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Abstract. Let K, n denote the complete bipartite graph with n vertices in
each part. In this paper, it is proved that there is no cyclic m-cycle system of
Knn for m = 2 (mod 4) and n = 2 (mod 4). As a consequence, necessary and
sufficient conditions are determined for the existence of cyclic m-cycle systems of
Ko n for all integers m < 30.
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1 Introduction

An m-cycle system of a graph G is a set & of m-cycles in G whose edges
partition the edge set of G. Let K, x denote the complete bipartite graph
with partite sets of sizes n and k. The existence problem for m-cycle
systems of K., was completely settled in [7].

Theorem 1.1 There exists an m-cycle system of K,, ;. if and only if m,n
and k are even, n,k > m/2 and m divides nk.

An m-cycle system % of a graph G with vertex set Z, is cyclic if for
. each B = (by,b2,---,bpy) € B wehave B+1 = (by+1,b2+1,---,bm+1) € B.
In the sequel, any graph of order v will be considered as a graph with vertex
set Z,. It is immediate to see that 2m must divide v(v — 1) if there exists
an m-cycle system of complete graph K.

The existence problem for cyclic m-cycle systems of complete graphs
has attracted much interest. For m even and v = 1 (mod 2m), cyclic m-
cycle systems of K, were constructed for m = 0 (mod 4) in [5] and for
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m = 2 (mod 4) in [6]. For m odd and v = 1 (mod 2m), cyclic m-cycle
systems of K, were found in [3,1,4]. For v = m (mod 2m), it is proved
in [2] that there exists a cyclic m-cycle system of K, for all m ¢ M but
m # 3, where M = {p°® | pis prime, e > 1} | J{15}, and in [9] for all m € M.
It is proved in (3] that there exists a cyclic m-cycle system of complete k-
partite graph Kjxm for any pair of odd integers (k,m) but (k,m) # (3, 3).
For the existence of cyclic m-cycle systems of K, ;,, necessary and sufficient
conditions were given in (8] for the case m = 0 (mod 4) and m/4 square-free
and the case m = 2 (mod 4) with m > 6 and m square-free.

In this paper, it is proved that there is no cyclic m-cycle system of
Kpn for m =2 (mod 4) and n = 2 (mod 4). As a consequence, necessary
and sufficient conditions are determined for the existence of cyclic m-cycle
systems of K, , for all integers m < 30.

2 Preliminaries

The main method used in this paper is the dif ference method, which
enables us to construct cyclic cycle systems in a quite effective way. First,
we provide some basic definitions and related properties.

Definition 2.1 The type of a ¢ycle B is the cardinality of the set
{i€Z,| B=B+j}.

If B = (b1, b2, -, by) is a m-cycle of type d, let 3B denote the multiset
{ﬂ:(bi - bi—l) I i= 1,2, s ,m/d} where bm = b().

Definition 2.2 Let 7 = {B;, Ba,---, Bi} be a set of m-cycles and d; be
the type of B; for i = 1,2,.--,l. If each element in Z,\{0} appears
exactly once in the multiset 0F = | J; 0B;, then F is called a

(Ky, C)-dif ference system((Ky,Cm)-DS for short).

Throughout this paper we let the two partite sets of K, . be {0,2,4,---,2n—
2} and {1, 3,5, --,2n—1}. Then we can define (Kp 5, Cr;)-DS analogously.

Definition 2.3 Let F = {By, By, -+, B} be a set of m-cycles and d; be
the type of B; for i = 1,2,---,l. If each element in +{1,3,5,---,n — 1}
appears exactly once in the multiset 8F = | J; 8B;, then F is called a
(Knn,Cim)-DS.

