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Abstract

A graph G is quasi-claw-free if it satisfies the property: d(z,y) = 2 =
there exists © € N(z) N N(y) such that N[u] C N{z] U N[y]. In this paper,
we prove that the circumference of a 2-connected quasi-claw-free graph G
on n vertices is at least min{38 + 2,n} or G € F, where F is a class of
nonhamiltonian graphs of connectivity 2. Moreover, we prove thatif n < 44,
then G is hamiltonian or G € F.
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1 Introduction

Throughout this paper, we consider only finite, undirected and simple graphs. Let
G = (V, E) be a graph with vertex set V = V(G) and edge set E = E(G).
Throughout we use n for |V'| and we use ¢ for the minimum degree of vertices of
G. The open and closed neighborhoods of a vertex u are denoted by N(u) = {z €
V : zu € E} and N[u] = {u} U N(u), respectively. For each pair of vertices
a, b at distance 2 we set J(a,b) = {u € N(a) N N(b) : N[u] C N[a]JUNI[}}. A
graph is called claw-free if it contains no induced subgraph isomorphic to K 3.
In [1], Ainouche introduced the concept of quasi-claw-free graphs, and extended
many known results on claw-free graphs to quasi-claw-free graphs. A graph is
quasi-claw-free, if every pair of vertices z, y at distance 2 satisfies the condition
J(z,y) # 0. Note that a claw-free graph is quasi-claw-free, but a quasi-claw-
free graph is not necessarily K ,-free for 7 > 3. There exist infinite classes of
quasi claw-free graphs which contain many induced K, , for 7 > 3 (see [1]).
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The circumference ¢(G) of a graph G is the length of a longest cycle in G. For
terminology and notation not defined here see [2].

To state our result, we introduce a class of graphs. Let C3 denote the set of all
graphs consisting of three disjoint complete graphs, where each of the components
has order at least 3. The class F is the set of all spanning subgraphs that can be
obtained from a graph G in K3 by adding the edges of two triangles between two
disjoint triple of vertices, each containing one vertex of each component of G.
A graph is called 3-cyclable, if any three vertices lie on a common cycle. Note
that F is one of the three classes of 2-connected and not 3-cyclable graphs, which
were first characterized by Watkins and Mensner {9].

In [5], M. Li proved the following result for 2-connected claw-free graphs.

Theorem 1 ([S]) Every 2-connected claw-free graph G on n vertices contains a
cycle of length at least min{30 + 2,n} or G € F. Moreover, if n < 40, then G is
hamiltonian or G € F.

Note that the second part of Theorem 1 was also obtained independently by H.
Li [4] . In [7] R. Li obtained the following result for 2-connected quasi-claw-free

graphs.

Theorem 2 ([7]) Let G be a 2-connected quasi-claw-free graph on n vertices. If
n < 46, then G is hamiltonian or G € F.

In this paper, we consider the circumferences of 2-connected quasi claw-free
graphs and obtain the following Theorem 3, the proof of it will be given in Sec-
tion 3.

Theorem 3 Every 2-connected quasi-claw-free graph G on n vertices contains a
cycle of length at least min{36 + 2,n} or G € F. Moreover, ifn < 46, then G is
hamiltonian or G € F.

2 Notation and lemmas

For subgraphs H, K of G, let G— H denote the subgraph of G which is induced by
V(G)\ V(H), and let N (H) denote the set of vertices in K that are adjacent to
some vertex in H. Moreover, we abbreviate N(K) := Ng_g(K). In particular,
if K consists of one vertex v, we omit the brackets, and we use dgy (v) = [Ny (v)|
and d(v) = |N(v)|. If also H and K are edge-disjoint, we use e(H; K) to denote
the set of edges between H and K. In case when V(H) = {v1,...,v,} we write
e(vi,...,vs; K) instead of e({vy, ..., vs}; K).

