A novel characterization of n-extendable bipartite graphs *

Hong Lin a,\dagger and Xiaofeng Guo b

^aSchool of Sciences, Jimei University, Xiamen 361021, P. R. China
^bSchool of Mathematical Sciences, Xiamen University, Xiamen 361005, P. R. China

Abstract

Let G be a simple connected graph. For a subset S of V(G) with |S|=2n+1, let $\alpha_{(2n+1)}(G,S)$ denote the graph obtained from G by contracting S to a single vertex. The graph $\alpha_{(2n+1)}(G,S)$ is also said to be obtained from G by an $\alpha_{(2n+1)}$ -contraction. For pairwise disjoint subsets S_1, S_2, \dots, S_{2n} of V(G), let $\beta_{2n}(G, S_1, S_2, \dots, S_{2n})$ denote the graph obtained from G by contracting each S_i ($i=1,2,\dots,2n$) to a single vertex respectively. The graph $\beta_{2n}(G,S_1,S_2,\dots,S_{2n})$ is also said to be obtained from G by a β_{2n} -contraction. In the present paper, based on $\alpha_{(2n+1)}$ -contraction and β_2 -contraction, some new characterizations for n-extendable bipartite graphs are given.

Key words: $\alpha_{(2n+1)}$ -contraction; β_{2n} -contraction; n-extendable bipartite graphs

^{*} The project supported by NSFC (No. 10831001), FJCEF(JA07143) and the Scientific Research Foundation of Jimei University.

[†] Corresponding author. Email address: linhongjm@163.com

1 Introduction and terminology

Let G be a graph. For any subset S of V(G), we denote by $N_G(S)$ the set of the vertices in $V(G) \setminus S$ adjacent to a vertex in S. The vertex connectivity of G is denoted by $\kappa(G)$, and the number of odd components of G is denoted by $c_o(G)$. Let n be a positive integer and G a connected graph with $|V(G)| \geq 2n + 2$. G is said to be n-extendable if G has n independent edges and any n independent edges are contained in a perfect matching of G. Other terminologies and notations not defined here can be found in [4] or [6].

In the investigation of the graphs with perfect matchings, various classes of graphs have been introduced, such as elementary graphs, saturated graphs, bicritical graphs and n-extendable graphs [6]. As early as in 1960, Hetyei first studied the 1-extendable bipartite graphs with the term "elementary bipartite graphs" and pointed out these graphs have simple "ear structure" [6]. Lovász and Plummer showed that any elementary graphs could be constructed by using only 1-extendable bipartite graphs and bicritical graphs as building blocks [6]. The concept of n-extendable graphs was introduced by Plummer [7] in 1980. Since then, many investigations on this topic have been made (see, e.g., [1-3, 5-12]).

For n-extendable bipartite graphs, Plummer [8] gave some characterizations which are similar to the characterizations for 1-extendable bipartite graphs given by Hetyei [6, Chapter 4]. A Menger type characterization for n-extendable bipartite graphs was obtained by Aldred, Holton, Lou and Saito [1]. F.Zhang and H. Zhang gave a recursive method to construct all n-extendable bipartite graphs [12].

Note some properties of n-extendable bipartite graphs, see Theorem 1(3) and Theorem 3(3) below, focus attention on the property of having a perfect matching if under some special vertex deletions, the resulting subgraph continues to have a perfect matching. The purpose of this paper is to reveal some novel properties of n-extendable bipartite graphs under some special vertex contractions. In this work, based on two type vertex contractions called $\alpha_{(2n+1)}$ -contraction and β_2 -contraction defined in the following, some new necessary and sufficient conditions for a graph to be

an n-extendable bipartite graph are established. Particularly, several new equivalent propositions for 1-extendable bipartite graphs are given.

In order to state our results precisely, we need to define certain types vertex contractions.

Definition. Let G be a simple connected graph. For a subset S of V(G) with |S| = 2n + 1, let $\alpha_{(2n+1)}(G, S)$ denote the graph obtained from G by contracting S to a single vertex. The graph $\alpha_{(2n+1)}(G, S)$ is also said to be obtained from G by an $\alpha_{(2n+1)}$ -contraction. $\alpha_{(2n+1)}(G, S)$ may contain multiple edges and loops due to the contraction of S, the underlying simple graph of $\alpha_{(2n+1)}(G, S)$ is denoted by $\alpha_{(2n+1)}^*(G, S)$.

