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Abstract

Any vertex labeling f : V — {0,1} of the graph G = (V,E)
induces a partial edge labeling f* : E — {0,1} defined by f*(uv) =
f(u) if and only if f(u) = f(v). The balance index set of G is defined
as {|f*7(0) — f* ()] : |£71(0) = £} (1)| < 1}. In this paper, we
first determine the balance index sets of rooted trees of height not
exceeding two, thereby completely settling the problem for trees with
diameter at most four. Next we show how to extend the technique
to rooted trees of any height, which allows us to derive a methed for
determining the balance index set of any tree.

1 Introduction

Lee, Liu and Tan [8] considered a new labeling problem in graph theory.
Given any vertex labeling f : V — {0,1} of a simple graph G = (V, E),
define a partial edge labeling f* of G as follows. For each edge uv in E,

feine £ £() = f(v) =0

" _J0o if f(u) = f(v) =0,

flu,v) = { 1 if f(u) = flo) = 1.

Note that the edge uv is unlabeled if f(u) # f(v).

Denote by vs(0) and vs(1) the number of vertices of G that are labeled
0 and 1, respectively, under the mapping f. In a similar fashion, let e;(0)
and es(1) denote, respectively, the number of edges of G that are labeled 0
and 1 by the induced partial function f*. For brevity, when the context is
clear, we will simply write v(0), v(1), e(0), and e(1) without any subscript.

Definition 1.1. A vertex labeling f of a graph G is said to be friendly if
lvs(0) — vg(1)| < 1, and balanced if f is friendly and |e;(0) — es(1)| < 1.
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We call a graph balanced if it admits a balanced labeling. See [2, 3,
10] for further results in balanced graphs. It is clear that not all graphs
are balanced. Lee, Lee and Ng [7] introduced the following notion as an
extension of their study of balanced graphs.

Definition 1.2. The balance index set of the graph G is defined as
BI(G) = {lef(0) — es(1)| : the vertex labeling f is friendly}.

Example 1. It is not difficult to verify that the balance index set of the

graph G displayed in Figure 1 is {0,1,2}. m]
(0) (0) (1)
0 1
@ @ (LD O ® (0 €. © (0
1 1
© @ ®
le(0) —e(1)] =0 le(0) - e(1)| =1 fe(0) —e(1)| =2

Figure 1: The friendly labelings of a graph G with BI(G) = {0,1,2}.

In general, determining the balance index set of a given graph is a
difficult task. Most of existing research on this problem focus on special
families of graphs with simple structures (1, 2, 7, 9]. Examples include

s = {1y dnsoe

_J{0,1} if nis even,
BI(Cn(t) = { {0,1,2) ifnis odd,
where St(n) is the star with n pendant vertices, and C,(t) denotes an n-
cycle with a chord connecting two nonadjacent vertices at distance ¢ — 1
apart on the cycle.

Graphs with more complicated structure such as those formed by the
amalgamation of complete graphs, stars, and generalized theta graphs, and
L-products with cycles and complete graphs were studied in [4, 5, 6).

In [11], Zhang, Ho, Lee and Wen investigated and found the balance
index sets of selective families of trees of diameter at most four. Their
algorithmic approach limits its extension. In this paper, we propose an
algebraic method to tackle this problem. Using this unified approach, we
are able to obtain a complete solution.
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Note that any tree with a diameter at most four can be viewed as a
rooted tree with height not exceeding two. This is the graph that we shall
study in the following section. The technique can be extended to a rooted
tree of any height. Consequently, we are able to describe a method for
determining the balance index set of any given tree.

2 Rooted Trees of Height At Most Two

Consider a rooted tree of height at most two with root r. Let u;,ug,...,ux
be the children of r. Let n; be the number of children u; has, and call its
children u; ;, where 1 < j < n;, if n; # 0. Under these assumptions, we
shall denote the tree T'(k; ny,n2,...,n%). Then

k
b= IV(T(k;nI)nZV v )nk))l =1+ k""Znio

i=1

Due to symmetry, we further assume that ny > ng > --- > ne > 0. If ¢
of these n;’s are equal to n, we shall abbreviate them as n®. For example,
T(k;n*) = T(k;n,n,...,n).