Given a cycle C with a fixed cyclic orientation and vertices =,y € V(C), we
use C[z,y], C[z,y), C(z,y] and C(z,y) to denote the corresponding subpaths
between z and y of C, respectively including both z and y (with possibly z = y),



only z or only y (if z and y are distinct), and none of x and y (if there is at least
a vertex between z and y on C). For a vertex z € V(C) we use 2+ and 2~
to denote the successor and the predecessor of = on C, respectively. Moreover,
gtt = (z*)tandz~ " :=(z7)"etc. £ Z C V(C), then Z+ = {u™ |u € Z}
and Z~ = {u~ | u € Z}. A path Q, which has its end vertices on C and openly
disjoint from C, is called a C-chord. We use Qx[z, y] to denote a C-chord with
end vertices z,y on C and all inner vertices in a component H of G — C.

For vertices a and b in a connected graph G, let Lg(a,b) be the length of a
longest (a, b)-path P in G, i.e., Lg(a,b) = |P|—1. If G is connected withn > 2,
we set D(G) = min{L¢g(a,b) : a,b € V(G),a # b}. Obviously, for each pair of
distinct vertices z, y of a connected graph G with n > 2, we have a path Pz, y]
such that |P[z, y]| > D(G) + 1. For |G| = 1 set D(G) = 0.

Next we present some lemmas.

Lemma 1 Let G be a 2-connected quasi-claw-free graph and C a longest cy-
cle in G with a fixed cyclic orientation. Let H be a component of G — C and
N(H) = {z1,...,25} in order around C.

(¢) z7zF €Efori=1,...,s.
b e(a:;",:z:;""';zj,:c;',:c;"") = e(z;,%; ";z;,25,z; ) = 0 for any pair of
distinct elements x;, z; of N(H).

(¢) N(H)NN(K) = 0 for any pair of distinct components H and K of G — C.
(d) Letu € Ny(z;), v € Ny(zj41)forsomez; € N(H). Then|C(z;,z;41]| 2
4+ Ly(u,v).

(e) Let K be a component of G — C other than H and let Q = Qk|z;, 2]
be a C-chord joining C(z},x7,,) and C(x{, 2, ), where z;,y are distinct
elements of N(H), z; € C(x;-",x;-"ﬂ), 2 € C(m,':',:v,f_'_l), and all the internal
vertices of Q are in K. Let u; € Ny(z;) and v; € Ny(Zit1),% = j, k. Then

IC(=;, 2;)| + |C(zk, 2¢)| 2 3 + Lar(uj,ux) +(1Q] - 2)
IC (25, Zj41)| + |C 2k, Tha1)| 2 3+ L (vsy o) + (1@ — 2)-

Proof. Claim (a) is Lemma 3 in Section 4 in [1]. The Claims (b) — (e) follow
from the fact that C is a longest cycle in G. m]

The following lemma is derived from Lemma 2 and the proof of Theorem 3
in Section 4 in [1).

Lemma 2 ([1]) Let C be a longest cycle in a 2-connected quasi-claw-free graph
G and H a component of G — C. There exists an independent set I in G with
cardinality |[N(H)| + 1 such that N(z) N N(y) = 0 for any pair of distinct
elements =,y of I. (w}

Let K; denote the graph obtained from K4 by deleting one edge. The fol-
lowing lemma is due to Jung.
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Lemma 3 ([3]) Let H be a 2-connected graph. There exist distinct vertices vy, va

and vs in V(H) such that
(2) D(H) > dy(v;) fori = 1,2 and Ly (v1,v2) 2 dy(vs);
(i7) D(H) = dy(v3) — 1 with strict inequality unless H = K. o

3 Proof of Theorem 3

In this section let G be a 2-connected nonhamitonian quasi claw-free graph and
let C be a longest cycle in G with a given orientation.

In the following we first distinguish the cases pertaining to the first part of
Theorem 3, and then using the obtained lower bound of ¢(G) we prove the second
part of Theorem 3.

Case 1. There is a component, say H, of G — C with at most two vertices.

We label N(H) = {z,...,%,} in cyclic order aroud C, where the subscripts
are taken modulo s. By Lemma 1 we have |C| > 4s, and consequently |[C| >
46 > 36+ 2if |[H| = 1.

