Cyclic m-Cycle Systems of $K_{n,n}$ for

m < 30*

Wenwen Sun[†]

Department of Mathematics, Shanghai Jiao Tong University Shanghai 200240, P.R.China

Abstract. Let $K_{n,n}$ denote the complete bipartite graph with n vertices in each part. In this paper, it is proved that there is no cyclic m-cycle system of $K_{n,n}$ for $m \equiv 2 \pmod{4}$ and $n \equiv 2 \pmod{4}$. As a consequence, necessary and sufficient conditions are determined for the existence of cyclic m-cycle systems of $K_{n,n}$ for all integers $m \leq 30$.

Keywords: (cyclic) m-cycle system, difference system.

MSC: 05C38

1 Introduction

An m-cycle system of a graph G is a set \mathcal{B} of m-cycles in G whose edges partition the edge set of G. Let $K_{n,k}$ denote the complete bipartite graph with partite sets of sizes n and k. The existence problem for m-cycle systems of $K_{n,k}$ was completely settled in [7].

Theorem 1.1 There exists an m-cycle system of $K_{n,k}$ if and only if m, n and k are even, $n, k \ge m/2$ and m divides nk.

An m-cycle system \mathscr{B} of a graph G with vertex set \mathbb{Z}_v is cyclic if for each $B = (b_1, b_2, \dots, b_m) \in \mathscr{B}$ we have $B+1 = (b_1+1, b_2+1, \dots, b_m+1) \in \mathscr{B}$. In the sequel, any graph of order v will be considered as a graph with vertex set \mathbb{Z}_v . It is immediate to see that 2m must divide v(v-1) if there exists an m-cycle system of complete graph K_v .

The existence problem for cyclic m-cycle systems of complete graphs has attracted much interest. For m even and $v \equiv 1 \pmod{2m}$, cyclic m-cycle systems of K_v were constructed for $m \equiv 0 \pmod{4}$ in [5] and for

^{*}Project supported by National Natural Science Foundation of China under Grant No. 10471093.

[†]E-mail: sunwenwen19@yahoo.com.cn

 $m \equiv 2 \pmod{4}$ in [6]. For m odd and $v \equiv 1 \pmod{2m}$, cyclic m-cycle systems of K_v were found in [3,1,4]. For $v \equiv m \pmod{2m}$, it is proved in [2] that there exists a cyclic m-cycle system of K_v for all $m \notin M$ but $m \neq 3$, where $M = \{p^e \mid p \text{ is prime, } e > 1\} \bigcup \{15\}$, and in [9] for all $m \in M$. It is proved in [3] that there exists a cyclic m-cycle system of complete k-partite graph $K_{k \times m}$ for any pair of odd integers (k, m) but $(k, m) \neq (3, 3)$. For the existence of cyclic m-cycle systems of $K_{n,n}$, necessary and sufficient conditions were given in [8] for the case $m \equiv 0 \pmod{4}$ and m/4 square-free and the case $m \equiv 2 \pmod{4}$ with $m \geq 6$ and m square-free.

In this paper, it is proved that there is no cyclic m-cycle system of $K_{n,n}$ for $m \equiv 2 \pmod{4}$ and $n \equiv 2 \pmod{4}$. As a consequence, necessary and sufficient conditions are determined for the existence of cyclic m-cycle systems of $K_{n,n}$ for all integers $m \leq 30$.

2 Preliminaries

The main method used in this paper is the *difference* method, which enables us to construct cyclic cycle systems in a quite effective way. First, we provide some basic definitions and related properties.

Definition 2.1 The type of a cycle B is the cardinality of the set $\{j \in \mathbb{Z}_{\nu} \mid B = B + j\}$.

If $B = (b_1, b_2, \dots, b_m)$ is a m-cycle of type d, let ∂B denote the multiset $\{\pm (b_i - b_{i-1}) \mid i = 1, 2, \dots, m/d\}$ where $b_m = b_0$.

