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Abstract

We show that partial permutation decoding can be used, and
give explicit s-PD-sets in the symmetric group, where s is less than
the full error-correction capability of the code, for some classes of
binary codes obtained from the adjacency matrices of the graphs with
vertices the () 3-subsets of a set of size n with adjacency defined by
the vertices as 3-sets being adjacent if they have a fixed number of
elements in common.

1 Introduction

In [KMR04, KMRa] we examined the binary codes obtained from the three
uniform-subset. graphs having as vertices the 3-subsets of a set of size n > 7,
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with two vertices being adjacent if they have, as 3-subsets, intersection of
size k, where k is 0,1 or 2. In [KMRa] we showed that permutation de-
coding can be used for full error-correction for two of the classes of these
codes. Here we look at the remaining two classes of these codes that have
minimum weight that is a function of n, thus completing the work of per-
mutation decoding for the better binary codes that arise in this way from
these graphs. We prove the following, using the facts established about the
codes in [KMRO04] (see also Result 2 in Section 3 below, where the coding
parameters are given):

Theorem 1 Let 2 be a set of size n, where n > 7. Let P = {3}, the

set of subsets of Q0 of size 3, be the vertex set of the two graphs A;(n), for

i = 0,1, with adjacency defined by two vertices (as 3-sets) being adjacent

if the 3-sets have intersection of size i. Let Ci(n), for i = 0,1 denote the

code formed from the row span over Fa of an adjacency matriz for A;(n).
For n = 4k, k > 2, the dual Co(n)* is a [(3),n, (*3)]2 code with

I={{i,n-1,n}|1<i<n-2}U{{n-3,n-2,n~1}, {(n—-3,n—-2,n}}

as information set. For n =1 (mod 4), n > 13, Ci(n)t is a [(3),n —
1,2("3%)]2 code and C1(9)* is a (84,8, 38]; code, with T\ {{n—2,n—1,n}}
as information set.

Taking the following elements of Sy, in their natural action on triples of
elements of Q = {1,2,...,n}:

1 = {(ni)|1<i<n-2}U{};
T2 = {(n-1,9)[1<i<n-2}U{e};
s = {(n-29)|1<i<n—-4}u{e};

i = {(n-39)|1<i<n—4}U{)},

where 1 is the identity element of Sp, let 12 = 5,52 \ {(n,a)(n — 1,a) |
1<a<n-—-2}and T34 =L354\ {(n—2,a)(n—-3,8) |1 <a<n-—4}
Then © = ¥ 2534 is an s-PD-set of size n* — 10n3 + 37n? — 60n + 39 for
Co(n)* for s < [n?/6] — 1, and for Cy(n)* for s < [n(n —1)/6] —1.

The proof of the theorem is given in Section 3. Background results and
notation are given in Section 2
2 Background and terminology

The notation for designs and codes is as in [AK92]. An incidence structure
D = (P, B, I), with point set P, block set B and incidence 7 is a t-(v, k, )
design, if |P| = v, every block B € B is incident with precisely & points,
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and every t distinct points are together incident with precisely A blocks.
The design is symmetric if it has the same number of points and blocks.

The code Cr of the design D over the finite field F' is the space
spanned by the incidence vectors of the blocks over F. If the point set of D
is denoted by P and the block set by B, and if Q is any subset of P, then
we will denote the incidence vector of Q by v©. Thus Cr = (v?| B € B),
and is a subspace of V = FP, the full vector space of functions from P
to F. For any vector w € V, the coordinate of w at the point P € P is
denoted by w(P).

The notation [n, k,d]; will be used for a linear code C of length =,
dimension k, and minimum weight d over a field of order g. A generator
matrix for the code is a k X n matrix made up of a basis for C. The
dual code C* is the orthogonal under the standard inner product (,),
ie. Ct = {v € F*|(v,c) = Oforallc € C}. A check matrix for C is
a generator matrix H for C+. The all-one vector will be denoted by 3,
and is the constant vector of weight the length of the code. Two linear
codes of the same length and over the same field are isomorphic if they
can be obtained from one another by permuting the coordinate positions.
An automorphism of a code C is an isomorphism from C to C. The
automorphism group will be denoted by Aut(C).

Terminology for graphs is standard: the graphs, I' = (V, E) with vertex
set V and edge set F, are undirected and the valency of a vertex is the
number of edges containing the vertex. A graph is regular if all the vertices
have the same valency.