Let G be a simple connected graph. For pairwise disjoint subsets S_1, S_2, \dots, S_{2n} of V(G), let $\beta_{2n}(G, S_1, S_2, \dots, S_{2n})$ denote the graph obtained from G by contracting each S_i , $i = 1, 2, \dots, 2n$, to a single vertex respectively. The graph $\beta_{2n}(G, S_1, S_2, \dots, S_{2n})$ is said to be obtained from G by a β_{2n} -contraction. The underlying simple graph of $\beta_{2n}(G, S_1, S_2, \dots, S_{2n})$ is denoted by $\beta_{2n}^*(G, S_1, S_2, \dots, S_{2n})$.

The following Figure 1 and Figure 2 show examples of an α_3 -contraction and a β_2 -contraction respectively.

Figure 1

Figure 2

2 Preliminary results

In this section, we review some known results which will help to prove our main results.

Theorem 1 (Hetyei [6]). Suppose G is a bipartite graph with bipartition (U, W). Then the following are equivalent:

- (1) G is 1-extendable;
- (2) |U| = |W| and for every non-empty proper subset X of U, $|N_G(X)| \ge |X| + 1$;
- (3) for any $u \in U$, $w \in W$, G u w has a perfect matching;
- (4) G has exactly two minimum vertex covers, namely U and W.

Theorem 2 (Plummer [7]). If G is n-extendable, then $\kappa(G) \geq n+1$.

Theorem 3 (Plummer [8]). Let G be a connected bipartite graph with bipartition (U, W). Suppose n is a positive integer such that $n \leq (|V(G)| - 2)/2$. Then the following are equivalent:

- (1) G is n-extendable;
- (2) |U| = |W| and for each non-empty subset X of U such that $|X| \le |U| n$, $|N_G(X)| \ge |X| + n$;
- (3) For all $u_1, u_2, ..., u_n \in U$ and $w_1, w_2, ..., w_n \in W$, $G u_1 u_2 ... u_n w_1 w_2 ... w_n$ has a perfect matching.

3 Main results

In this section, we give some new characterizations for n-extendable (or 1-extendable) bipartite graphs based on $\alpha_{(2n+1)}$ -contraction and β_2 -contraction respectively.

In the following Theorem, we only consider the bipartite graph G with $|V(G)| \geq 2n + 4$. Since for |V(G)| = 2n + 2, by Theorem 2, there are no *n*-extendable bipartite graphs other than the complete bipartite graph $K_{n+1,n+1}$.

Theorem 4. Let G be a bipartite graph with bipartition (U, W) such that $|U| = |W| \ge n + 2$. Then the following are equivalent:

- (1) G is n-extendable;
- (2) For any subset $S \subseteq V(G)$ such that |S| = 2n + 1, and $|S \cap U| = n$ or $|S \cap W| = n$, the graph $\alpha_{(2n+1)}(G, S)$ has a perfect matching;
- (3) G is (n+1)-connected, and, for any two subsets $S_1 \subseteq U$, $S_2 \subseteq W$ such that $|S_1| = |S_2| = n + 1$, the graph $\beta_2(G, S_1, S_2)$ has a perfect matching.

Proof. (1) \Leftrightarrow (2). Suppose G is n-extendable. For any subset $S \subseteq V(G)$ such that |S| = 2n+1, and $|S \cap U| = n$ or $|S \cap W| = n$. Let $u_1, u_2, ..., u_n \in (S \cap U)$ and $w_1, w_2, ..., w_n \in (S \cap W)$. By Theorem 3(3), the graph $G - u_1 - u_2 - ... - u_n - w_1 - w_2 - ... - w_n$ has a perfect matching. It is easy to verify that the graph $G - u_1 - u_2 - ... - u_n - w_1 - w_2 - ... - w_n$ is a spanning subgraph of $\alpha_{(2n+1)}(G, S)$, hence $\alpha_{(2n+1)}(G, S)$ has a perfect matching.

