies that R; and R; are weight & vectors in
C. Now since a permutes the coordinate positions of the k non-zero entries
of R; to R;, we deduce that « is an automorphism of C. M

4 The ML group

It was shown by McLaughlin [11] that there exists a regular graph G =
(82, £) with 275 vertices possessing a transitive automorphism group Aut(G)
is isomorphic to M°L:2, with ML a new simple group of order 27 x 3% x
5% x 7 x 11. The McLaughlin graph G is a rank-3 graph of valency 112
on 275 points in which the point stabilizer U = (M*°L); is a maximal
subgroup isomorphic to Us(3). The orbits under the action of U are {z},
® and ¥ with lengths 1, 112 and 162, respectively. The action of U on @
is equivalent to the representation of Us(3) on the set of totally singular
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lines of the 4-dimensional unitary space V over the Galois field GF(9)
with the stabilizer of a point having the form 34:4¢ and orbits of lengths
(1,30, 81]. The action of U on ¥ is equivalent to the representation of Us(3)
on the left cosets of a subgroup isomorphic to Lz(4) with the stabilizer of a
point having orbits of lengths [1, 56, 105]). Thus the two point stabilizers of
M¢<L on Q are isomorphic to either 3*:4¢ or L3(4). From this we conclude
that U N U9 = 3%:Ag or L3(4), for any two distinct conjugate subgroups
isomorphic to U, (3).

The group M°L has precisely one conjugacy class of involutions and
the centralizer of an involution in M°L is isomorphic to 2:Ag, the unique
perfect central extension of the alternating group As by a group of order
2. Finkelstein [5] showed that the proper non-abelian simple subgroups
of M¢L are isomorphic to As, Ag, A7, La2(7), Us(2), Us(3), L3(4), Us(5),
Ui (3), M1; and My, There are two classes of Maq subgroups, interchanged
by the outer automorphism.

Theorem 3 (Finkelstein [5]) The McLaughlin simple group has precisely
twelve conjugacy classes of mazimal subgroups. The isomorphism types in
these classes are as follows:
(i) two groups of classical type, namely, Us(3) and Uz(5);
(1) four groups of Mathieu type, namely, My, My (two classes) and
L3(4):227
the set stabilizer of two points in the canonical representation of
Moz,
(#4) six p-local subgroups, namely, 2*:A7 (two classes), 2-As, 3%:Mo,
3174:2.55
and 51+%:3:8. B

5 Computations for ML

Using the construction method outlined in Result 1 we have implemented
a computer programme that was used in Magma [2] to construct a 1 —
(2025, 1232, 1232) self-dual symmetric design D. Subsequently for the prime
p = 2 we have constructed its associated code C which is a [2025, 22, 848
and determined its basic properties. In addition we have determined the
weight distribution for C and for C* and the hull of D. The complemen-
tary design of D is a 1-(2025, 793, 793) self-dual symmetric design D whose
binary code C is a [2025, 23, 729]2 code . We show in Section 5 that C C C.

The twelve primitive representations referred to in Theorem 3 are listed
in Table 1. The first column gives the ordering of the primitive represen-
tations as given by Magma (or the ATLAS [4]) and as used in our com-
putations; the second column gives the maximal subgroups while the third
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list the degrees (the number of cosets of the point stabilizer). We should
add that the Magma version 2.10 (13/05/2003) was used for most of the
computations in this paper.

No. | Max. sub. Deg.

U,(3) 275
Mzz 2025
My, 2025
Us(5) 7128

3,77,9.5; | 15400
3% : My 15400
Ts(@): 2, | 22275

2-Ag 22275
2°: Ar 22275
2¢: A, 22275

My, 113400

5,'7%:3:8 ] 299376

Bl 2] 8] of o} | o en] x| o] vof =

Table 1: Maximal subgroups of ML

5.1 The 1~ (2025,1232,1232) design

Using Theorem 3 and Table 1 we deduce that there are just two classes
of maximal subgroups of M°L group of index 2025. These maximal sub-
groups are interchanged by an outer automorphism of M¢L. For each class
a representative is a group isomorphic to the Mathieu group Ms;. The
M¢©L group acts as a rank-4 primitive group on the cosets of My, with the
stabilizer of the action having orbits of length 1, 330, 462 and 1232. We
take the orbit of length 1232 and form as indicated in Result 1, a self-dual
symmetric 1-(2025, 1232, 1232) design, on which M°L acts.