Definition 2.2 Let $\mathcal{F} = \{B_1, B_2, \dots, B_l\}$ be a set of m-cycles and d_i be the type of B_i for $i = 1, 2, \dots, l$. If each element in $\mathbb{Z}_v \setminus \{0\}$ appears exactly once in the multiset $\partial \mathcal{F} = \bigcup_i \partial B_i$, then \mathcal{F} is called a (K_v, C_m) -difference system $((K_v, C_m)$ -DS for short).

Throughout this paper we let the two partite sets of $K_{n,n}$ be $\{0, 2, 4, \dots, 2n-2\}$ and $\{1, 3, 5, \dots, 2n-1\}$. Then we can define $(K_{n,n}, C_m)$ -DS analogously.

Definition 2.3 Let $\mathcal{F} = \{B_1, B_2, \dots, B_l\}$ be a set of m-cycles and d_i be the type of B_i for $i = 1, 2, \dots, l$. If each element in $\pm \{1, 3, 5, \dots, n-1\}$ appears exactly once in the multiset $\partial \mathcal{F} = \bigcup_i \partial B_i$, then \mathcal{F} is called a $(K_{n,n}, C_m)$ -DS.

It is obvious that (a, b) is an edge of $K_{n,n}$ if and only if a - b = j for some $j \in \pm \{1, 3, 5, \dots, n-1\}$. So we have the following assertion:

Proposition 2.4 If $\mathcal{F} = \{B_1, B_2, \dots, B_l\}$ is a $(K_{n,n}, C_m)$ -DS, then the cycles $\{B_i + j \mid i = 1, 2, \dots, l, j = 1, 2, \dots, 2n/d_i\}$ form a cyclic m-cycle system of $K_{n,n}$ where d_i is the type of B_i .

Let B be a m-cycle of type d and

$$(B) = \{B + j \mid j = 1, 2, \cdots, 2n/d\}.$$

Then (B) is called the *orbit* generated by B and B is called a *base cycle* of (B). It is clear that for giving a cyclic m-cycle system of $K_{n,n}$ it is enough to give a set \mathcal{F} of representatives for the orbits of its cycles. Let B be a m-cycle in \mathcal{F} and let (a,b) be an edge of $K_{n,n}$. Then the number of cycles in the orbit of B admitting (a,b) as an edge, is exactly equal to the number of times that a-b appears in ∂B . It follows that \mathcal{F} is a $(K_{n,n}, C_m)$ -DS. So this allows us to state the following assertion:

Proposition 2.5 There exists a cyclic m-cycle system of $K_{n,n}$ if and only if there exists a $(K_{n,n}, C_m)$ -DS.

Now we state three theorems proved in [8] for later use.

Theorem 2.6 Let m, n be positive integers, $m \equiv 2 \pmod{4}$ with $m \geq 6$. There exists a cyclic m-cycle system of $K_{n,n}$ for $n \equiv 0 \pmod{2m}$.

Theorem 2.7 Let m, n be positive integers, $m \equiv 0 \pmod{4}$ and m/4 is square-free. There exists a cyclic m-cycle system of $K_{n,n}$ if and only if $n \equiv 0, m/2, m$ or $3m/2 \pmod{2m}$.

Theorem 2.8 Let m, n be positive integers, $m \equiv 2 \pmod{4}$ with $m \geq 6$ and m is square-free. There exists a cyclic m-cycle system of $K_{n,n}$ if and only if $n \equiv 0 \pmod{2m}$.

3 Cyclic m-Cycle Systems of $K_{n,n}$ for $m \leq 30$

In this section, we first prove the nonexistence of cyclic m-cycle systems of $K_{n,n}$ for $m \equiv 2 \pmod{4}$ and $n \equiv 2 \pmod{4}$.

Theorem 3.1 Let m, n be positive integers, $m \equiv 2 \pmod{4}$. There is no cyclic m-cycle system of $K_{n,n}$ for $n \equiv 2 \pmod{4}$.

Proof. Suppose \mathscr{B} is a cyclic *m*-cycle system of $K_{n,n}$, suppose $B = (c_0, c_1, \dots, c_{m/d}, \dots, c_{m-1})$ is an *m*-cycle in \mathscr{B} of type d, then $c_{m/d} - c_0 = x \cdot 2n/d$ with $\gcd(x, d) = 1$. We show that d is odd. If d is even, since d divides m, we have $d \equiv 2 \pmod{4}$ and m/d is odd. It follows by the oscillation of even and odd parities of labels along the cycle that $c_{m/d} - c_0$ is odd. It is a contradiction since 2n/d is even. Therefore d is odd.

