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Abstract

In a given graph G, a set S of vertices with an assignment of
colors is a defining set of the vertex coloring of G, if there exists
a unique extension of the colors of S to a X(G)-coloring of the
vertices of G. A defining set with minimum cardinality is called
a smallest defining set (of vertex coloring) and its cardinality, the
defining number, is denoted by d(G, X). Let d(n,r, X = k) be the
smallest defining number of all r-regular k-chromatic graphs with n
vertices. Mahmoodian et. al [7] proved that, for a given k and for
all n > 3k, if r > 2(k — 1) then d(n,r, X = k) = k— 1. In this paper
we show that for a given k and for all n < 3k and r > 2(k — 1),
dn,7, X=k)=k-1.
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1 Introduction

A k-coloring of a graph G is an assignment of k different colors to the vertices
of G such that no two adjacent vertices receive the same color. The (vertex)
chromatic number, X(G), of a graph G is the minimum number k for which
there exists a k-coloring for G. A graph G with X(G) = k is called a k-
chromatic graph. In a given graph G, a set of vertices S with an assignment
of colors is called a defining set of vertex coloring, if there exists a unique
extension of the colors of S to a X(G)-coloring of the vertices of G. A
defining set with minimum cardinality is called a smallest defining set (of
a vertex coloring) and its cardinality is the defining number, denoted by

d(G, X).

There are some results on defining numbers in [6] (see also [3], and [4]).
Here we study the following concept. Let d(n,r, X = k) be the smallest
value of d(G, X) for all r-regular k-chromatic graphs with n vertices. Note
that for any graph G, we have d(G, X) > X(G) - 1, therefore d(n,r, X =
k) > k — 1. By Brooks’ Theorem [2], if G is a connected r-regular k-
chromatic graph which is not a complete graph or an odd cycle, then & < r.
For the case of r = k, Mahmoodian and Mendelsohn [5] determined the
value of d(n,k, X = k) for all k¥ < 5. Mahmoodian and Soltankhah [8]
determined this value for k = 6 and k = 7. Also in [8], for each k, the value
of d(n,k, X = k) is determined for some congruence classes of n. For the
case of k < r, it is proved in [5) that, for each n and each r > 4, we have
d(n,r, X = 3) = 2. The following question is raised in [5]:

Question. Is it true that for every k, there exist ng(k) and ro(k), such
that for all n > ng(k) and r > ro(k) we have d(n,r, X =k) =k —17

Mahmoodian et. al. [7] proved that the answer to this question is positive

and that, for a given k and all n > 3k, if » > 2(k — 1) then d(n,r, X =
k)=k-1.

We show the above statement for n < 3k. In fact we prove that:

Theorem. Let k be a positive integer. For eachn < 3k, ifr > 2(k —1)
thend(n,r, X=k)=k—-1.

2 Preliminaries

In this section, we state some known results and definitions which will be
used in the sequel.
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Definition 1 [5]. Let G and H be two graphs, each with a given proper k-
coloring say cg and cg, (respectively) with k colors. Then the chromatic join

of G and H, denoted by G $His a graph where V(G v H)is V(GQ)UV(H),
and E(G ¥ H) is E(G) U E(H), together with the set {zy | z € V(G), y €
V (H) such that cg(z) # ca(y)}-

Theorem A [5]. Let n be a multiple of k, say n = kl (I > 2); then
d(kl,2(k-1), X=k)=k-1.

To prove this theorem Mahmoodian and Mendelsohn constructed a 2(k—1)-
regular k-chromatic graph with n = kl vertices as follows. Let G1,Ga,...,G;
be vertex disjoint graphs such that G; and G; are two copies of K and
if I > 3, Ga,--+,G)_; are copies of K. Color each G; with k colors
1,2,-.-,k. Then construct a graph G with Ik vertices by taking the union
of G1UG:U...UG], and by making a chromatic join between G; and G;q;
fori=1,2,---,l — 1. This is the desired graph. We denote such a graph
by Gyx) and use this construction in Section 3.