Theorem 4 below deals with this design and its automorphism group
and in Theorem 5 we show that M¢L is the automorphism group of its
associated [2025, 22, 848], self-orthogonal doubly-even binary code.

Theorem 4 For ML of degree 2025, the automorphism group of the the
design with parameters 1 — (2025,1232,1232) is a non-abelian finite simple
group of order 898128000. Moreover this group is isomorphic to the simple
sporadic group M°L.

Proof: Let Aut(D) be the automorphism group of the 1-(2025, 1232, 1232)
design D obtained from an orbit of length 1232 for M<L of degree 2025.
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Computations with Magma show that Aut(D) is a non-abelian group of
order 898128000. Since by Theorem 1 we have Aut(D) 2 M°L the result
follows. B

5.2 The [2025,22,848], code

We found that the 1-(2025,1232,1232) design yields a [2025,22], binary
code C. In the following theorem we determine some of the properties of C
and furthermore we show that Aut(C) & M¢L.

Theorem 5 The group M*°L is the automorphism group of the [2025, 22],
code C obtained from the 1 — (2025,1232,1232) design D. The code C
is self orthogonal doubly-even, with minimum distance 8{8. Its dual is a
[2025, 2003, 4] with 2338875 words of weight 4. Moreover 3 € C+ and M°L
acts irreducibly on C as a GF(2)-module.

Proof: Let Aut{(C) = I'. Then by Theorem 2 we have that Aut(D) C T
Our computations show that |I'| = 898128000 = |Aut(D)| and hence I' =

AutéD). Now since Aut(D) = M°L by Theorem 4, the results follows.
ince the blocks of D are of even size, we have that 7 meets evenly

every vector of C, so {t € C+. We used Ma%ma to calculate the weight
distribution of C which is listed in Table 2. In Table 2, ¢ represents the
weli:%ht of a codeword and A; denotes the number of words in C of weight
i. From the weight distribution of C' we deduce that the minimum weight
of C is 848. That C is doubly-even follows immediately from Table 2, since
its weights are all divisible by 4. Since C is a binary doubly-even code, it
follows that C is self-orthogonal.

TABLE 2
The weight distribution of C
H A;
0 1
848 2025
896 22275
912 22275
972 15400
988 356400
1004 1247400
1008 1247400
1024 801800
1052 356400
1068 113400
1100 7128
1232 2025
1296 275
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That C*+ has minimum weight 4 was found using Magma. The full
weight distribution of C1 can be obtained.

Notice that dim(C) = 22 and it can be easily shown using Table 3
below that C does not contain invariant subspaces of dimensions 1 and 21
respectively, under M°L. Thus we deduce that C is the smallest non-trivial
GF(2) module on which ML acts irreducibly (see [8]). B

Now if w; is a word of weight ¢ in C, in Section 6 we determine the
structures of (M¢L),,,, i.e, the stabilizers of w; in M°L. These are listed
in Table 3. Also for each w;, we take the support of w; and orbit it under
the action of G = M®L to form the blocks of the 1 — (2025, , k;) designs
Dy; where k; = |(w¢)G| X -27"2—5-. Information on these designs is listed in
Table 4. In Section 6, Lemmas 6 and 7 deal with the action of M€L on the
codewords of C.

6 Stabilizer of a codeword w; of weight i

Since M°L acts as an automorphism group of C we consider this action
and determine the structure of (M¢L),,, where i is in L or T with L and
L as defined below.

Let L = {848,896,912,972,1068,1100,1232,1296} and L be the set
{988, 1004, 1008, 1024,1052}. For i € LU L we define C; to be the set
{w; € C | wt(w;) = i}, where wt(w;) denotes the weight of a word w;.
We show in Lemma 6 that (M¢L),,, is a maximal subgroup of M¢L for all
i € L. Now for w; € C; we take the support of w; and orbit that under
M<L to form the blocks of a 1-design D,,,. We show that for i € L, M°L
acts primitively on D,,,.