Suppose H = {vi,v2}. If |[Nc(v;)| < s for some v; € {v1,vz}, then
also |C| > 4s 2 44. Thus assume |Ng(v;)| = s for i = 1,2, and therefore
|C(zk, Tk+1]| = 5 for each z € N(H). Then |C| > 58 = 3(s + 1) + 25 - 3,
and |C| > 36 + 2 unless s = 2 and |C(zk, Zk+1)| = 5 for k = 1,2, in this final
case it is not difficult to verify G € F.

Case 2. Thereis a component, say H, of G — C such that H has a cut vertex.

Let By,..., B; be all end blocks of H with the unique cut vertices ¢; of H in
V(B;), i=1,...,t.

Case 2.1.  There exist distinct end blocks B;, B; such that [N¢(B; — ¢;) U
Nc(B; —¢j)| > 2.

It suffices to consider i = 1 = j ~ 1. Label X = N¢(By — ¢1) U No(Bg —
c2) = {z1, 22, ...2,} in cyclic order around C, where the subscripts are taken
modulo . By the assumption of this subcase, there exist distinct 2,,z; € X such
that z;, € No(B1 — ¢1) and 241 € N¢(B2 — ¢2) or vice versa (k = p, q). For
k € {p, g}, we have |C(zk, Tk+1]| 2 (D(B1) + Lu(c1,c2) + D(B2) +1)+3 >
D(Bl) + D(Bz) + 4. Note that IC(Ij,$j+1]| > 4 for Z; € X \ {(L’p,th}. By
Lemma 3, there exist v; € V(B; — ¢;) such that D(B;) > dpg, (v;) = dg(v;) for
i = 1,2, Now we have |C| > 4r + 2D(B;) + 2D(B3) > 2d(v;) + 2d(v2) > 44.

t
Case 2.2. U Nc(Bi - c,) = {.'B}
=1

For any y, € N(z) NV(Bp — ¢p) and y, € N(x) NV (B, —¢,) withp # g,
we have d(y,,y,) = 2. Since z* & N¢(B; — &) (i = 1,...,t), we deduce
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that ¢ & J(yp,y,), and this in turn implies that ¢; = ¢ = -+ = ¢ = ¢
and J(yp,y,) = {c}. Since G is 2-connected and C is a longest cycle, c has a
neighbor z in V(C) \ {z~,z,z*}. But then, by definition of J(yp,y,), 2(# z)
has a neighbor y,, or y, in V(B,, — ¢p) U V(B, — ¢,), a contradiction.

Case 3. All components of G — C are 2-connected.

Let H be a 2-connected component of G—C. We label N(H) = {z1,...,%s}
in cyclic order around C, where the subscripts are taken modulo s. For conve-
nience, we abbreviate d¢, (v) := |N(v) N C(z;, z;41]| for a vertex v of G and for
i=1,...,s,and D := D(H)

We call a segment C[z;, z;41] good if [Ny (z;) U Ny (ziy1)| 2 2. Let g :=
g(H) denote the number of good segments on C with respect to H. Note that
q > 2 since G is 2-connected. For z; € N(H), by Lemma 1(d), |C(z;, Zi+1]] =
4+¢;D, where £; = 1 or 0 according to whether C[z;, z;+,] is good or not. Thus,
by Lemma 3(3), |C| > 45+ ¢D = 3(D + s) + s+ (g — 3)D > 34 + 2 unless
g=2. Also |C| 2 12 > 36 +2if § < 3. Hence in the rest of Case 3 we may
assume ¢ = 2and § > 4.

Case3.1. s2>3.

Without loss of generality, we may assume that C[z1, 25] and C[z;, Ts41] are
the only good segments on C with respect to H, where 3 < ¢ < s. Then there
exists a vertex y € V(H) such that Ny (z2) U Ny(z3) U --- U Ng(z:) = {y},
and moreover, if ¢ # s, then Ny (z¢41) U -+ U Ny(z,) U Ny (z,) = {y'} for
somey’ € V(H —y).