It is obvious that (a,b) is an edge of K,,,, if and only if a — b = j for
some j € +{1,3,5,---,7n — 1}. So we have the following assertion:

Proposition 2.4 If F = {By,Bs,---,Bi} is a (Knn,Cm)-DS, then the
cycles {B; +j|i=1,2,---,1,j=1,2,---,2n/d;} form a cyclic m-cycle
system of K, , where d; is the type of B;.
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Let B be a m-cycle of type d and
(B) = {B+.7 |.7 = 1a2a"'a2n/d}'

Then (B) is called the orbit generated by B and B is called a base cycle of
(B). It is clear that for giving a cyclic m-cycle system of K, ,, it is enough
to give a set F of representatives for the orbits of its cycles. Let B be a
m-cycle in F and let (a,b) be an edge of K, . Then the number of cycles
in the orbit of B admitting (a,b) as an edge, is exactly equal to the number
of times that a — b appears in 8B. It follows that F is a (K, n,Cm)-DS.
So this allows us to state the following assertion:

Proposition 2.5 There exists a cyclic m-cycle system of K, p, if and only
if there exists a (Kpn,Cm)-DS.

Now we state three theorems proved in [8] for later use.

Theorem 2.6 Let m, n be positive integers, m = 2 (mod 4) with m > 6.
There exists a cyclic m-cycle system of Ky, », for n =0 (mod 2m).

Theorem 2.7 Let m, n be positive integers, m = 0 (mod 4) and m/4 is
square-free. There exists a cyclic m-cycle system of Ky p, if and only if
n =0,m/2,m or 3m/2 (mod 2m).

Theorem 2.8 Let m, n be positive integers, m = 2 (mod 4) with m > 6
and m is square-free. There exists a cyclic m-cycle system of Ky, , if and
only if n =0 (mod 2m).

3 Cyclic m-Cycle Systems of K, , for m < 30

In this section, we first prove the nonexistence of cyclic m-cycle systems of
K, » for m =2 (mod 4) and n = 2 (mod 4).

Theorem 3.1 Let m, n be positive integers, m = 2 (mod 4). There is no
cyclic m-cycle system of Ky, 5, for n = 2 (mod 4).

Proof. Suppose & is a cyclic m-cycle system of K, ,, suppose B =
(cos€1,° -+ y€myds -+ * > Em—1) is an m-cycle in B of type d, then cpjq —co =
z - 2n/d with ged(z,d) = 1. We show that d is odd. If d is even, since
d divides m, we have d = 2 (mod 4) and m/d is odd. It follows by the
oscillation of even and odd parities of labels along the cycle that ¢,,/q — co
is odd. It is a contradiction since 2n/d is even. Therefore d is odd.

Now, suppose F is a (Kn,n, Cm)-DS for 8 and the m-cycles in F have
distinct types dy,d,---,d,. Since d; is odd for i = 1,2,---,7, we have
2m/d; = 0 (mod 4). Let z; denote the number of base m-cycles of type d;

335



for i =1,2,-.-,7. For an m-cycle B of type d, 0B contains 2m/d distinct
differences. Then we have

zr:o:,- 2m/d; = n.
i=1

It is a contradiction since n = 2 (mod 4). Hence, for m = 2 (mod 4), there
is no cyclic m-cycle system of K, ,, for n =2 (mod 4). O

Theorem 3.2 For m = 4, 8,12, 20, 24, 28, there exists a cyclic m-cycle
systems of K, , if and only if n = 0,m/2,m or 3m/2 (mod 2m).

Proof. Since m = 0 (mod 4) and m/4 is square-free for m = 4, 8,12, 20, 24, 28,
the conclusion follows from Theorem 2.7. O

Theorem 3.3 For m = 6,10, 14,22, 26, 30, there exists a cyclic m-cycle
systems of Ky, ,, if and only if n =0 (mod 2m).

Proof. Since m = 2 (mod 4) and m is square-free for m = 6, 10, 14, 22, 26, 30,
the conclusion follows from Theorem 2.8. (J

The existence question for cyclic 16-cycle systems of K, , was settled
in [8].

Theorem 3.4 There exists a cyclic 16-cycle systems of K, ,, if and only if
n=0,8,16 or 24 (mod 32).

Lemma 3.5 If there exists a cyclic 18-cycle system of Ky, », then
n =0,12 or 24 (mod 36).

Proof. It follows from Theorem 1.1 that if there exists a 18-cycle system
of Ky », then n = 0,6,12,18,24 or 30 (mod 36). And from Theorem 3.1
we have that there is no cyclic 18-cycle system of K, , for n = 6,18 or
30 (mod 2m). O

Lemma 3.6 There exists a cyclic 18-cycle systems of K,, ,, for
n = 12 (mod 36).