Any code is isomorphic to a code with generator matrix in so-called
standard form, i.e. the form [I; | A]; a check matrix then is given by
[~ AT | I.—k]- The first k coordinates are the information symbols and
the last n — k coordinates are the check symbols.

Permutation decoding was first developed by MacWilliams [Mac64]
and involves finding a set of automorphisms of a code called a PD-set. The
method is described fully in MacWilliams and Sloane [MS83, Chapter 15]
and Huffman [Huf98, Section 8]. We extend the definition of PD-sets to
s-PD-sets for s-error-correction:

Definition 1 If C is a t-error-correcting code with information set T and
check set C, then a PD-set for C is a set S of automorphisms of C which
is such that every t-set of coordinate positions is moved by at least one
member of S into the check positions C.

For s <t an s-PD-set is a set S of automorphisms of C which is such
that every s-set of coordinate positions is moved by at least one member of
S into C.

The algorithm for permutation decoding is given in [Huf98] and requires
that the generator matrix is in standard form, so an information set needs
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to be known. The property of having a PD-set will not, in general, be
invariant under isomorphism of codes, i.e. it depends on the choice of in-
formation set. Furthermore, there is a bound on the minimum size of &
(see [Gor82),[Sch64], or [Huf9g]):

Result 1 If S is a PD-set for a t-error-correcting [n, k,d|, code C, and
r=n—k, then|s| > [2 [2z[...[2=82].. ][]

This result can be adapted to s-PD-sets for s < t by replacing t by s in the
formula.

3 The codes and PD-sets

‘We describe first briefly how the codes are defined from graphs and designs.
Let n be any integer and Q a set of size n; to avoid degenerate cases we
take n > 7. Taking the set {3} to be the set of all 3-element subsets of
2, we define three non-trivial undirected graphs with vertex set P = i3}
and denote these graphs by A;(n) where 7 = 0,1,2. The edges of the graph
A;(n) are defined by the rule that two vertices are adjacent in A;(n)
if as 3-element subsets they have exactly i elements of 2 in common. For
each i = 0,1,2 we define from A;(n) a 1-design D;(n), on the point set P
by defining for each point P = {a,b,c} € P a block {a,b,c}; by

{a,b,¢c}; = {{z, 3,2} | {z, 9,2} N {a,b,c}{ =4 }.

Denote by B;(n) the block set of D;(n), so that each of these is a symmetric
1-design on (3) points with block size k;, for i = 0,1,2, where ko = "33,
ki = 3(";%), and ko = 3(n - 3).

In [KMR04] we examined the binary codes of these designs, i.e. , for
i = 0,1,2, Ci(n) = (v®| b € Bi(n)), where the span is taken over Fa.
Alternatively, this can be regarded as the row span over [F of an adjacency
matrix of the relevant graph. We obtained the following theorem, which we
quote in full to show which codes are worth consideration for permutation
decoding:

Result 2 Let 2 be a set of size n, where n > 7. Let P = QU3}, the set
of subsets of QU of size 3, be the verter set of the three graphs A;(n), for
i=0,1,2, with adjacency defined by two vertices (as 3-sets) being adjacent
if the 3-sets meet in zero, one or two elements, respectively. Let Ci(n)
denote the code formed from the row span over Fa of en adjacency mairiz
for Ai(n). Then

1. n =0 (mod 4):
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(a) Ca(n) =
(b) Co(n) = Ci(n) is[(3), (3) —m:4)2 and Co(n)* is [(3),n, ("5 1)]2;

2. n =2 (mod 4):
Ci(n) =F% fori=0,1,2;
3. n=1 (mod 4):
(a) Co(n) = C1(n) N Ca(n);
(b) Co(n) is [(3). (3) — (3). 82 and Co(n)* is [(3), (3),n — 22;

C1(9) is [84 76, 3]z and C1(9)* is [84,8, 38]2,
Ci(n) is[(3), (3) —n+1,4]2 and C1(n)* s [(3),n—1, (n—2)(n—
3)]2 forn > 9;
Ca(n) is [(3), ("31), 42 and Ca(n)* is [(3), ("71)sn — 22

4. n =3 (mod 4):
(a) Ci(n) = (WP +j | PeP)is[(3),(3) — 1,22
(b) Co(n) = Ca(n) is ((3), ("3), 42 and Co(n)* is [(3), ("7 ). -

22:

For alln > 7,i = 0,1,2, Ci(n) N Ci(n)* = {0}, and the automorphism
groups of these codes are S, or S(;.).