Now if w; € C; where i € L we show in Lemma 7 that (M®L),,, is not
a maximal subgroup of M¢L for all i except when ¢ = 1024. Moreover for
1 = 1024, Clg24 splits into two orbits of lengths 22275 and 779625, namely
C(1024), and Cy024), respectively. We show that (M°L),, is isomorphic to
24:A7 0r 2% : [(A4x3) : 2], where w € C(1024), O w € C{1024), Tespectively.

Lemma 6 Let: € L and w; € C;. Then (ML), = M;, where M; is a
mazimal subgroup of M°L. Furthermore ML is primitive on D,,, for each
i

Proof: For any w; in C; and i € L our computations show that w;M°L =
C;. Therefore each C; forms an orbit under the action of M°L and thus
M¢L is transitive on each C;. For w; € C; we use Magma to construct
(M¢©L),, as a permutation group inside M<L. Furthermore we determine its
structure by computing its composition factors. We deduce that for 7 € L,
(M¢L)w, € {Maa, 2% : A7, L3(4) : 29, 3* : Myo, M1y, Us(5), Us(3)}. By
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the transitivity of M°L on the code coordinates, the codewords of C; form
a 1-design D,,, with A; blocks. This implies that M¢L is transitive on the
blocks of D,,, for each w; and since (M©L),, is a maximal subgroup of
M¢L, we deduce that M*°L acts primitively on D,,,. B

Lemma 7 Leti € T and w; € C;. If i # 1024, then (M°L),,, € {Ss, A7}
If i = 1024, then (M°L),, = 2%:A7 or 2% : [(A4 x 3) : 2], where 2% :
[(Aq x 3) : 2] is not @ mazimal subgroup of ML but sits mazimally inside
24ZA7.

Proof: Case 1. Take w; € C; so that ¢ € {988, 1004, 1008, 1052}.
Our computations show that w;™°L = C;. Thus each C; forms an orbit
under M°L and so ML is transitive on each C;. Form our computations
with Magma we deduce that (M°L),,, € {Ss, A7} and hence they are not
maximal subgroups of M¢L. For details see Table 3 below.

Case 2. Consider Cig24 = {w; € C | wt{w;) = 1024}. Then Cjg24 splits
into two orbits of lengths 22275 and 779625, namely C(1024), and C{1024),
respectively.

Let w = w(j024), € C(1024), and W = w(1024), € C(1024),. Then (M°L)y,
is a subgroup of order 40320 and thus maximal. Using Magma we determine
its composition factors and from the list of maximal subgroups of ML we
deduce that (M©L),, = 2%:4,.

Since |(M¢L)w| = 1152, it is not a maximal subgroup of M€L. Direct
computations with Magma shows that (ML) has 17 conjugacy classes of
elements. The structure of (ML) however was not easy to determine by
only finding the composition factors, as additional information about the
group was needed.

We briefly describe the method used to determine the structure of this
group. Using the information listed in the Atlas on the maximal subgroups
of the ML and the structure of the Sylow subgroups of (M¢L)w we are
able to determine by direct calculations that (M¢L)y sits maximally in a
maximal subgroup of McL of types U,(3), 2'As or 21:A;. However a sub-
group of Uy(3) or 2- Ag of order 1152 has 22 conjugacy classes of elements.
Therefore (M© L) is maximal subgroup of 24 : A7 of type 2% : [(A4 x3) : 2J.
| |

7 Observations

(i) In Table 3 the first column represents the words of weight ¢ and the
second column represents the stabilizer in ML of a codeword w; of
C;. In the final column we test the maximality of (M°L),,, in M°L.
Observe that some of the maximal subgroups of M¢L do not feature

in Table 3, namely 3, !4 :2.S5, 2'Ag and 5,'%2:3:8,
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TABLE 3
Stabilizer of a word w;

i (M°LYw; Maximality
848 M2z Yes
896 24: A, Yes
912 La(4) : 22 Yes
972 34 : Myo Yes
988 Az No
1004 Se No
1008 Se No
(1024), L3(4) : 22 Yes
(1024)2 24 : {(Ag x 3):2) No
1052 Az No
1068 M Yes
1100 Us(5) Yes
1232 Moo Yes
1296 Ua(3) Yes

(ii) In Table 4 the first column represents the words of weight 7 and the
second column gives the structure of the designs D,, which were
defined in Section 6. In the third column we list the number of blocks
of D,,,. We test the primitivity for the action of M°L on D,, in the
final column.

