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ABSTRACT. Let G = (V,E) be a graph. A set S C V is called
a restrained dominating set of G if every vertex not in S is adja-
cent to a vertex in S and to a vertex in V — S. The restrained
domination number of G, denoted by v,.(G), is the minimum car-
dinality of a restrained dominating set of G. In this paper we
establish an upper bound on 4,(G) for a connected graph G by
the probabilistic method.
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1 Introduction

In this paper we consider only finite undirected graphs without isolated
vertices and multiple edges. For notation and graph theory terminology
not given here, the reader is referred to [12]. Let G = (V, E) be a graph
with vertez set V and edge set E. The order of G is given by n = |V]|.
Denote by §(G) and A(G) the minimum and mazimum degrees of vertices
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of G, respectively. Put A = A(G) and § = §(G). For v € V, the open
neighborhood of v in G is N(v) = {u | uv € E} and the closed neighborhood
of v in G is N[v] = N(v) U {v}. The degree of v in G is d(v) = |N(v)|. For
S C V, the subgraph induced by S is denoted by G[S].

A subset S of V is a restrained dominating set (RDS) of G if every
vertex not in S is adjacent to a vertex in S and to a vertex in V — S. The
minimum cardinality of a restrained dominating set in G is the restrained
domination number of G, denoted by +,(G). Restrained domination in
graphs was introduced by Telle and Proskurowski [16].

Let G be a connected graph of order n. If G is not a star, then obviously
7+(G) < n — 2. Domke et al. [6] characterized those graphs achieving the
bound. Moreover, Domke et al. [7] showed that if T is a tree of order n,
then 4-(T) > [%32] and characterized the extremal trees T attaining the
lower bound. In (8] Domke et al. showed that if G is not one of eight
exceptional graphs and ¢ > 2, then 7,.(G) < "T"2 Recently, Dankelmann
et al. [4] showed that if § > 2, then v.(G) < n — A. More results on
the restrained domination number can be found in, for example, (2-5, 9-11,
13-15, 17).

The purpose of this paper is to establish new upper bound on the re-
strained domination number by the probabilistic method which be men-
tioned in [1].

2 Main results

For an event A and for a random variable Z of an arbitrary probability
space, P[A] and E[Z] denote the probability of A, the expectation of Z,
respectively.

Theorem 1. If G is a connected graph of order n with minimum degree §,

then 70(G) < 36527 +n 2 4 n20p .

Proof. The theorem clearly holds for § < 36, so we may assume § > 36. Let
us pick, randomly and independently, each vertex of V' with probability p
and let p = !%‘_5:'—111. Then 0 < p < 1. Let X be the set of vertices
such picked and z = |X|, P{v € X} = p. Let Y be the random set
of all the vertices that are not picked and have no neighbors in X, i.e.,
Y={veV-X|NpnX =0}, and let y = |Y|. By the choice of Y, we
can see that X UY is a dominating set of G. Let Z be the set of all isolate
vertices in V — X — Y and let z = |Z]|. Obviously, theset X UY UZ isa
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restrained dominating set of G, so 7(G) < =+ y + 2. It therefore suffices
to show that the following inequality

n In(d + 1) 0.54/In(6 + 1)
<
z+y+z_366+1+n 1 +n 11
holds with positive probability.

Claim 1.

m@+1)  05/m@+1)
Ple > n——t 4 o] < 0.8020,

Proof of Claim 1. The expectation of z is E[z] = np = n'2 f:il . We use an

inequality attributed to [2], that is, for any a > 0,
2
bt /1
Pla > Elo) +a] < expd =—=—————
o> Ble) + o) < o { e gy )
Take a = no—'@ to this inequality, we have

P[:t: > nln(& +1) + n0.5\/ln(6 + 1)]

0+1 o+1

nin(d + 1)
< exp{- 86+ (0@ + 1)+ 1/ + 1))}

n
= exp§ — T
1

< exp{ - _8+Tl__

3 /In(5+1)

1

< — ——
< 0.8920,

where n > § + 1. This establishes Claim 1. O

Claim 2. n
P[y > 213—+—1] < 0.04761.
Proof of Claim 2. For each vertex v € Y, the probability is exactly (1 —

p)4)+1_ Since d(v) > §, it follows that the expectation of y satisfies Efy] <
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n(1 — p)®+L. By using Taylor’s formula, we have

(1-p)**' < exp{-p(6+1)}= exp{ - In‘(;ST+11)(6 + l)}

1
= exp{— ln(5+ 1)} = m.

Thus Efy] < %5 By Markov’s inequality, for any a > 0, we have Ply >
al < _Ejagl, so

n

Plo>2153y

The Claim 2 follows. O

1
] < 57 = 0.04761.

It is not easy to bound z directly. Instead, we say that a vertex ve V
is weakly contained if v has fewer than 0.1(6 — In(d + 1)) neighbors in
V —X-Y. We now bound the probability that a vertex is weakly contained
inV—-X-Y. Let Z, denote the number of neighborsof vin V- X - Y.
Let D denote the set of vertices weakly contained in V — X — Y. Clearly,

ElZ) = (1-p~@1-p)*™*) d(v)

- (-3 )

- -J_f_—l-(é—ln(é-i-l)).

Indeed, when & > 36, we have

E[Z,] > g(a —In(6 + 1)).

Claim 3. )

Proof of Claim 8. Now we need to bound the lower tail, so we use the
inequality in [1]

2

Prob|Z, — E[Z,] < —a] < exp(—ﬁ),
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which is valid for every a > 0. Using a = (1 — 37/360)E[Z,], we obtain

P[Z, <0.1(5 - In(6 + 1))]

INA

i <22

P[z,- E[Z) < -(1- 360 E[z,,]]
oo - b )

expf - “—'ﬁﬁ:[zu]}

exp{ - (6 - n(6 + 1) & 236")2}

2
5-0-Im@+1)

Hence, the probability that a vertex is weakly containedin V — X —-Y is

PpheV-X-Y A

Z, < 0.1(6 — In(8 + 1))]

2
< =P 5T
§+1-In(6+1) 2
< 5+1  5.0—-Im@+1)
2 1
< 56+n YMiTmesn)
3
< 56+

Therefore the expected number of weakly contained vertices in Z is at most

m We have

E|Dl <

3-n
5-(6+1)
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From Markov's inequality, it follows that

S5 < 0.04.

P[lDl > 15n6—+1—1] <1

This establishes Claim 3. O

From Claims 1-3, we find that all of these events that

In(d +1) 0.54/In(6 + 1)
S L ’y<216+1

could happen simultaneously with positive probability, that is,
1 —0.8920 — 0.04761 — 0.04 = 0.021 > 0.

z<n

and |D|<155+1

Now we choose a set X satisfying all of these events simultaneously. Since
z < |D|, we have

+nln(5+ 1) +n0.5\/ln(6+1) +15-"
6+1 d+1 6+1 o+1

< 36"+ 1n(6+1)+ 0.5\/1n(6+1).

S+1 e+l T 5+1

z+y+z < 21

This completes the proof of Theorem 1. O

The result in Theorem 1 easily leads to the following conclusion.

Theorem 2. If G is a connected graph of order n with minimum degree 6,

then v.(G) < n- l—"%i:"—ll)-(l + 05(1)).
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