N’

k
For each 4, let €; = f(u;), and for 1 < j < n;, let €;,; = f(ui ;). Observe
that, given any friendly labeling, switching the vertex labels from 0 to 1, and
1 to 0, produces another friendly labeling with the same value in e(0) —e(1).
Hence we may assume f(r) = 0. We find

v(0)—v(l)=p-2v(1)=p—2 (Z €+ Zei’j) .

Since f is friendly, we deduce that

) y_Jp if p is even
2(;6‘*‘;"4)‘{;;&:1 if p is odd (1)

We also find
k k ni
eO)=k- e+ > (1-ea)l-cy),
i=1 i=1 j=1
k ng
e(l) = Z Z €€ 5.
i=1 j=1
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Hence

k k
e(O) - e(1) = k- Zei + Zni - Zei,j - Zn,-e,-
i i=1 i, i=1
k
- (Zee +3 e.-,j) = e
i 1,7 i=1

Together with (1), we obtain the following main result.

Theorem 2.1 Let p be the number of vertices in T(k;n;,na,...,nk), then

_ N if p is even,
BI(T(k;ny,m2,...,n%)) = {Sz USs ifp is odd,
where

-2 % £
S = T—-;mﬁ 1 0< 6,6, 51, Z€‘+Ze"3 =3

p-3
Sp = .—2—_;""6‘ : 0< 6,6, <1, Zea'*‘zfm— )

-1 k -1
Sz = pT_ ni€i| : OSGiafi.jSI’Zei"'Ze"j:p—z— ’
_ im1 i i.J

In brief, the sets Sy, S; and S3 in Theorem 2.1 are taken over all ¢; and
€i,; for which the condition in (1) is met, that is, such that they could yield
a friendly labeling. Our first example is the star St(n) = K1,

Example 2. We give below an easy proof of the following result from [7]:

BI(St(n)) = {{:7_22 if n is odd,

3,855} ifniseven.

Since St(n) = T(n;0"), we have p = 1 + n, and n; = 0 for each i. It
is obvious that (1) can be met. The result follows from S, = {251},
52 = {752, and 85 = {3

If condition (1) is satisfied for any combination of the ¢;’s, the descrip-
tion of the balance index sets could be simplified.
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Corollary 2.2 Let G = T(k;,n1,n2,...,nk), whereny > ng > -+ > ng >
0. Let o be the largest integer such that ne #0. If (i) a < k, or (i) a =k,
and ny > 2, then

{1252 - Ty e : 0 < e <1} if p is even,
BI(G) = {|2%§ - E?:l nie,-l 0L < 1}
U{|E5t - %, e :0< e <1} if p és odd.

Proof. The definition of @ implies that Zf=1 ni€; = Ef‘___l n;¢;. Therefore
we need to study what values each ¢; can assume, such that (1) is satisfied.

foa<ksetegr=1-¢forl<i<a and €4y =1 Ifa==kand
ny >2,set 1 =1—¢ forl <i<k,and €2 =1. In both cases, we have
labeled, thus far, o 4+ 1 vertices with 0, and another o + 1 vertices with 1.
It is clear that we can label the remaining vertices evenly with 0 and 1 to
obtain a friendly labeling that satisfies (1). Thus for 1 < i < «, each ¢; can
be either 0 or 1. m]

Example 3. The double star D(m,n), where 1 < m < n, consists of
m pendant vertices appended to one end of P, and n pendant vertices
appended to the other end. Thus D(m,n) = T(n + 1;m,0"). We have
p=m+n+2,n =m,andn; =¢; =0ifi #£ 1. Wefind §; = {'—‘jzﬂ,"—}m}
when n +m is even; Sp = {2+@=1 2=m-ll and Gy = {24l nomill
when n + m is odd. Therefore, we obtain

{nj;zm’ z%n} if n 4+ m is even,
{nj;rzn:*:l, "“_.2_"15:1} if n +m is odd,

BI(D(m,n)) = {

a result that was first reported in [7). m]

The only tree that Corollary 2.2 does not cover is the spider Sp(2"),
which is the amalgamation (that is, one-point union) of n copies of paths
of length two identified at one of the two pendant vertices of each path.