Definition 2 [8]. Let G be a k-chromatic graph and let S be a defining
set for G. Then a set F'(S) of edges is called nonessential edges, if the
chromatic number of G ~ F(S), the graph obtained from G by removing
the edges in F(S), is still k, and S is also a defining set for G — F(S5).

Remark 1. A necessary condition for the existence of an r-regular k-
chromatic graph is 7= < & For, if G is an r-regular k-chromatic graph
with n vertices, then each chromatic class in G has at most n — 7 vertices.
Therefore n < k(n —r). This implies ;% < 2. Thus, for r > 2(k — 1)
there are not any graph of order n < 2k. Hence when r > 2(k — 1), it is
sufficient to investigate d(n,r, X = k) only for n > 2k. Also it is obvious
that n and r cannot be both odd.

For the definitions and notations not defined here we refer the reader to

texts, such as [9].

3 Main results

In this section in the following four theorems we prove our main result,
which was mentioned at the end of Section 1.

Theorem 1. For each k > 3 and each r > 2(k — 1), we have
dBk-1,7r, X=k)=k-1.
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Proof. Let n =3k —1 and r = 2(k — 1) + ¢t. By Remark 1 it is obvious
that ¢ < k — 2. First for ¢t = 0, we construct a 2(k — 1)-regular k-chromatic
graph H with n vertices and d(H, X) = k — 1 as follows. By Theorem
A we have d(3k,2(k — 1), X = k) = k — 1. In graph G3() which was
constructed to prove Theorem A, let V(G:) = {u1,uz, .., ux}, V(G2) =
{v1,v2,..., 0%}, and V(G3) = {w1,ws,...,wx}. Also assume that c(u;) =
c(v;) = c(w;) =i, for i = 1,2,...,k. Note that the set of vertices adjacent
to vx is Ngy,, () = {u1, ey Uk—1 } U {w1, ..., wx—1}. We delete the vertex
v, and join its neighbors in the following manner: we join u; to w4, for
i=1,2,....,k — 2 and ux_; to wy. It can be easily seen that the new graph,
say H, is 2(k — 1)-regular k-chromatic with n = 3k — 1 vertices with a
defining set S = {u, u2, ..., U1}

Now for 1 < ¢t < k — 3, to construct an r-regular k-chromatic graph,
we consider the graph H, and we add the edges u;witj42  (mod k), for
i=1,.,kand j = 1,...,t, to H. Also, in the case of ¥ odd, we add the
edges of ¢ mutually disjoint 1-factors of Kx_,, and in the case of k even, the
edges of % mutually disjoint 2-factors of K—_;, on vertex set {vy, ..., vg~1}-

Note that if t = k — 2 then such a graph does not exist. For, if G
is a graph satisfying such conditions then we know that each chromatic
class in G has at most 3 vertices. Since n = 3k — 1, G must have k — 1
chromatic classes of size 3 and one chromatic class of size 2. And each
vertex in a chromatic class of size 3 must be adjacent to all other vertices.
This implies that the degree of each vertex in the chromatic class of size 2
is 3(k — 1) =r + 1, which contradicts the r-regularity of the graph.

Example 1. In Figure 1 we show the graph H when k =5 andr = 8. The
vertices of the defining set are shown by the filled circles.

Figure 1: d(H,x = 5) = 4.
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Theorem 2. For each odd number k > 3, and each 2k <n < 3k - 2, we
have d(n,2(k—1), X =k) =

Proof. By Theorem A we have d(2k,2(k -1), X=k)=k—1. Let n =
2k+s,s=1,2,...,k—2. We construct a 2(k— 1)-regular k-chromatic graph
H, with n vertices and defining number equals to k—1. For this, we consider
graph Gy and add s new vertices to it, delete some suitable edges as fol-
lows and join the new vertices to the end vertices of deleted edges. In graph
Gaq, for convenience let V(G1) = {u1, ..., us, ey Tl U7y ey Uity ey Uy
auk} and V(G2 = {Ul, - Vi, .. s'vi-rl s V175 0eny Uity . ,'U(h 1)’7”/‘:}) where ' =

i+ 51 i=1,2,.., 52 and c(u;) = c(v;) =4, for j = 1,2,..., k.