Now, suppose \mathcal{F} is a $(K_{n,n}, C_m)$ -DS for \mathscr{B} and the m-cycles in \mathcal{F} have distinct types $d_1, d_2, \dots, d_{\tau}$. Since d_i is odd for $i = 1, 2, \dots, \tau$, we have $2m/d_i \equiv 0 \pmod{4}$. Let x_i denote the number of base m-cycles of type d_i

for $i=1,2,\cdots,\tau$. For an *m*-cycle B of type d, ∂B contains 2m/d distinct differences. Then we have

$$\sum_{i=1}^{\tau} x_i \cdot 2m/d_i = n.$$

It is a contradiction since $n \equiv 2 \pmod{4}$. Hence, for $m \equiv 2 \pmod{4}$, there is no cyclic *m*-cycle system of $K_{n,n}$ for $n \equiv 2 \pmod{4}$. \square

Theorem 3.2 For m = 4, 8, 12, 20, 24, 28, there exists a cyclic m-cycle systems of $K_{n,n}$ if and only if $n \equiv 0, m/2, m$ or $3m/2 \pmod{2m}$.

Proof. Since $m \equiv 0 \pmod{4}$ and m/4 is square-free for m = 4, 8, 12, 20, 24, 28, the conclusion follows from Theorem 2.7. \square

Theorem 3.3 For m = 6, 10, 14, 22, 26, 30, there exists a cyclic m-cycle systems of $K_{n,n}$ if and only if $n \equiv 0 \pmod{2m}$.

Proof. Since $m \equiv 2 \pmod{4}$ and m is square-free for m = 6, 10, 14, 22, 26, 30, the conclusion follows from Theorem 2.8. \square

The existence question for cyclic 16-cycle systems of $K_{n,n}$ was settled in [8].

Theorem 3.4 There exists a cyclic 16-cycle systems of $K_{n,n}$ if and only if $n \equiv 0, 8, 16$ or 24 (mod 32).

Lemma 3.5 If there exists a cyclic 18-cycle system of $K_{n,n}$, then $n \equiv 0, 12$ or 24 (mod 36).

Proof. It follows from Theorem 1.1 that if there exists a 18-cycle system of $K_{n,n}$, then $n \equiv 0, 6, 12, 18, 24$ or 30 (mod 36). And from Theorem 3.1 we have that there is no cyclic 18-cycle system of $K_{n,n}$ for $n \equiv 6, 18$ or 30 (mod 2m). \square

Lemma 3.6 There exists a cyclic 18-cycle systems of $K_{n,n}$ for $n \equiv 12 \pmod{36}$.

Proof. We obtain a cyclic 18-cycle system of $K_{n,n}$ for $n \equiv 12 \pmod{36}$ by constructing a $(K_{n,n}, C_{18})$ -DS. Let n = 36t + 12, $t \geq 0$. Let

$$L = \pm \{1 + 12t, 3 + 12t, 5 + 12t, 7 + 12t, 9 + 12t, 11 + 12t\}$$

and $D = \pm \{1, 3, 5, \dots, n-1\} \setminus L$. We first form t base cycles of type 1 for $t \geq 1$. Let $Y = (y_{i,h})$ be a $t \times 18$ matrix, and $B_i = (b_{i,1}, b_{i,2}, \dots, b_{i,18})$

be defined by $b_{i,j} = \sum_{h=1}^{j} y_{i,h}$ for $i = 1, 2, \dots, t$. Let H_1 and H_2 be $t \times 6$ matrices and