Proof. We obtain a cyclic 18-cycle system of K, », for n = 12 (mod 36) by
constructing a (Kpn n,C1s)-DS. Let n =36t +12,¢t > 0. Let

L = +{1+12¢3+12¢,5+12¢,7+12¢,9+4 12¢,11 + 12t}

and D = £{1,3,5,---,n — 1}\L. We first form ¢ base cycles of type 1 for
t>1. Let Y = (yi,h) be a t x 18 matrix, and B; = (bi,l,bi,z," ‘,bi,ls)
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be defined by b;; = 33 _, yi,n for i = 1,2,---,t. Let H, and Hp be t x 6
matrices and

—14t-13 26t+13 -12t—-13 24t+13 -16t—13 28t+13
—-14t-15 26t+15 -12t—-15 24t+15 —-16{i—15 28t+15

H =
—16t—-11 28t+11 -14¢—-11 26t+11 -18-11 30t+11
-18t—-13 30t+13 -20t—13 32t+13 -—-22{-13 34t+13
. —18t—-15 30t+15 -—-20t—15 32t+15 -22t—-15 34t+15
2= . . . . . .

—20t - 11 32t+11 -22t—11 34t+4+11 -24¢t—11 36t411
Case 1. Suppose t =0 (mod 2). In this case, let

po = (-1,-7,~25,-31,---,—1 = 12(¢t — 2), -7 - 12(¢ — 2))T,
go = (13,19,37,43,---,13 + 12(t — 2),19 + 12(¢t — 2))7,

» = (-3,~15,-27,-39,---,—3 — 12(t — 2), —15 — 12(t — 2))7,
a1 = (9,21,33,45,---,9 + 12(t — 2),21 + 12(¢ - 2))7,

p2 = (—-5,-17,-29, —41,---, =5 — 12(t — 2), —17 — 12(¢ — 2))7,
g2 = (11,23,35,47,---,11 + 12(¢t — 2),23 + 12(¢t — 2))T,

Y=(po g ;1 @ p2 @@ Hi Hp).

It is not difficult to find that if r, s are even integers, then b; » 2 b; 5 (mod v)
for 1 < r < s < 18. Let S; denote the multiset {b; . | 1 < r < 18 and r is odd},
then for 7 = 0 (mod 2) we have

S = {-7-12(-2),-3-12(i — 2),1 - 12( — 2),
13 — 2i — 14¢,13 — 23,13 — 2i + 8¢,
13 — 2i + 18t,13 — 2i + 28¢,13 — 2i + 38t},

and for z = 1 (mod 2) we have

Si = {-1-12(:-1),9-12(i —1),13 - 123G — 1),
13 — 2i — 14¢,13 — 21,13 — 2i + 8¢,
13 — 2i + 18¢,13 — 2i + 28,13 — 2i + 38t}.

It can be easily checked that S; contains no repeated elements for i =

1,2,---,t. Hence, F(Y) = {B1, B3, -, B} is a set of 18-cycles of type 1.
Clearly, each element in D appears exactly once in 8F(Y).
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Case 2. Suppose t =1 (mod 2) with t > 3. In this case, let

o = (3,-13,-19,-37,-43,---,—13 — 12(t — 3), —19 — 12(t — 3))7,
qo = (7,25,31,49,55,---,25 + 12(¢ — 3),31 + 12(t — 3))7,

p1 = (-5, -15,-27,-39,-51,- -, —15 — 12(¢ — 3), —27 — 12(t — 2))7,
q = (11,21, 33,45,57,---,21 + 12(¢ — 3),33 + 12(¢ — 3))T,

p2 = (-1,-17,-29,-41,-53,---, =17 — 12(t — 3), —29 — 12(t — 3))7,
g2 = (9,23,35,47,59, - --,23 + 12(t — 3),35 + 12(t — 3))7,

ol

Y=(po g p» @@ P2 g2 Hi Hy).