fl1<s< "—;—1 then denote new vertices by z, ..., z,. Let M;, Mo, ..., ML;_]
be mutually disjoint 1-factors of subgraph < u,, ..., u;, ey ULy ULy cony Uity ooe
»Ughzry > in G(;) such that each edge in M; hasone end in {u;,uo, ..., u%-r:}
and the other end in {uy/,..., VU k-l)'}- For each i (1 < ¢ < 8) we join z;
to each of the vertices of M;, and delete all of the edges of M;. Also
with respect to each u,up € M;, we delete the edge v,vp and join z;
to the vertices v, and vs. Now it can be easily seen that deg(z;) =
2(k — 1). Note that the new graph contains a complete subgraph say,
< U1, Uz, - Uk, V1, Yty 1 >= K and a defining set S = {uy,...,
ug-1}. Also the colors of vertices of Gy force all new vertices to be
colored k.
If ﬂ < 8 < k — 2 then we denote the new vertices by z;, 3, .. 2 Th=1, Y1,
Y, u=1. For z; (1 <4 < %51) we proceed as before. For y; (1 <t<

s — —), ﬁrst we recognize some nonessential edges in H ko1 . If for each

i, we let 2; be either u; or v; and, for each j, we let w; be elther uj Or vj,
then the following edges form a nonessential set in H ¢

F= {vw;|1<i<j<BYu{upuy |1 <i' < < (551U
{:clu;ro'r:cl'u,|1<1,<’“I}U{:z:,w_.,'2<z<"— 1<
{zavr | 1<i<k-1}.

There are two cases to be considered.

Ju
j<

Case 1. k=4l + 1.
In this case the induced subgraphs A =< UL, Uy ey Ykayr > and

B =< v,vs,...,v k1 >are complete graphs K kot So they are 1-factorable.
Let Fy, F,, ...,F:%__s and F}, F}, ..., L—g-i be 1-factorizations of A and B, re-
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spectively, such that the edge Uy € F; and VVeo1 € F]. Now for
eacht (1 <t < s — k51 < £53) we delete all of the edges of Fe\{upu(sz1y}
and F{\{vevez }. Also we delete the edges u;vs-1 and upvg. Finally we
delete all the edges 10z, ZaU41,.-, Thztlyyrzs  (mod E21). We join y;

to the ends of all deleted edges. It can be easily seen that deg(y:) = 2(k—1)
and the color of y; is forced to be k — 1.

Case 2. k=4l + 3.

In this case the induced subgraphs A =< )/, ug, e Uyt Uk > and
B =< UL, V2, ooy Vit s Uk > are complete graphs Kﬁz‘_" Thus they are 1-
factorable. Let Fy, F5, ...,F&;_! and F, Fy, ..., :'-3—' be 1-factorizations of A

and B, respectively, such that uzux € F; and vevx € Ff, for 1 < ¢ < 5L
Now for each t (1 < t < s— %51 < 553) we delete all of the edges of
Fi\{uyui} and F{\{v,vx}. Also we delete the edge vxu;. Finally we delete
the edges T1v¢, T2Us41,y Thoaliyy ks (mod £2l). We join g to the
ends of all deleted edges. It can be easily seen that deg(y:) = 2(k — 1) and
the color of y; is forced to be ¢ + &51. [ |

To illustrate the construction shown in the proof of Theorem 2, we provide
the following example.

Example 2. Let £k = 7. For 15 < n < 19, we construct a 12-regular
7-chromatic graph of order n with a defining set of size 6. For n = 14 + s,
1< 8 < 5, we add s new vertices to the 12-regular 7-chromatic graph G(7)
of order 14 and delete some nonessential edges as explained in the proof of
Theorem 2.

Table 1: New vertices and deleted edges.