Example 4. The following result from [11]
BI(Sp(2")) = S5 = {0,1,2,...,n}

can be obtained in a very straightforward manner. Note that Sp(2") =
T'(n;1"), hence p = 1 + 2n is always odd, and n; = 1 for each i. Setting
€i,1 = 1 — ¢; yields a friendly labeling with > . e + 3=, ;€i; = (p — 1)/2.
Since each ¢; can be either 0 or 1, we see that Ef__.l nie; € {0,1,2,...,n}.
Hence S; = {0,1,2,...,n}.
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To ensure that 3, e; + 3, ;€5 = (p+1)/2, we need, without loss of
generality, €; = €;,; =1, and €;; =1 — ¢; if ¢ # 1. This time, Ef=1 ni€; €
{1,2,3,...,n}. Hence S, = {jn—1—-j]: 1 < j < n} C S;3. Therefore
BI(Sp(2")) = Ss. o

The last example confirms that Corollary 2.2 is also valid for Sp(2").
Hence, we have obtained a rather simple result.

Theorem 2.3 Let G = T'(k;,n1,ng,...,7k), whereny >ng > -+ > ng >
0. Let a be the largest integer such that n, # 0. Then

{|"E—2—E?=1ni€i|=0S6i51} if p is even,
BIG) =< {|252 - T me| : 0< e, <1}
U{"’Z_I—Z?ﬂniﬁdioSEl_l} if p is odd.

The spider Sp(f1,£s,...,£,) is the amalgamation of n paths of length
€1,0,...,8,, respectively. As a tree with diameter at most four, it could
take on the form of Sp(1™,2"), where m,n > 1. Only a few special cases
were studied in [11]. The complete solution is listed below.

Example 5. For m,n > 1, note that Sp(1™,2") = T'(n + m; 17, 0’") We
havep—1+m+2n,andn,—Oforn+1<z<n+m,thusz: T nie =
Y€ €{0,1,2,...,n}. We find §; = {’"‘1+J|0<J<n}whenmls
odd; S, = —-—1+J|0<_7<n} and S3 = {2 +;|0<j<n} when
m is even. Therefore

m-l m-— m—1 H :
— 1,..., 2= +n; if misodd,
BI(Sp(l"‘, 2n) = { m 2 2 } . i
-2——1§ ,7+n} if m is even.
This general solution covers all the cases studied in [11]. m]

A caterpillar is a tree formed by appending pendant vertices to a
path. Denote by Ct(n;my,ms,...,m,) the caterpillar which becomes P, =
v1v3...v, when all its leaves are deleted, where m; denotes the number
of pendant vertices incident to v;. For it to be a tree of diameter four, a
caterpillar must be of the form Ct(3; m;, m2,m3), where m; > m3 > 1, and
mg > 0. Several special cases were studied in [11]. Here is the complete
solution.

Example 6. For my >m3 > 1,

. & if my + mga + mg3 is odd,
BI(Ct(3;m1,mz,m3)) = { SoUS; if my + mg + mg3 is even,
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where

5 = mg+mytmg+1 |mg—my £ms+1|
1 2 ] 2 )
{mz-i-ml:l:m;; |ma —my d:msl}
Sz = ] ’
2 2
ma+m tmz+2 |ma—my £ms+ 2|
S3 = 3 ]
2 2
because Ct(3; m;, ma, m3) = T(mg + 2; mq, m3,0™2). |

Example 7. For T(k;n*), where n,k > 1, we find
{|ﬁi‘-2ﬁ—nj|:osjgk} if (n + 1)k is odd,