It is not difficult to find that if r, s are even integers, then b; , % b; , (mod v)
for 1 <r < s < 18. Let S; denote the multiset {b; » | 1 < r < 18 andr is odd},
then for i = 0 (mod 2) we have

Si = {-13-12(—2),-3—12(i —2),1 — 12(i - 2),
13 — 2¢ — 14¢,13 — 2¢,13 — 2i + 8t,
13 — 2¢ + 18¢,13 — 2i 4 28¢,13 — 2i + 38t},
for i =1 (mod 2) with i > 3 we have
S; = {-19-12(: —3),-15 — 12(i — 3), -11 - 12( — 3),
13 — 2i — 14¢,13 — 24,13 — 2i + 8¢,
13 — 27 + 18t,13 — 27 + 28t,13 — 2i + 38t},
and for 7 = 1 we have
S = {3,5,15,11 — 14¢,11,11 + 8¢,11 + 18¢,11 + 28¢,11 + 38t}.
It can-be easily checked that S; contains no repeated elements for ¢ =
1,2,---,t. Hence, F(Y) = {B1, B,,- -+, B;} is a set of 18-cycles of type 1.
Clearly, each element in D appears exactly once in 8F(Y).
Case 3. Suppose t = 1. In this case, let
U=(3 7 -5 11 -1 9).
W=(-25 37 —-27 39 -29 41 -31 43 -33 45 -35 47).
Y=(U W).
It can be easily checked that B; is an 18-cycle of type 1. Clearly, each

element in D appears exactly once in 8F(Y).
Then we form one base cycle of type 3 for ¢ > 0. Let

C = (0,12¢t+1,72t + 22,12t + 5,24t + 10,12t - 1,
24t + 8,36t + 9,24t + 6, 36t 4 13,48t + 18,364 7,
48t + 16,60t + 17,48t + 14, 60t + 21, 2, 60t + 15).

It can be easily checked that C is an 18-cycle of type 3 and each element in L
appears exactly once in 8C. Finally, F = F(Y) | J{C} is a (K 5, C1s)-DS.
O

338



H,

Hy=

Lemma 3.7 There exists a cyclic 18-cycle systems of K, 5, for
n = 24 (mod 36).

Proof. We obtain a cyclic 18-cycle system of K, ,, for n = 24 (mod 36) by
constructing a (Kp 5, C1s)-DS. Let n = 36t + 24, ¢ > 0. Let

L =+ {1+12t,3+12¢,5+12¢,7+12¢,9+ 12¢,11 +12¢,
13 + 12t,15 + 12¢, 17+ 12¢,19 + 12¢, 21 + 24¢,23 + 24t}

and D = +{1,3,5,---,n — 1}\ L. We first form ¢ base cycles of type 1 for
t>1 LetY = ('y-,',h) be a t x 18 matrix, and B; = (bi,l,bi,z;" . 1bi,18)
be defined by b;; = 37 _, yi,p for i =1,2,---,¢. Let H; and Ha be t x 6
matrices and

~14t-21 26t+25 -12t—21 24t+25 -16f-21 28t+25
~14¢—-23 26t+27 -12t—23 24t+27 -16t—23 28t+27

—-16t—-19 28t+23 -—-14t—-19 26t+23 -18t-—19 30t+ 23
—18t—-21 30t+25 -—-20t—21 32t+25 —22t—-21 34t+25
—18t—-23 30t+17 -—-20{-23 32t+27 -—22t-—-23 34t+27

—20t—19 32t+23 -—-22t—19 34t+23 -—-24t-19 36+ 23

Case 1. Suppose t = 0 (mod 2). In this case, let

po = (-1,-7,-25,-31,---,—1 — 12(¢ - 2), -7 — 12(¢ — 2))7,
qo = (13,19,37,43,-.-,13 + 12( — 2),19 + 12(¢ — 2))7,

p1 = (-3,-15,-27,-39, .-+, -3 — 12(t — 2), =15 — 12(t — 2))7,
q =(9,21,33,45,---,9 4+ 12(t — 2),21 + 12(t — 2))7,

p2 = (—5,-17,~29, =41, ..., =5 — 12(t — 2), —17 — 12(¢ — 2))7,
g2 = (11,23,35,47,---,11 + 12(t — 2),23 + 12(t — 2))7,

Y=(p g m @ p2 @ Hi H).