We pick z,,z, with 2 < p < ¢ < t. By Lemma 1(c), we have d(z;) =
de(zp) + 1 and d(zg) = de(zg) + 1. Forz; € N(H) \ {zp,z,} sett; = 1, if
Ny (z;) # {y}, and t; = 0 otherwise.

The following two claims can be obtained by constructing appropriate cycles.

Claim 1 Letz; € N(H)andz € N(zp,)NClz}*,z77),u € N(z)NClzf, z7 7).
If z # u, then |Cz%,u”]| = 1 when z € Clz;,u] and |Clut,27]| > 1 when
ue C[m,-,z]. a

Claim 2 Letz; € N(H)\{zp, 2.} and let z; and u; be the first and last elements
of N(zp) U N(zg) on ClzF™,z7 7] Then |C(zi, 2;)| > 2 + t:D, and moreover
|C (wi, Zis1]l 2 3 + tit1 D, if Tit1 € {Tps Tq}- o

Claim 3 |C($1, 172“ 2 d01 (xp) +d01 (xQ) +D+2, lC(xtv xt+l]| 2 dCc (xP) +
de,(zq) + D + 1 and |C(zi, ziy1]| 2> de(2p) + do;i(zq) + 1 forz; € N(H)\
{z1,3:}.

Proof of Claim 3. We only prove the inequality for C(z;, z2], the other two
inequalities can be proved in the same manner.
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If C(zF, 23 )N(N(zp)UN(z,)) = 0, then obviously d¢, (z,)+dc, (24) < 2,
and consequently |C(z1,z2]| > D + 4 > dg, (xp) + dc, (zq) + D + 2. Let 2
and u; be the first and last elements of N(z,) U N(z,) on C(z7, ), respec-
tively. By Claim 2, [C(z1,21)| = D + 2. If z3 # zp, then by Lemma 1(i)
we have z3,z;~ & N(zp) U N(z,), and by Claim 1 we have [C[z1,u4]] >
de, (zp) + dc, (z4) — 3. By Claim 2, |C[z1, z2]| 2 dg, (zp) + dc, (T4), and the
specified inequality follows readily. Let 2 = zp. Since 25 ,z;~ ¢ N(z,) and
uy € Clz1,z57), we have |Clz1, wm]| 2 de, (zp) + de, (z4) — 2. Hence again
|Clz1,z2]| 2 dc, (zp) + dc, (x4), and the specified inequality follows. o

Claim 4 There exists avertexv € V(H ~ y) such that D + 1 > d(v).

Proof of Claim 4. If z; # z,, then, as noted above, Ny (z¢41)U---U Ny (zs) U
Ny(z1) = {y'} for some y’ € V(H —y). Since |H| > 3 and g = 2, we infer that
N¢(H —y—y') = 0. By Lemma 3 (i3) there exists a vertex v € V(H —y — y/')
such that D > dy(v) — 1 = d(v) — 1. If z; = z,, then Nc(H —y) C {z1}
since ¢ = 2 and t = s > 3. In this case, by Lemma 3 (3), there exists a vertex
v € V(H — y) such that D > dy(v) > d(v) — 1. o

Now by the above claims, we have |C| > d¢(zp) + de(zg) +2D + 4 =
d(zp) + d(zq) + 2D + 2 > d(z,) + d(z4) + 2d(v). This settles Case 3.1.

Case3.2. s=2.

Let N(H) = {z1,z2} in order around C. By Lemma 3 there exist distinct
vertices v;,vp € V(H) such that D > dy(v;) fori = 1,2. Hence D + 2 >
d(v1) > 4. If there is a component K of G — C other than H, then by the previous
results, we may assume that K is 2-connected with |[N¢(K)| = 2. Applying
Lemma 3 to K, we get D(K) + 2 > 4. We prove seven claims to settle Case 3.2.

Claim 5 If there exists a component K of G — C other than H such that K has
neighbors on both C(z,, x2) and C(z2, 1)), then |C| 2> 46 + 12.