Case 1. Suppose $t \equiv 0 \pmod{2}$. In this case, let

$$p_0 = (-1, -7, -25, -31, \dots, -1 - 12(t-2), -7 - 12(t-2))^T,$$

$$q_0 = (13, 19, 37, 43, \dots, 13 + 12(t-2), 19 + 12(t-2))^T,$$

$$p_1 = (-3, -15, -27, -39, \dots, -3 - 12(t-2), -15 - 12(t-2))^T,$$

$$q_1 = (9, 21, 33, 45, \dots, 9 + 12(t-2), 21 + 12(t-2))^T,$$

$$p_2 = (-5, -17, -29, -41, \dots, -5 - 12(t-2), -17 - 12(t-2))^T,$$

$$q_2 = (11, 23, 35, 47, \dots, 11 + 12(t-2), 23 + 12(t-2))^T,$$

$$Y = (p_0 \quad q_0 \quad p_1 \quad q_1 \quad p_2 \quad q_2 \quad H_1 \quad H_2).$$

It is not difficult to find that if r, s are even integers, then $b_{i,r} \not\equiv b_{i,s} \pmod{v}$ for $1 \leq r < s \leq 18$. Let S_i denote the multiset $\{b_{i,r} \mid 1 \leq r \leq 18 \text{ and } r \text{ is odd}\}$, then for $i \equiv 0 \pmod{2}$ we have

$$S_i = \{-7 - 12(i-2), -3 - 12(i-2), 1 - 12(i-2), 13 - 2i - 14t, 13 - 2i, 13 - 2i + 8t, 13 - 2i + 18t, 13 - 2i + 28t, 13 - 2i + 38t\},\$$

and for $i \equiv 1 \pmod{2}$ we have

$$S_i = \{-1 - 12(i - 1), 9 - 12(i - 1), 13 - 12(i - 1), 13 - 2i - 14t, 13 - 2i, 13 - 2i + 8t, 13 - 2i + 18t, 13 - 2i + 28t, 13 - 2i + 38t\}.$$

It can be easily checked that S_i contains no repeated elements for $i = 1, 2, \dots, t$. Hence, $\mathcal{F}(Y) = \{B_1, B_2, \dots, B_t\}$ is a set of 18-cycles of type 1. Clearly, each element in D appears exactly once in $\partial \mathcal{F}(Y)$.

Case 2. Suppose $t \equiv 1 \pmod{2}$ with $t \geq 3$. In this case, let

$$p_0 = (3, -13, -19, -37, -43, \dots, -13 - 12(t - 3), -19 - 12(t - 3))^T,$$

$$q_0 = (7, 25, 31, 49, 55, \dots, 25 + 12(t - 3), 31 + 12(t - 3))^T,$$

$$p_1 = (-5, -15, -27, -39, -51, \dots, -15 - 12(t - 3), -27 - 12(t - 2))^T,$$

$$q_1 = (11, 21, 33, 45, 57, \dots, 21 + 12(t - 3), 33 + 12(t - 3))^T,$$

$$p_2 = (-1, -17, -29, -41, -53, \dots, -17 - 12(t - 3), -29 - 12(t - 3))^T,$$

$$q_2 = (9, 23, 35, 47, 59, \dots, 23 + 12(t - 3), 35 + 12(t - 3))^T,$$

$$Y = (p_0 q_0 p_1 q_1 p_2 q_2 H_1 H_2).$$

It is not difficult to find that if r, s are even integers, then $b_{i,r} \neq b_{i,s} \pmod{v}$ for $1 \leq r < s \leq 18$. Let S_i denote the multiset $\{b_{i,r} \mid 1 \leq r \leq 18 \text{ and } r \text{ is odd}\}$, then for $i \equiv 0 \pmod{2}$ we have

$$S_{i} = \{-13 - 12(i - 2), -3 - 12(i - 2), 1 - 12(i - 2), 13 - 2i - 14t, 13 - 2i, 13 - 2i + 8t, 13 - 2i + 18t, 13 - 2i + 28t, 13 - 2i + 38t\},\$$

for $i \equiv 1 \pmod{2}$ with $i \geq 3$ we have

$$S_{i} = \{-19 - 12(i - 3), -15 - 12(i - 3), -11 - 12(i - 3), \\ 13 - 2i - 14t, 13 - 2i, 13 - 2i + 8t, \\ 13 - 2i + 18t, 13 - 2i + 28t, 13 - 2i + 38t\},$$

and for i = 1 we have

$$S_1 = \{3, 5, 15, 11 - 14t, 11, 11 + 8t, 11 + 18t, 11 + 28t, 11 + 38t\}.$$

It can be easily checked that S_i contains no repeated elements for $i = 1, 2, \dots, t$. Hence, $\mathcal{F}(Y) = \{B_1, B_2, \dots, B_t\}$ is a set of 18-cycles of type 1. Clearly, each element in D appears exactly once in $\partial \mathcal{F}(Y)$. Case 3. Suppose t = 1. In this case, let