BI(T(k;n*) = { {| @92 —njl:0<j <}
u{li%”"-nﬂ:osjsk} if (n + 1)k is even,

because p = 1+ (n + 1)k, and n; = n for each i. m

3 An Open Problem

Unlike many examples in existing results, the entries in BI(T'(k; n*)) usually
do not form an arithmetic progression, as illustrated in the cases of

BI(T(3;5°)) = {1,2,3,4,6,7,8,9},

BI(T(3;6%)) {2,4,8,10},

BI(T'(3; 7*)) {2,3,4,5,9,10,11,12},

BI(T'(3;8%) = {3,5,11,13},

BI(T'(4;3%)) {1,2,4,5,7,8},

BI(T'(4;4%)) {1,2,3,5,6,7,9,10},

BI(T'(4;5%)) {1,2,3,4,6,7,8,9,11,12},

BI(T(4;6%)) = {1,2,4,5,7,8,10,11,13,14}.

However, in some other instances, the entries do form an arithmetic pro-
gression:

I

BI(T(3;2%)) = {0,2,4},
BI(T'(3;3%)) {0,1,2,3,4,5,6},
BI(T(3;4%) = {1,3,5,7}.

We invite the readers to investigate when will BI(T'(k;n¥)) consist of an
arithmetic progression.

I
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4 Rooted Trees of Height Above Two

It is easy to extend the technique to a rooted tree of height 3. Denote the
labels of the leaves ¢; j,x. We find

v(0) — (1) =p- (1) =p-2)
Z Zez + Z €+ Z €i gk

,J L)
This allows us to derive a result ana.logoub to (1):

if p is even,
22 {p:l:l if p is odd.
Next, we turn our attention to the edges between level 2 and 8. Since
e(0) =3, j k(1 — €:,5)(1 — €i3x), and e(1) = 37, ; 4 € €35k
e(0)—e(l) = Z(l €i,j — €ijk)

'Jy

= : :nllJ E :niﬂetﬂ z :et'Jrk’

'J'

where

where n;; denotes the number of chlldren of u;j. Therefore, over the
entire rooted tree (taken into consideration what we have already found up

to level 2), ) .,
e(0)—e(l)=p-1-) ->,
Z” = Z ni€; + Zn,-,jei,j.
i ij

Theorem 4.1 Let p be the number of vertices in a rooted tree RT of
height 3, then

where

& if p is even,
BI(RT)_{SgUS's if p is odd,
where
) "
e s )
-3 " p+l
Sz={pT—Z 0<€1s€1,1?€1-.1k<12_p2 },
-1 " .___1
Ss={pT_ 0 e e <Ly =25 }

1
where €;, €, €4k, 3, and Y, are defined above.
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It is obvious that the result can be pushed to a rooted tree of any height.

Theorem 4.2 Let p be the number of vertices in o rooted tree RT of
height h, then

if p is even,

BIR) = { S2US3 ifpis odd,
where
-2 "
Sl:{ p_2 —Z : OSGiaei,j,e,-,j,k,, Z =§}
_3 ' +
Sz={p_2 .—Z 0L €n€5,6,5k - Z =p2 }

_1 " , _1
Sa:{p_2 —Z :0S€£,€i,j,6i,j,k,...$1,z___P2 },

where €;,€; j, € jk, ... are the labels of the vertices at level 1, 2, 3, ...
respectively, and

Z' = Ze,+Ze,,,+Zem,k+

)J'

V

Z ni€; + Zni,jfi,j +
i ij

h-1

5

5 Another Open Problem

How about an unrooted tree? We can designate a center of it to be its root,
and apply Theorem 4.2. Although it does provide a systematic approach to
find the balance set of any given tree T, it is not clear whether it is possible
to find a simpler description of BI(T'). Judging from the theorems and the
examples given above, it becomes evident that if a simple description exists,
it has to be expressed in terms of the degree sequences of T'. We invite the
readers to find such a solution.
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