Conversely, suppose for any subset $S \subseteq V(G)$ such that |S| = 2n + 1, and $|S \cap U| = n$ or $|S \cap W| = n$, the graph $\alpha_{(2n+1)}(G, S)$ has a perfect matching. Assume that G is not n-extendable. By Theorem 3(2), there exists a non-empty subset X of U such that

$$|X| \le |U| - n$$
, $|N_G(X)| \le |X| + (n-1)$.

We shall derive a contradiction.

Case 1.
$$|N_G(X)| \ge n + 1$$
.

We can choose $S_1 \subseteq U \setminus X$ such that $|S_1| = n$, and $S_2 \subseteq N_G(X)$ such that $|S_2| = n + 1$. Let $S = S_1 \cup S_2$ and $G' = \alpha_{(2n+1)}(G, S)$. By the

 $\alpha_{(2n+1)}$ -contraction, it is clear that $|N_{G'}(X)| \leq |X| + (n-1) - n = |X| - 1$.

Notice that any two vertices of X are not adjacent in G', thus $c_o(G' - N_{G'}(X)) \ge |X| \ge |N_{G'}(X)| + 1$. By Tutte's theorem, G' has not a perfect matching, a contradiction.

Case 2. $|N_G(X)| \leq n$.

Subcase 2.1. $|U \setminus X| \leq n+1$.

We can choose $T_1 \subseteq U$, $T_2 \subseteq W$ such that $|T_1| = n+1$, $T_1 \supseteq U \setminus X$, $|T_2| = n$ and $T_2 \supseteq N_G(X)$. Let $S = T_1 \cup T_2$ and $G' = \alpha_{(2n+1)}(G, S)$. Let the set S become a vertex v in G' under the $\alpha_{(2n+1)}$ -contraction.

Notice that any two vertices of $V(G') \setminus \{v\}$ are not adjacent in G' and $|V(G)| \geq 2n + 4$, so $c_o(G' - v) \geq 3$. By Tutte's theorem, G' has not a perfect matching, a contradiction.

Subcase 2.2. $|U \setminus X| \ge n+2$.

We may choose $T_3 \subseteq U \setminus X$, $T_4 \subseteq W$ such that $|T_3| = n + 1$, $|T_4| = n$ and $T_4 \supseteq N_G(X)$.

Let $S = T_3 \cup T_4$ and $G' = \alpha_{(2n+1)}(G, S)$. Let the set S become a vertex v in G' under the $\alpha_{(2n+1)}$ -contraction. Set $R = [U \setminus (X \cup T_3)] \cup \{v\}$. Thus, $N_{G'}(R) = X \cup (W \setminus T_4)$ and $|R| = |U| - |X| - |T_3| + 1 = |U| - |X| - n$.

Notice that any two vertices of $N_{G'}(R)$ are not adjacent in G'. Hence $c_o(G'-R) = |W|-n+|X| = |U|-n+|X| > |R|$. By Tutte's theorem, G' has not a perfect matching, again a contradiction.

(1) \Leftrightarrow (3). By Theorem 2 and analogous argument as those in the proof of (1) \Rightarrow (2), the necessity is easy to be checked.

To prove the sufficiency, suppose G is (n+1)-connected, and, for any two subsets $S_1 \subseteq U$, $S_2 \subseteq W$ with $|S_1| = |S_2| = n+1$, the graph $\beta_2(G, S_1, S_2)$ has a perfect matching. Assume that G is not n-extendable. By Theorem 3(2), there is a non-empty proper subset X of U such that

$$|X| \le |U| - n, |N_G(X)| \le |X| + (n-1).$$

Note that G is (n+1)-connected, this implies

$$|N_G(X)| \ge (n+1), |U \setminus X| \ge n+1.$$

So we can choose $S_1 \subseteq U \setminus X$, $S_2 \subseteq N_G(X)$ such that $|S_1| = |S_2| = n+1$. Let $G' = \beta_2(G, S_1, S_2)$. By the β_2 -contraction, it is clear that $|N_{G'}(X)| \leq |X| + (n-1) - n = |X| - 1$. Since G' is also a bipartite graph, by Hall's marriage theorem, G' has not a perfect matching, a contradiction. \square

For 1-extendable bipartite graphs, we can give more equivalent statements.