It can be easily checked that B_1 is an 18-cycle of type 1. Clearly, each element in D appears exactly once in $\partial \mathcal{F}(Y)$.

Then we form one base cycle of type 3 for $t \geq 0$. Let

$$C = (0, 12t + 1, 72t + 22, 12t + 5, 24t + 10, 12t - 1, 24t + 8, 36t + 9, 24t + 6, 36t + 13, 48t + 18, 36t + 7, 48t + 16, 60t + 17, 48t + 14, 60t + 21, 2, 60t + 15).$$

It can be easily checked that C is an 18-cycle of type 3 and each element in L appears exactly once in ∂C . Finally, $\mathcal{F} = \mathcal{F}(Y) \bigcup \{C\}$ is a $(K_{n,n}, C_{18})$ -DS. \square

Lemma 3.7 There exists a cyclic 18-cycle systems of $K_{n,n}$ for $n \equiv 24 \pmod{36}$.

Proof. We obtain a cyclic 18-cycle system of $K_{n,n}$ for $n \equiv 24 \pmod{36}$ by constructing a $(K_{n,n}, C_{18})$ -DS. Let n = 36t + 24, $t \geq 0$. Let

$$L = \pm \{1 + 12t, 3 + 12t, 5 + 12t, 7 + 12t, 9 + 12t, 11 + 12t, \\ 13 + 12t, 15 + 12t, 17 + 12t, 19 + 12t, 21 + 24t, 23 + 24t\}$$

and $D=\pm\{1,3,5,\cdots,n-1\}\setminus L$. We first form t base cycles of type 1 for $t\geq 1$. Let $Y=(y_{i,h})$ be a $t\times 18$ matrix, and $B_i=(b_{i,1},b_{i,2},\cdots,b_{i,18})$ be defined by $b_{i,j}=\sum_{h=1}^j y_{i,h}$ for $i=1,2,\cdots,t$. Let H_1 and H_2 be $t\times 6$ matrices and

$$H_1 = \left(\begin{array}{cccccc} -14t - 21 & 26t + 25 & -12t - 21 & 24t + 25 & -16t - 21 & 28t + 25 \\ -14t - 23 & 26t + 27 & -12t - 23 & 24t + 27 & -16t - 23 & 28t + 27 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -16t - 19 & 28t + 23 & -14t - 19 & 26t + 23 & -18t - 19 & 30t + 23 \end{array} \right),$$

$$H_2 = \left(\begin{array}{cccccc} -18t - 21 & 30t + 25 & -20t - 21 & 32t + 25 & -22t - 21 & 34t + 25 \\ -18t - 23 & 30t + 17 & -20t - 23 & 32t + 27 & -22t - 23 & 34t + 27 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -20t - 19 & 32t + 23 & -22t - 19 & 34t + 23 & -24t - 19 & 36t + 23 \end{array} \right).$$

Case 1. Suppose $t \equiv 0 \pmod{2}$. In this case, let

$$p_0 = (-1, -7, -25, -31, \dots, -1 - 12(t - 2), -7 - 12(t - 2))^T,$$

$$q_0 = (13, 19, 37, 43, \dots, 13 + 12(t - 2), 19 + 12(t - 2))^T,$$

$$p_1 = (-3, -15, -27, -39, \dots, -3 - 12(t - 2), -15 - 12(t - 2))^T,$$

$$q_1 = (9, 21, 33, 45, \dots, 9 + 12(t - 2), 21 + 12(t - 2))^T,$$

$$p_2 = (-5, -17, -29, -41, \dots, -5 - 12(t - 2), -17 - 12(t - 2))^T,$$

$$q_2 = (11, 23, 35, 47, \dots, 11 + 12(t - 2), 23 + 12(t - 2))^T,$$

$$Y = (p_0 \quad q_0 \quad p_1 \quad q_1 \quad p_2 \quad q_2 \quad H_1 \quad H_2).$$