New vertices | Ty T3 21 Y2
U Uy Uy Uz uUruz! Uruz’ Uy Uz’
UgUgr | UgUzr | U2Up/ V23 n1v3
Deleted ugzuzs | uszly | usug 10 TV
edges M vy V1V V1vV3/ Tou2 ToU3
VU2 | UgV3 | V2Uy/ T3u3 T3uy
V3V3 vz V3V vruy Uru2

Table 1 gives all the deleted edges of Gy(7) with respect to addition of
new vertices. In Figure 2, we show the deleted edges and the added edges
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to construct a 12-regular 7-chromatic graph H; of order 15 (s = 1) with
a defining set of size 6. The dotted lines are the deleted edges and the
vertices of the defining set are shown by the filled circles.

T

Figure 2: d(H,,x =7) =

Theorem 3. For each even number k > 4, and each 2k <n < 3k — 2, we
have d(n,2(k—1), X=k) =

Proof. By Theorem A we have d(2k,2(k - 1), X = k) = k— 1. For
n=2k+s,8=12,..k— 2, we construct a 2(k — 1)-regular k-chromatic
graph H, with n vertices and defining number equal to k — 1.

To construct H,, we consider graph Ga(;) and add s new vertices to it,
delete some suitable edges and join the new vertices to the end vertices of
the deleted edges as follows. In graph Gy(x) for convenience let V(G1) =
{Ul, oy Uiy <o auk7ul' Yy . )u(h) } and V(GZ) = {'Ul’ - Vi, . avi.,vl’

y Uity ,v(g) '} wherez = z-i- 5 1=12,., 2, and c(uj) = c(v;) = j, for
i=12,..,k.

Ifi1<s< — — 1 then we denote the new vertices by z;,...,z,. Let
My, M, ..M 5 be mutually disjoint 1-factors of the induced subgra.ph
G1 =< Uy, ey Ujyeeey U By ULy ey Uity ooy Uy >, where, for i = 1,2,.

M,‘ = {ului:,ugu(i_,_l)l, ...,ugu(,-_,_t_l)', cony u,;_u(ﬂ_g__l)r} (mod 5)
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Also let M{, M3, ..., M, be mutually disjoint 1-factors of the induced sub-
2

graph G, =< ULy weey Uiy oeey Uy U115 wony Uity ooy Uy >, where, fori =1,2,. 5

k
M= {'Ul'Ui',U2'U(i+1)'= --~’vtv(i+t—1)'7---:vg-v(i+§—1)'} (mod 5)-

Now for each i (z = 1,2, ..., s) we delete all of the edges of M,-+1\{u§_,-u(§)' }
and all of the edges of M;\{vy_; .19 §)r}. Finally we delete the edge
ug_Vs_iyy- We join z; to the ends of all deleted edges. Now it can
be easily seen that deg(z;) = 2(k — 1). Note that the new graph contains
a complete subgraph say < U, U2, ey Uy Uk, VI ey V(g >= K} and
a defining set S = {u,...,ux—1}. Also the colors of vertices of G force
the colors of all new vertices to be k.

If§ < 8 £ k-2 then we denote the new vertices by z;, z2, Tl 1, Y1, Y2,
wrYpobyy- Forz (1< < % ~1) we treat as before. Fory; (1 <t <
8- % + 1) first we recognize some nonessential edges in H b1 If for each

J, we let w; be either u; or v, then the following edges form a nonessential
set in H 51

F= {’Uz’UJ|1<1<]<2,J¢1+1}U{u,ru] |1 <i'<j' < (& ) -1}
{ziw; |1<i< -1, 1<J<k—1}U{’U,'U(%) [1<i< (% Ey' -1}y
M1 {URU(%)}UM%

There are two cases to be considered.
Case 1. k =4l.

In this case the induced subgraphs A =< uy+, uyr, o Uy > and B =<
U1, 02,.., Vg > are complete graphs K 5 So they are l-factorable. Let
Fl,Fg,...,F§_1 and Fj, Fy, ...,Fé_l be standard 1-factorizations (see [1],
page 166) of A and B, respectively, such that the edges uptpy € F; and
vvy € F{. Now foreach ¢t (1 <t < s—%+1 < £—1) we delete all of
the edges of Fi\ {upu Ly '} and Fj. Also we delete the edge V(er1) V(ky
(mod (% — 1)). If there exist some edges such as v;viy1 € F}, then instead
of these edges we delete the edges vyvi41 € M| ’% .