Theorem 5. Let G be a bipartite graph with bipartition (U, W) such that |U| = |W|. Then the following statements are equivalent:

- (1) G is 1-extendable;
- (2) For any subset $S \subseteq V(G)$ such that |S| = 3, and $|S \cap U| = 1$ or $|S \cap W| = 1$, the graph $\alpha_3(G, S)$ has a perfect matching;
- (3) G is 2-connected, and, for any two subsets $S_1 \subseteq U$, $S_2 \subseteq W$ such that $|S_1| = |S_2| = 2$, the graph $\beta_2(G, S_1, S_2)$ has a perfect matching;
- (4) For any two disjoint subsets $S_1, S_2 \subseteq V(G)$ such that $|S_1 \cap U| = |S_1 \cap W| = 1$, $|S_2| = 2$, and $S_2 \subseteq U$ or $S_2 \subseteq W$, the graph $\beta_2(G, S_1, S_2)$ has a perfect matching;
- (5) G is 2-connected, and, for any two disjoint subsets $S_1, S_2 \subseteq V(G)$ such that $|S_1 \cap U| = |S_1 \cap W| = |S_2 \cap U| = |S_2 \cap W| = 1$, the graph $\beta_2(G, S_1, S_2)$ has a perfect matching.

Proof. $(1)\Leftrightarrow(2)$ and $(1)\Leftrightarrow(3)$. These conclusions are special cases of Theorem 4.

(1) \Leftrightarrow (4). Suppose G is 1-extendable. For any two disjoint subsets $S_1, S_2 \subseteq V(G)$ such that $|S_1 \cap U| = |S_1 \cap W| = 1$, $|S_2| = 2$, and $S_2 \subseteq U$ or $S_2 \subseteq W$. We can choose $u \in (S_1 \cup S_2) \cap U$ and $w \in (S_1 \cup S_2) \cap W$ such that $\{u, w\} \neq S_1$. By Theorem 1(3), G - u - w has a perfect matching. It is easy to see that G - u - w is a spanning subgraph of $\beta_2(G, S_1, S_2)$, hence $\beta_2(G, S_1, S_2)$ has a perfect matching.

Conversely, suppose for any two disjoint subsets $S_1, S_2 \subseteq V(G)$ such that $|S_1 \cap U| = |S_1 \cap W| = 1$, $|S_2| = 2$, and $S_2 \subseteq U$ or $S_2 \subseteq W$, the graph $\beta_2(G, S_1, S_2)$ has a perfect matching. Obviously, G is connected. Assume

that G is not 1-extendable. By Theorem 1(2), there exists a non-empty proper subset X of U such that

$$|X| \le |U| - 1$$
, $|N_G(X)| \le |X|$.

We shall derive a contradiction.

Case 1.
$$|N_G(X)| \geq 2$$
.

We can choose two disjoint subsets $S_1, S_2 \subseteq V(G)$ such that $|S_1| = |S_2| = 2$, $|S_1 \cap (U \setminus X)| = 1$, $|S_1 \cap (W \setminus N_G(X))| = 1$ and $S_2 \subseteq N_G(X)$. Let $G' = \beta_2(G, S_1, S_2)$. By the β_2 -contraction, it is clear that $|N_{G'}(X)| \leq |X| - 1$.

Notice that any two vertices of X are not adjacent in G', so $c_o(G' - N_{G'}(X)) \ge |X| \ge |N_{G'}(X)| + 1$. By Tutte's theorem, G' has not a perfect matching, a contradiction.

Case 2.
$$|N_G(X)| = 1$$
.

In this case, we claim that |X|=1. Otherwise, we can choose two disjoint subsets $S_1, S_2 \subseteq V(G)$ such that $|S_1|=|S_2|=2$, $S_1 \supseteq N_G(X)$, $|S_1 \cap (U \setminus X)|=1$ and $S_2 \subseteq W \setminus N_G(X)$. Clearly, $\beta_2(G,S_1,S_2)$ has not a perfect matching, a contradiction.