Proof of Claim 5. As noted above, we may assume K is 2-connected with
INc(K)| = 2. Let Nc(K) = {y1,y2} such that y; € C(z1,%2) and y» €
C(zz2,z1). By Lemma 1(e), |C(z1,11) U C(z2,32)| = D + D(K) + 6 and
C(y1,z2)UC(y2, z1)| = D+ D(K)+86, and consequently |C| > 2D+2D(K)+
16 > 46 + 12.

Claim 6 If z} € Nc(K) for somei € {1,2} and K C G — C — H, then
|C] > 46 + 3.

Proof of Claim 6. Suppose 27y € E(G) for some y € V(K). In view of
Claim 5, we may assume N¢(K) C C(z1,z2), and then suppose that the another
neighbor of K on C is z € C(zf,z2). By Lemma 1(a), z1z7+ € E, and
using the edges 127+, ] y and z7 =] we can construct a cycle that contains all
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vertices in C — C(z, z3 ) and at least D + D(K) + 2 vertices outside C. Hence
|C(2,z5)| = D + D(K) + 2, and then |C| > 2D + 2D(K) + 11 > 46 +3. O

Assuming N(z}) € V(C) and N(z;) € V(C) for i = 1,2, we prove the
following claim.

Claim 7 (i) If =7+ € N(z;) U N(z7) U N(z7 ™) for some i € {1,2}, then
IC| > 36 +2:

(i) if z}+ € N(K) for some i € {1,2} and for some K C G — C — H, then
IC| > 35 +3.

Proof of Claim 7. We only prove (i) for the case z}+ € N(z;), the other cases
can be proved in the same manner.

Suppose 2,27+ € E. In view of Claim 6, we may assume N(zT) C V(C).
If =7 has neighbor on C(z}*, z2), then let z be such a neighbor closest to z2.
Then by constructing an appropriate cycle, we can obtain |C(z,z2]| = D +
3, and this implies |C(z1,22)| > dc,(zF) + D + 4. If =} has no neighbor
on C(zf™,z,), then the latter inequality holds trivially. Since |C(z2,z1]| >
de,(z7) + D + 2, we have |C| > d(zf) + 2D +6 > 36 + 2. a

Now in view of Claims 5, 6 and 7, in the rest of the proof of Case 3.2, we
assume the following:

All components K of G — C — H (if there is any) have neighbors on

only one of C(z;,22) and C(z2, z1), moreover (N (z)UN(zF+)u 1
N(z7)UN(z;-)) C V(C) fori = 1,2 and a3z}, iz~ ¢ Efor ()
i,j €{1,2}.

Suppose |C(z;, zi+1]| = 2D+4 for some i € {1,2}. Then, using Lemma 1(d)
and Lemma 3, we obtain |C| > 3D + 8 = 3(D 4 2) + 2 > 36 + 2. Hence we
assume:

|C(zs, zi1]| < 2D + 4, i=1,2. (2)

Suppose for some i € {1,2}, z}* and = have neighbor z and 2’ on
C(ziy1,2;), respectively. If z € C(zi41,2’), then we can construct a cycle
that contains all vertices in C — C(z, 2’) and at least D + 1 vertices in H. Then
|C(z, 2')| > D + 1. Using a similar argument, we can get |C(z;41,2)| > D +1,
and this contradicts assumption (2). Hence assumption (2) yields the following
claim.

Claim 8 Ler N(IL';'"'-) n C(IL‘H.l,:Bi) ?é 0 and N(.’L’:_l:-l) n C(ZILH.l,éB.') 75 ﬂfor
i € {1,2}. Let z and 2' be the first and the last neighbors of 7™ and z; 7 on
C(%i41,:), respectively. Then z € C(2',z;). In particular, =} and =77 have
. no common neighbor on C(Ti41, Ti). ]
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Using similar arguments, we obtain, by Claim 8, the following claim.
Claim9 Fori=1,2, |C($i+l,$i]| 2 dCi+1 (:B;‘"‘-) + dCi+l (m:-l-.i) +D+1. O

Now suppose |C(z;, zir1]] > de, (zF)+de, (x777)+1 for some i € {1,2}.
Then by Claim 9 we obtain |C| > d(z}*)+d(x; ;) +2D+2 > 46-2 > 36+2.
Therefore we assume the following:

|C (x5, Ts11)| < de, (zF) + de(z77), i=1,2.