Also for an arbitrary index ¢ of such as edges v;v;+, we delete the edge
Vivgy instead of the edge Ut 1) V(k) - Finally we delete the edges zju¢+1,

k
T2Ut42y00r Th_Upyk_,  (mod 3).
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We join y; to the ends of all deleted edges. It can be easily seen that
deg(y:) = 2(k — 1) and the color of y; is forced to be t + &, for ¢ # § — 1
and the color of yy _, to be § — 1.

Case 2. k=4l +2.

In this case the induced subgraphs A =< uy/,usr, o Ugyh UL > and
B =< V1, U2,y Vg, Ugy > AIE complete graphs K§+1~ So they are 1-
factorable. Let Fy, Fs, ..., Fg and Fj, Fy, ..., Fé be 1-factorizations of A and
B, respectively, such that u;uy € F; and VtV(sy € F]. Now foreach t (1 <
t < s—-%+41< £-1) we delete all of the edges of Fz\{uwy,u,-:u(%):}
and F]. Also we delete the edge ujuj € M;. If there exist some edges
such as v;v;41 € F{ then instead of the edges v;v;1; we delete the edges
Vpviy) € M ;2‘. Finally we delete the edges T1uj41, Totjsa,, Th_1 Uy
(mod %). We join y; to the ends of all deleted edges. It can be easily seen
that deg(y:) = 2(k — 1) and the color of y; is forced to be ¢ + &. |

To illustrate the construction shown in the proof of Theorem 3, we
provide the following example.

Example 3. Let k¥ = 8. For 17 < n < 22, we construct a 14-regular
8-chromatic graph of order n with a defining set of size 7. For n = 16 + s,
1 < s <6, we add s new vertices to the 14-regular 8-chromatic graph Gys)
of order 16 and delete some nonessential edges as explained in the proof of

Theorem 3.

Table 2: New vertices and deleted edges.

New vertices 2 ) T3 hn Y2 Y3

Uy | WUz | WUy | UgrUzgs | U Uz | Uy Ugs
UgU3zs | UgUy | uzuy V14 Va4 U3/ Vg
Deleted UgUY | UgU2 | UqUs | VU3 | V1U3 vy U2
edges nv | MV | V1V | VaUy | U3V | ViVg
UgV2r | UgVy | VU3Vys T1U2 TiuU3 T1Uq
UsUss | VgV | V4V TaUs Ta2Uq T2Uy
U3zVq U2V3 U102 T3Uq T3w) T3U2

Table 2 gives all the deleted edges of Gy(s) with respect to addition of
" new vertices. In Figure 3, we show the deleted edges and the added edges
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~

to construct a 14-regular 8-chromatic graph H; of order 17 (s = 1) with
a defining set of size 7. The dotted lines are the deleted edges and the
vertices of the defining set are shown by the filled circles.

Figure 3: d(H;,x=8)="1.

Theorem 4. For each k > 4,2k <n <3k-2, andr > 2(k — 1), we have
d(n,r, X=k)=k-1.

Proof. Letn=2k+3,0<s<k—2,andr =2(k—1)+t¢. By Remark 1,
if there exists an r-regular k-chromatic graph with n vertices then it is
obvious that ¢ < s. We construct an r-regular k-chromatic graph H with
n vertices in the following manner.