It is not difficult to find that if r, s are even integers, then $b_{i,r} \not\equiv b_{i,s} \pmod{v}$ for $1 \leq r < s \leq 18$. Let S_i denote the multiset $\{b_{i,r} \mid 1 \leq r \leq 18 \text{ and } r \text{ is odd}\}$, then for $i \equiv 0 \pmod{2}$ we have

$$S_{i} = \{-7 - 12(i-2), -3 - 12(i-2), 1 - 12(i-2), 5 - 2i - 14t, 9 - 2i, 13 - 2i + 8t, 17 - 2i + 18t, 21 - 2i + 28t, 25 - 2i + 38t\},\$$

and for $i \equiv 1 \pmod{2}$ we have

$$S_{i} = \{-1 - 12(i - 1), 9 - 12(i - 1), 13 - 12(i - 1), 5 - 2i - 14t, 9 - 2i, 13 - 2i + 8t, 17 - 2i + 18t, 21 - 2i + 28t, 25 - 2i + 38t\}.$$

It can be easily checked that S_i contains no repeated elements for $i = 1, 2, \dots, t$. Hence, $\mathcal{F}(Y) = \{B_1, B_2, \dots, B_t\}$ is a set of 18-cycles of type 1. Clearly, each element in D appears exactly once in $\partial \mathcal{F}(Y)$.

Case 2. Suppose $t \equiv 1 \pmod{2}$ with $t \geq 3$. In this case, let

$$p_0 = (3, -13, -19, -37, -43, \cdots, -13 - 12(t - 3), -19 - 12(t - 3))^T,$$

$$q_0 = (7, 25, 31, 49, 55, \cdots, 25 + 12(t - 3), 31 + 12(t - 3))^T,$$

$$p_1 = (-5, -15, -27, -39, -51, \cdots, -15 - 12(t - 3), -27 - 12(t - 2))^T,$$

$$q_1 = (11, 21, 33, 45, 57, \cdots, 21 + 12(t - 3), 33 + 12(t - 3))^T,$$

$$p_2 = (-1, -17, -29, -41, -53, \cdots, -17 - 12(t - 3), -29 - 12(t - 3))^T,$$

$$q_2 = (9, 23, 35, 47, 59, \cdots, 23 + 12(t - 3), 35 + 12(t - 3))^T,$$

$$Y = (p_0 \quad q_0 \quad p_1 \quad q_1 \quad p_2 \quad q_2 \quad H_1 \quad H_2).$$

It is not difficult to find that if r, s are even integers, then $b_{i,r} \neq b_{i,s} \pmod{v}$ for $1 \leq r < s \leq 18$. Let S_i denote the multiset $\{b_{i,r} \mid 1 \leq r \leq 18 \text{ and } r \text{ is odd}\}$, then for $i \equiv 0 \pmod{2}$ we have

$$S_{i} = \{-13 - 12(i-2), -3 - 12(i-2), 1 - 12(i-2), 5 - 2i - 14t, 9 - 2i, 13 - 2i + 8t, 17 - 2i + 18t, 21 - 2i + 28t, 25 - 2i + 38t\},\$$

for $i \equiv 1 \pmod{2}$ with $i \geq 3$ we have

$$S_{i} = \{-19 - 12(i - 3), -15 - 12(i - 3), -11 - 12(i - 3), 5 - 2i - 14t, 9 - 2i, 13 - 2i + 8t, 17 - 2i + 18t, 21 - 2i + 28t, 25 - 2i + 38t\},$$

and for i = 1 we have

$$S_1 = \{3, 5, 15, 3 - 14t, 7, 11 + 8t, 15 + 18t, 19 + 28t, 23 + 38t\}.$$

It can be easily checked that S_i contains no repeated elements for $i=1,2,\cdots,t$. Hence, $\mathcal{F}(Y)=\{B_1,B_2,\cdots,B_t\}$ is a set of 18-cycles of type 1. Clearly, each element in D appears exactly once in $\partial \mathcal{F}(Y)$.