In [KMRO4] we also obtained information sets for all these codes. In
[KMRa] we found PD-sets (for full error-correction) for Ca(n)* for n odd
and for Co(n)! for n = 1 (mod 4). The sizes of the PD-sets found were of
the order of n® and n*, respectively.

Now we consider the codes Cp(n)*, where n = 4k, k > 2, correcting
t = n(n — 3)/4 errors, and C(n)*, for n = 1 (mod 4), correcting 18 errors
for n = 9, and (n — 1)(n — 4)/2 errors for n > 13. That the information
symbols can be taken as given in the statement of the theorem follows from
Lemma 8 and Proposition 2 of [KMRO04].

We first need a lemma, and for this and the proof of the theorem, we
introduce some notation. Let Z denote the information positions and C the
check positions for Cy(n)*, and Z* and C* those for C)(n)*. Let

J={{iin-1n}[1<i<n-2}}
and P={n-3,n-2,n-1},Q={n-3,n-2,n}. ThusZ = JU{P,Q},
and P =T UC. AlsoZ" = (J\{{n—-2,n-1,n}})U{P,Q}. Let T =

{X;|1< i< s}, beaset of s > 0 points of P. Let A = U]_;X; and
Q = {{a,b} |a #b, {a,b} C X; for some i}.
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Lemma 1 With the above notation, if s < n?/6 for n even, and s <
n(n —1)/6 for n odd, then there is a 2-set {a,b}, 1 < a,b < n, that is not
in Q.

Proof: For each j such that 1 < j < 7, let z; be the number of X € T such
that j € X. Counting the number of clements in the set of ordered pairs
{<iX>[1<j<n,XeT,je X} in two ways, we get } _, z; = 3s. If
every j occurs with every £ (1 < k < n) in some X € 7, then 2; > n/2 for
each j in the case n even, and z; > (n — 1)/2 for n odd. From this we get
3s > n%/2 for n even, 35 > n(n — 1)/2 for n odd. Thus if s < n2/6 for n
even and s < n{n — 1)/6 for n odd, then not all 2-sets occur. @

Note: For n = 8, Cp(8)* corrects 10 errors and 10 = [n2?/6] — 1, so that in
this case the decoding method achieves the full error-correcting capability
of the code. In contrast, see Note. 1 below.

Now we can prove the theorem, again using the notation as above.
Proof of Theorem 1:
We assume that 7 ¢ C, so that 7 NZ # §. We give the proof only for
the case n = 4k, since the argument for the other class of codes is virtually
identical.

Suppose first that {n — 1,n} € O. By the lemma, there is a 2-set
{a,b} # {n—1,n} not in Q. If n,n — 1 & {a,b}, then ¢ = (n,a)(n — 1,b)
will satisfy 7°NZ C {P,Q}. Ifa =n, b# n — 1, then o = (b,n — 1) will
have the same consequence, and similarly if @ # n and b = n — 1, with
o = (a,n). Note that ¢ € X, 5.

Thus we need to deal with 7NZ C {P,Q}, using only ¥34. Suppose
first that 7NZ = {Q} = {n - 3,n — 2,n}. We want to show that there is a
2-set {a, b} with 1 < a,b < n—4 such that neither {a,b,n} nor {a,b,n—1}
is in T, for then 7 = (n — 3,a)(n — 2, b) will work. Suppose that for every
pair {a, b}, {a,b,n} or {a,b,n — 1} appears. This will now account for at
least (%) + 1 points. Since this number is greater than n?/6 for n > 8, in
the even case, and n(n — 1)/6 for n > 9 in the odd case, as long as n > 9
this is impossible, so the 2-set exists.