So we can choose two disjoint subsets $S_1, S_2 \subseteq V(G)$ such that $|S_1| = |S_2| = 2$, $S_1 = X \cup N_G(X)$ and $S_2 \subseteq U \setminus X$. Let $G' = \beta_2(G, S_1, S_2)$ and the set S_2 become a vertex v in G' under the β_2 -contraction. Set $R = [U \setminus (X \cup S_2)] \cup \{v\}$. It is obvious that $c_o(G' - R) = |R| + 2$. By Tutte's theorem, G' has not a perfect matching, again a contradiction.

(1) \Leftrightarrow (5). By Theorem 2 and analogous argument as those in the proof of (1) \Rightarrow (4), the necessity is easy to be checked.

To prove the sufficiency, suppose G is 2-connected, and, for any two disjoint subsets $S_1, S_2 \subseteq V(G)$ such that $|S_1 \cap U| = |S_1 \cap W| = |S_2 \cap U| = |S_2 \cap W| = 1$, the graph $\beta_2(G, S_1, S_2)$ has a perfect matching. Assume that G is not 1-extendable. By Theorem 1(2), there exists a non-empty proper subset X of U such that

$$|X| \le |U| - 1$$
, $|N_G(X)| \le |X|$.

Since G is 2-connected, hence

$$|N_G(X)| \ge 2, |U - X| \ge 2.$$

So we can choose two disjoint subsets $S_1, S_2 \subseteq V(G)$ such that $|S_1 \cap N_G(X)| = |S_2 \cap N_G(X)| = |S_1 \cap (U \setminus X)| = |S_2 \cap (U \setminus X)| = 1$. Let $G' = \beta_2(G, S_1, S_2)$ and $T = N_G(X) \cup (U \setminus X)$. Let the set T become the set T' in G' under the β_2 -contraction. Obviously,

$$|T'| = |U| - |X| + |N_G(X)| - 2.$$

Notice that $N_{G'}(T') = X \cup [W \setminus N_G(X)]$ and any two vertices of $N_{G'}(T')$ are not adjacent in G'. So

$$c_o(G' - T') = |W \setminus N_G(X)| + |X|$$

$$= |W| - |N_G(X)| + |X|$$

$$= |U| - |N_G(X)| + |X|$$

$$= |T'| + 2(|X| - |N_G(X)|) + 2$$

$$> |T'| + 2.$$

By Tutte's theorem, G' has no perfect matching, a contradiction. \Box

References

- R. E. L. Aldred, D. A. Holton, Dingjun Lou, A. Saito, M-alternating paths in n-extendable bipartite graphs, Discrete Math. 269 (2003) 1-11.
- [2] R. E. L. Aldred, D. A. Holton, Dingjun Lou, Ning Zhong, Characterizing 2k-critical graphs and n-extendable graphs, Discrete Math. 287 (2004) 135-139.

- [3] N. Ananchuen, L. Caccetta, Matching extension and minimum degree, Discrete Math. 170 (1997) 1-13.
- [4] J. A. Bondy, U. S. R. Murty, Graph theory with applications, Macmillan Press, London, 1976.
- [5] Dingjun Lou, On the structure of minimally *n*-extendable bipartite graphs, Discrete Math. 202 (1999) 173-181.
- [6] L. Lovász, M. D. Plummer, Matching theory, Elsevier Science, North-Holland, Amsterdam, 1986.
- [7] M. D. Plummer, On n-extendable graphs, Discrete Math. 31 (1980) 201-210.
- [8] M. D. Plummer, Matching extension in bipartite graphs, Proceedings of the 17th Southeastern Conference on Combinatorics, Graph Theory and Computering, Congress Numer. 54, Utilitas Math., Winnipeg, 1986. pp. 245-258.
- [9] M. D. Plummer, Extending matchings in graphs: a survey, Discrete Math. 127 (1994) 277-292.
- [10] M. D. Plummer, Extending matchings in graphs: an update, Congr. Numer. 116 (1996) 3-32.
- [11] Q. Yu, A note on n-extendable graphs, Journal of Graph Theory, 16 (1992) 349-353.
- [12] F. Zhang, H. Zhang, Construction for bicritical graphs and k-extendable bipartite graphs, Discrete Math. 306 (2006) 1415-1423.