Case 3. Suppose t = 1. In this case, let

$$Y = (U W).$$

It can be easily checked that B_1 is an 18-cycle of type 1. Clearly, each element in D appears exactly once in $\partial \mathcal{F}(Y)$.

Then we form two base cycles of type 3 for $t \geq 0$. Let

$$C_1 = (0, 12t + 5, 24t + 12, 36t + 15, 24t + 14, 36t + 29, 24t + 16, 36t + 21, 48t + 28, 60t + 31, 48t + 30, 60t + 45, 48t + 32, 60t + 37, 72t + 44, 12t - 1, 72t + 46, 12t + 13),$$

$$C_2 = (0, 12t + 9, 24t + 20, 36t + 37, 24t + 18, 48t + 39, 36t + 37, 24t + 18, 48t + 39, 36t + 37, 24t + 18, 48t + 39, 36t + 37, 24t + 18, 48t + 39, 36t + 37, 24t + 18, 48t + 39, 36t + 37, 24t + 18, 48t + 39, 36t + 37, 24t + 18, 48t + 39, 36t + 37, 24t + 18, 48t + 39, 36t + 37, 24t + 18, 48t + 39, 36t + 37, 24t + 18, 48t + 39, 36t + 37, 24t + 18, 48t + 39, 36t + 37, 24t + 18, 48t + 39, 36t + 37, 24t + 18, 48t + 39, 36t + 37, 24t + 18, 48t + 39, 36t + 37, 24t + 38, 36t + 37, 36t$$

$$\begin{array}{rcl} C_2 & = & (0,12t+9,24t+20,36t+37,24t+18,48t+39,\\ & 24t+16,36t+25,48t+36,60t+53,48t+34,7,\\ & 48t+32,60t+41,4,12t+21,2,24t+23). \end{array}$$

It can be easily checked that C_1 and C_2 are 18-cycles of type 3 and each element in L appears exactly once in $\partial C_1 \cup \partial C_2$. Finally, $\mathcal{F} = \mathcal{F}(Y) \cup \{C_1, C_2\}$ is a $(K_{n,n}, C_{18})$ -DS. \square

From Lemmas 3.5-3.7 and Theorem 2.6, we finally have the following theorem:

Theorem 3.8 There exists a cyclic 18-cycle systems of $K_{n,n}$ if and only if $n \equiv 0, 12$ or 24 (mod 36).

Acknowledgement

The author would like to thank Prof. Hao Shen for his constructive discussions and suggestions. Without his selfless help, this paper could not be in the present form.

References

- [1] A. Blinco, S. El Zanati, C. Vanden Eynden, On the cyclic decomposition of complete graphs into almost-bipartite graphs, *Discrete Math.* 284 (2004), 71-81.
- [2] M. Buratti, A. DelFra, Cyclic hamiltonian cycle systems of the complete graph, Discrete Math. 279 (2004), 107-119.
- [3] M. Buratti, A. DelFra, Existence of cyclic k-cycle systems of the complete graph, Discrete Math. 261 (2003), 113-225.
- [4] H. Fu and S. Wu, Cyclically decomposing the complete graphs into cycles, *Discrete Math.* 282 (2004), 267-273.
- [5] A. Kotzig, On decompositions of the complete graph into 4k-gons, Mat.-Fyz. Cas. 15 (1965), 227-233.

- [6] A.Rosa, On cyclic decompositions of the complete graph into (4m+2)-gons, Mat.-Fyz. Cas. 16 (1966), 349-352.
- [7] D. Sotteau, Decomposition of $K_{m,n}(K_{m,m}^*)$ into cycles(circuits) of length 2k, J. Combin. Theory Ser. B 29 (1981),75-81.
- [8] Wenwen Sun, Hao Shen, Cyclic Cycle Systems of the Complete Bipartite Graph $K_{n,n}$, (preprint).
- [9] A. Vietri, Cyclic k-cycle systems of order 2kn+k: a solution of the last open cases, J. Combin. Designs 12 (2004), 299-310.