Consider graph Gy, let V(G1) = {u1,...,ux} and V(G2) = {v1,..., v},
and c(u;) = c(v;) = 4, for ¢ = 1,2,...,k. We add s new vertices say
Ti,...,Zs t0 Gar). For each z; (1 < i < 5) we join z; to each ver-
tex of V(G1) U V(G2)\{ui,vi}. Also, in the case of s even, we add the
edges of ¢ mutually disjoint 1-factors of K, and in the case of s odd, the
edges of % mutually disjoint 2-factors of Kj, to z;,...,2,. The graph ob-
tained in this way, say H', is a k-chromatic graph with n vertices and a
defining set S = {z2,...,T5,Vs+1, ..., Uk} such that deg(z;) = 2(k — 1) +¢
(1 <i < s), deg(u;) = deg(v;) = 2(k—-1)+s5s—-1(1 < i < s), and
deg(u;) = deg(v;) = 2(k—1) + s (s +1 < i < k). Now we show that by
deleting some suitable nonessential edges of H' the desired r-regular graph
H can be obtained.

In the graph H', for conveniencelet A = {uy,...,u 2|}, C = {¥|gj+1,-- Us},
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D = {us.,.l,...,usﬂﬁ;_,]}, and B = {u3+lLF}+1""’"k}’ Also let A' =
{v1,v151} €' = {vg)41,00), D' = {""3+1’"""’a+[£;41}’ and B' =
{Voyb5e )10 vk} Let & =i+ 452 for s+ 1<i < s+ 252

First we delete a maximal matching of each complete bipartite subgraph
with parts B and D of G; and parts B’ and D’ of G5. For k — s odd, we
assume u,—; and v, to be vertices unsaturated by the maximal matchings.
Then we delete the edge ur—1vg.

Secondly, we delete the edges of s —¢ — 1 mutually disjoint maximal match-
ings of each complete bipartite subgraph with parts AU B and CU D
of G and parts A' U B’ and C' U D' of G;. For k odd, we assume
that the following vertices are unsaturated by the maximal matchings:
{u'l) ey u[%j s U(s41)" s ooey U(sh1) 58—t —2— § ] } and {’02, o U5 V1 Uls1) 1y o0
,v(8+,)'+,_t_1~l%J}, in the case of s even, or {“l§J+lv e U4 |+s—t—1} and

V0§ 425 -+ Uss U §|4+1) Us+25 -+ V2s—t—1—[ 4] }» In the case of s odd. Then
we delete the edges ujvq,usvs, oy WU 511V 415 Y 4] V1) U(s+1) V(s+1) +1) -
U(s+1)'+s—t—2—| &)Y (s+1) +s~t—1—| %> OT the edges U £]+1V[2)+25 o UsV| £ |+1
s Us+1Vs42; -0 U\ & |4+-5—t—1V2s~¢—1-| 4 |, depending on the parity of s, respec-
tively.
If s—t > | £] then in the second step we delete | £ | — 1 maximal matchings.
Finally we delete the edges of s — ¢ — [%J mutually disjoint 1-factors Fj
(1<j<s—t- I_§J) of bipartite subgraph with parts CU D and C'U D',
where

Fj = {wwipjn | 3] +1<i<s+[552) -5 -1JU
{uiviipyg)+1 |0 =8+ [552) —j <i<s+ |52}

In fact if we consider the order U g [+ s Uy Uptly ooy Ugy | ma | and
YL J41s 1 Var Vgly wony Uy Bt for the vertices in C U D and C' U D', re-
spectively, then each 1-factor F; contains the edges in which the ith vertex
in CU D is matched with (i + j + 1)th vertex (mod |CUD|) in C'UD’.
(See Figure 4.)

Also for decreasing the degree of vertex sets AUB and A’UB’, we delete
the edges of s — ¢ — | £ | mutually disjoint 1-factors F} (1< j < s—t—[£])
of bipartite subgraph with parts AU B and A’ U B’ the same as above.
Therefore the graph H obtained in this way contains a complete subgraph
say Ky =< AUBUC'UD’' > and H is an r-regular graph.
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U g+ Ulg|+1
Uls)+2 Y)g)+2
Ulsl+s
U0g)+a
Ug—1
Ug ’03
Usy1 Vs41
. Vg2
ue+ I_L‘-'Q'—‘J -2
ua+ [“%‘J -1
Yso | 52 | Vst | 252 ]
Figure 4: 1-factor F;.
[ |
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