It is not difficult to find that if r, s are even integers, then b; , # b; s (mod v)
for 1 <r < s < 18. Let S; denote the multiset {b; - | 1 < r < 18 and r is odd},
then for i = 0 (mod 2) we have

S; = {-7T-12(6-2),—-3—12(i —2),1 - 12(i - 2),

5 —2i —14¢,9 — 24,13 — 27 + 8¢,
17 — 20 + 18,21 — 2i + 28t,25 — 2i + 38¢},
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and for ¢ = 1 (mod 2) we have

S; = {-1-12(-1),9-12(i —1),13—12(i — 1),
5— 2i —14t,9 — 24,13 — 2i + 8¢,
17 — 2i + 18t,21 — 2i 4 28,25 — 2i + 38t}.

It can be easily checked that S; contains no repeated elements for i =
1,2,---,t. Hence, F(Y) = {B, B, --,B:} is a set of 18-cycles of type 1.
Clearly, each element in D appears exactly once in 8F(Y).
Case 2. Suppose t =1 (mod 2) with t > 3. In this case, let

po = (3,13, ~19, ~37,-43,---,~13 — 12(t — 3), -19 — 12(¢t — 3))7,
qQ = (7 25 31,49,55,---,25 + 12(t — 3),31 + 12(¢t - 3))T,

m = (-5, -15,-27, 39 —51,---,—15 — 12(¢ — 3), —27 — 12(t — 2))7,

a=((1 1 21 33,45,57,---,21 + 12(t—3),33+ 12(t - 3))7,

p2 = (-1,-17,-29, —41 —53 =17 — 12(t — 3), —29 — 12(¢ — 3))7,
g = (9,23,35,47,59, - -,23 + 12(t -3),35+12(¢t — 3))7,

Y=(p 90 P @ p2 ¢ Hi Hay).

It is not difficult to find that if 7, s are even integers, then b; » # b; 5 (mod v)
for1 < r < s < 18. Let S; denote the multiset {b;, | 1 < r < 18 and r is odd},
then for ¢ = 0 (mod 2) we have

S; = {-13-12(—2),-3—12(i — 2),1 — 12(i — 2),
5— 2i —14t,9 — 23,13 — 2i + 8,
17 — 24 + 18¢,21 — 2i 4 28t,25 — 21 + 38t},
for i =1 (mod 2) with ¢ > 3 we have

Si = {-19-12(i-3),-15-12(: — 3), —11 — 12(z — 3),
5—2i—14¢,9~ 24,13 — 2i + 8¢,
17 — 2¢ + 18t,21 — 27 + 28t,25 — 2i + 38t},
and for i = 1 we have

Sy = {3,5,15,3 — 14¢,7,11 + 8¢, 15 + 18¢,19 + 28¢, 23 + 38t}.

It can be easily checked that S; contains no repeated elements for i =
1,2,--+,t. Hence, F(Y) = {B1,Ba,---,B:} is a set of 18-cycles of type 1.
Clearly, each element in D appears exactly once in 8F(Y).
Case 3. Suppose t = 1. In this case, let

U=(3 7 -5 11 -1 9).

W=(-33 49 -35 51 -37 53 -39 55 -41 57 -43 59 ).
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y=(U W).

It can be easily checked that B; is an 18-cycle of type 1. Clearly, each
element in D appears exactly once in 8F(Y).
Then we form two base cycles of type 3 for ¢ > 0. Let

C: = (0,12t +5,24¢ + 12,36t + 15,24t + 14, 36t + 29,
24t + 16, 36t + 21, 48¢ + 28, 60¢ + 31,48t + 30, 60t + 45,
48t + 32, 60 + 37, 72t + 44,12t — 1,72t + 46,12t + 13),
Ca = (0,12t +9,24¢+ 20,36t + 37,24t + 18, 48¢ + 39,
24t + 16, 36t + 25, 48t + 36, 60t + 53,48t + 34,7,
48t + 32,60t + 41,4, 12t + 21,2, 24t + 23).

It can be easily checked that C; and C, are 18-cycles of type 3 and
each element in L appears exactly once in 8C; |JO8C,;. Finally, F =
f(Y) U{Cl, 02} isa (Kn,n,cls)-DS. a

From Lemmas 3.5-3.7 and Theorem 2.6, we finally have the following
theorem:

Theorem 3.8 There exists a cyclic 18-cycle systems of K, ,, if and only if
n =0,12 or 24 (mod 36).
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