The last inequalities clearly yield:

There is no vertex y € C(zi,iy1) satisfying N(zF*) n
C(xi,xi41) C C(zi,y] and N(z7) N C(zi,ziv1) € Cly,zit) )
fori =1,2.

Claim 10 (3) If N(z}™) N C(ziy1,7:) # O for some i € {1,2}, then |C] >
36 +2;

(i) if N(zF) N C(ziy1, 77 ) # 0 for some i € {1,2}, then |C| > 35 + 2.

Proof of Claim 10. We only prove (), the proof of (i%) is similar.

Suppose xl ++ has neighbor on C(z2,z;). Let z and 2’ be the first and last
neighbors of 27+ on C(z2, z1). By Claim 7, we may assume 2’ € C(z2,z7 ).
Using similar cycle constructions as before, the choice of C implies that |C(z2, z)|
D + 2. Using this in combination with (2), we obtain that z3* has no neighbor
on C(z, z1). By (3), there exist a vertex u € N(z7~) N C(x2,2) and a ver-
tex u' € N(z3¥) N C(u, 2] such that C(, u’) N (N(a;l“) U N(zit)) = 0.
Then, with a shght abuse of notation, C’[a: +,23) U Clzg+, 4] U Cl/, 2’| U
Clzy ~,z1) Uzi+2' U zd+u/ U 27~ gives rise to a cycle which contains all
vertices of C — C(u u') — C(2',z] ) and at least D + 1 vertices in H. Hence
|C(u,u') UC(2',2z77)| = D + 1. Since Ng,(z3*) C C(z2,z), we have
|C(22,21]| 2 dc, (a1F) + dCz(m++) +D+3.

Similarly, |C(z1, z2]| > dg, (zf+) + do, (23 +) + 1.

Combining the last two inequalities, we get |C| > d(zF+)+d(z3T)+D+4 >
35 + 2. m]

Claim 11 If there exists an edge e = z;zi41 with z; € C(zF,z7) and z41 €
C(ztl,z77), then |C| > 36 + 3.

Proof of Claim 11. Say i = 1. By (3) we infer that either N (z7+)NC (21, z2) #
@ or N(zz~) N C(z1,21) # O, say the former. Let u; be the first vertex of
N(z+*) on C(21,z2). Again slightly abusing notation, we set R = C[z{, z,] U

++u1 U Cluy,z; ~]. We define a (22,27 ~)-path Q as follows. If N(z3*) n
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C(22,71) # 0, then let u, denote the first neighbor of N(z3*) on C(2,, ) and
set Q = Clz3 ™, 22)Uzd Y uaUC ug, z1]. I N(z3+)NC(22,71) = 0, then by (3)
there exist vertices uj € N(z7 ™) N C(z3 T, 2z2) and v € N(z$*) N C(uh, o)
such that (N(z}+) U N(z$ %)) N C(up,u5) = 0. In this event we set Q@ =
Cluf, zo)Uulizd T UC[zF T, uh) Uuhz . Now we set L = (C(z1,z2) — R)U
(C(z2,z1) — Q). Note that the segment C[z7 ~, 1], Clzz ™, z2) together with
R and Q and the edge z; 25 give rise to a cycle which contains all vertices of C— L
and at least D + 1 vertices in H. Hence |L| > D + 1. Since ({z1,z2} UL) N
(N(zFt)UN(z$*)) = 0, we have [C| > d(zf*) +d(z1)+D+5>35+3.
(u]
So far we have shown that either ¢(G) > min{36 + 2,n} or G belongs to F.
Now we prove the second part of Theorem 3. Obviously, s > 2. By Lemma 2 we
have n > (s +1)6 + (s + 1) so s < 2. Thus s = 2. Let v be any vertex in H.
Then |H| > dy(v)+12>d(v)-126—1.Thusn > |C|+|H|>46+1,a
contradiction.
The proof of Theorem 3 is now complete.
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