Table 4
1-designs Dy,; from ML
i Duw,; No. of blocks  Primitivity
848 1-(2025, 848, 848) 2025 Yes
896 1-(2025, 896, 9856) 22275 Yes
912 1-(2025, 912, 10032) 22275 Yes
972 1-(2025,972, 7392) 15400 Yes
988 1-(2025, 988, 173888) 356400 No
1004 1-(2025, 1004, 618464) 1247400 No
1008 1-(2025, 1008, 620928) 1247400 No
(1024);  1-(2025, 1024, 112640) 22275 Yes
(1024);  1-(2025,1024, 394240) 779625 No
1052 1-(2025, 1052, 185152) 356400 No
1068 1-(2025, 1068, 59808) 113400 Yes
1100 1-(2025, 1100, 3872) 7128 Yes
1232 1-(2025, 1232, 1232) 2025 Yes
1296 1-(2025, 1296, 176) 275 Yes
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(iii)

(iv)

W)

From Table 2 it can be observed that Aggs = Ag12 = 22275 and
Ag72 = 15400. However from Table 1 we have that there are more
than one maximal subgroup of M°L of indices 22275 and 15400 re-
spectively. So for the proof of Lemma 6 in order to ascertain the
structures of (M¢L),,, where i € {896,912,972}, by using Magma,
we have computed their respective composition factors in each case.

Notice from Table 2 that Aggs = Ajgsz = 356400, and Ajgeq =
Ajcos = 1247400. These numbers do not equal the indices of maximal
subgroups of M¢L. So for the proof of Case 1 in Lemma 7 in order to
determine the structures of (M°L),,, where i € {988,1052, 1004, 1008}
by using Magma we have computed their respective composition fac-
tors in each case. With the help of the composition factors we de-
duce that (M°L),, = A7 if i € {988,1052} and (M°L), = Se if
i € {1004, 1008}.

The complementary design of D is a 1-(2025, 793, 793) self-dual design
whose binary code is a [2025, 23, 729]; code that contains the code C
and has weight distribution as follows:

[<0, 1>,<729, 275>,<793, 2025>,<848, 2025>,<896,22275>,
<912,22275>,<925, 7128>,<957, 113400>,<972, 15400>,
<973,356400>,<988, 356400>, <1001, 801900>,

<1004, 1247400>, <1008, 1247400>,<1017, 12474005,
<1021, 1247400>, <1024, 801900>, <1037, 356400>,

<1052, 356400>,<1053, 15400>,<1068, 113400,

<1100, 7128>, <1113, 22275>,<1129, 22275>,

<1177, 2025>, <1232,2025>, <1296, 275>, <2025, 1> 1.

This code is obtained from C by adjoining the 7 vector.

(vi) As we mentioned in Subsection 5.1, the M“L group acts as a rank-

4 primitive group on the cosets of Mg, with the stabilizer of the
action having orbits of length 1, 330, 462 and 1232. If we now take
the orbit of length 330 and form as indicated in Result 1, a self-dual
symmetric 1-(2025, 330, 330) design, then the hull of this design is a
[2025, 22, 848], code whose weight distribution is:

[ <0, 1>, <848, 2025>, <896, 22275>, <912, 22275>,

<972, 15400>, <988, 356400>, <1004, 1247400>,

<1008, 1247400>, <1024, 801900>, <1052, 356400>,

<1068, 113400>, <1100, 7128>, <1232, 2025>, <1296, 275> ].

Magma calculations shows that this code is isomorphic to the code C
discussed in detail in Subsection 5.2.
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