We need a finer count in the case n = 8 or n = 9. If there is an i,
1 £ i < n—4, such that neither of {n—3,7,n} nor {n—3,4,n—1} arein 7,
then (n—2,1) € X3 will work, or similarly if thereisan ¢, 1 < i < n—4, such
that neither of {i,n—2,n} nor {i,n—2,n—1} arein 7, then (n-3,%) € &4
will do. So suppose for each 4 such that 1 < i < n—4, either {n—3,4,n} or
{n—-3,i,n—1} arein T, and either {i,n—2,n} or {i,n—2,n—1} arein 7.
Then this accounts for at least 2(n — 4) + 1 elements of 7. Together with
the (*;*) points we obtained above, this gives 2(n —4) +1+ (";*) > n?/6
{or n(n — 1)/6) for n > 8, as required.

Clearly the case where TNZ = {P} or T NI = {P,Q} will work in
precisely the same way, for the same reason. Bl
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Note: 1. With n = 12, Cy(12)* can correct 27 errors, and our s-PD-set
will correct up to 23 errors. Taking the set

{{1,2,3},{1,5,9},{1,4,8},{1,6,7},{2,5,8},{2,6,9},{2,4,7},
{3,6,8},{3,5,7},{3,4,9},{4,5,6},{7,8,9},{1,11,12},{2,11,12},
{9,10,11},{1,2,10},{2,10,11},{3,10,11},{3,4,12},{4,10,11},
{5,10,12},{5,6,11},{6,10,12},{7,10,12},{7,8,11},{8,10,12},
{9,10,12}}

of size 27, computations with Magma [BC94] showed that, using the infor-
mation set Z, there is no element in the group S)2 acting on the codes that
will move this set into the check positions. Thus this information set will
not allow full error-correction by permutation decoding of Co(12)+.

In fact the set

{{2,3,6},{3,4,7},{4,5,8},1{5,6,9},{6,7,10},{7,8,11},{8,9,12},
{1,9,10},{2,10,11},{3,11,12},{1,4,12},{4,6,10},{6,8,12},
{2,7,9},{3,8,10},{4,9,11},{5,10,12},{1,6,11},{2,7,12},
{1,2,8},{1,3,9},{1,5,7},{2,4,5},{3,5,11}}

of size 24 can also not be moved into the check positions, showing that 23
is the best we can do with this information set.!

2. Smaller s-PD-sets than those found here can undoubtedly be found, but
the argument will most likely involve case-by-case analysis.

3. Although our s-PD-sets do not reach the full potential of the code, the
ratio of errors corrected to the full potential tends to 2/3 as n increases. The
table shown as Figure 1 shows bounds and sizes of s-PD-sets for Co(4k)*
for 2 < k < 12, where n = 4k, N = (3), i.e. the length of the code,
t = k(n — 3), b is the Gordon bound for full error correction for ¢ errors,
s = [n%/6] — 1, bb is the Gordon bound for s errors, S is the size of our
s-PD-set, and the final column is the ratio of the number of corrected errors
to the number of errors the code can correct.

4. Since the construction of the PD-sets depends only on the informa-
tion set and the automorphism group, these PD-sets will also apply to the
ternary code of Cp(n)*, for n = 1 (mod 3) > 7, since this code is shown in
[KMRD) to be [(3),n, (";1)]3 forn =4 (mod 9) and [(3),n -1, ("3 Y)]s for
n =1,7 (mod 9), and also has S,, as automorphism group.

5. A simple argument yields that the worst-case time complexity for the
decoding algorithm using an s-PD-set of size z on a code of length n and
dimension k is O(nkz), i.e. in terms of the length N of these codes, this
would be O(N?7).

1We thank the referee for providing us with this example.
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n N t b s| bb S| s/t

8 56 10| 18| 10| 18 903 | 1.0

12 220 27 41| 23| 31 8103 | 0.85

16 560 | 52| 75| 42| 52 33127 | 0.81

20| 1140 | 85| 119 | 66 | 78 93639 | 0.78

24| 2024 | 126 | 174 | 95| 109 | 213447 | 0.75

28 | 3276 | 175 | 241 | 130 | 146 | 422503 | 0.74

32| 4960 | 232 | 317 | 170 | 188 | 756903 | 0.73

36 | 7140 | 297 | 404 | 215 | 235 | 1258887 | 0.72

40 | 9880 | 370 | 502 | 266 | 288 | 1976839 | 0.72

44 | 13244 | 451 | 610 | 322 | 346 | 2965287 | 0.71

48 | 17296 | 540 | 729 | 383 | 409 | 4284903 | 0.71

Figure 1: Bounds and sizes of s-PD-sets for Co(4k)*
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