ESSENTIAL NORMS OF WEIGHTED COMPOSITION OPERATORS FROM THE BERGMAN SPACE TO WEIGHTED-TYPE SPACES ON THE UNIT BALL

STEVO STEVIĆ

Mathematical Institute of the Serbian Academy of Science, Knez Mihailova 36/III, 11000 Beograd, Serbia E-mail: sstevic@ptt.rs

Abstract

We estimate the essential norm of the weighted composition operator uC_{φ} from the weighted Bergman space $A_{\alpha}^{p}(\mathbb{B})$ to the weighted space $H_{\mu}^{\infty}(\mathbb{B})$ on the unit ball \mathbb{B} , when p>1 and $\alpha\geq -1$ (for $\alpha=-1$, A_{α}^{p} is the Hardy space $H^{p}(\mathbb{B})$). We also give a necessary and sufficient condition for the operator $uC_{\varphi}: A_{\alpha}^{p}(\mathbb{B}) \to H_{\mu}^{\infty}(\mathbb{B})$ to be compact, and for the operator $uC_{\varphi}: A_{\alpha}^{p}(\mathbb{B}) \to H_{\mu,0}^{\infty}(\mathbb{B})$ to be bounded or compact, when p>0, $\alpha\geq -1$.

1. Introduction and preliminaries

Let $\mathbb B$ be the open unit ball in $\mathbb C^n$, $S=\partial \mathbb B$ its boundary, dV(z) the Lebesgue measure on $\mathbb B$, $dV_{\alpha}(z)=c_{\alpha}(1-|z|^2)^{\alpha}dV(z)$ where c_{α} is a constant chosen such that $V_{\alpha}(\mathbb B)=1$, $d\sigma$ the rotation invariant measure on S such that $\sigma(S)=1$, $H(\mathbb B)$ the class of all holomorphic functions on $\mathbb B$ and $H^{\infty}(\mathbb B)$ the space of all bounded holomorphic functions on $\mathbb B$ with the norm $\|f\|_{\infty}=\sup_{z\in \mathbb B}|f(z)|$.

For p > 0 the Hardy space $H^p = H^p(\mathbb{B})$ consists of all $f \in H(\mathbb{B})$ such that

$$||f||_p^p = \sup_{0 \le r \le 1} \int_S |f(r\zeta)|^p d\sigma(\zeta) < \infty.$$

It is well known that for every $f \in H^p$ the radial limit $\lim_{r\to 1} f(r\zeta)$ exists for almost all $\zeta \in S$. The limit function is denoted by $f^*(\zeta)$.

The Bergman space $A^p_{\alpha}=A^p_{\alpha}(\mathbb{B}),\ p>0,\ \alpha>-1$ consists of all $f\in H(\mathbb{B})$ such that

$$||f||_{A^p_\alpha}^p = \int_{\mathbb{R}} |f(z)|^p dV_\alpha(z) < \infty.$$

When $p \ge 1$, the Bergman space with the norm $\|\cdot\|_{A_{\alpha}^p}$ becomes a Banach space. If $p \in (0,1)$, it is a Frechet space with the translation invariant metric

$$d(f,g) = \|f - g\|_{A^p_\alpha}^p.$$

Since for every $f \in H^p$

$$\lim_{\alpha \to -1+0} \int_{\mathbf{B}} |f(z)|^p dV_{\alpha}(z) = \int_{S} |f^*(\zeta)|^p d\sigma(\zeta)$$

we will also use the notation A_{-1}^p for the Hardy space H^p .

A positive continuous function ϕ on [0,1) is called normal ([25]) if there is $\delta \in [0,1)$ and a and b, 0 < a < b such that

$$\frac{\phi(r)}{(1-r)^a} \text{ is decreasing on } [\delta,1) \text{ and } \lim_{r\to 1} \frac{\phi(r)}{(1-r)^a} = 0;$$

$$\frac{\phi(r)}{(1-r)^b} \text{ is increasing on } [\delta,1) \text{ and } \lim_{r\to 1} \frac{\phi(r)}{(1-r)^b} = \infty.$$

If we say that a function $\phi: \mathbb{B} \to [0, \infty)$ is normal we will also assume that $\phi(z) = \phi(|z|), z \in \mathbb{B}$.

The weighted space $H^{\infty}_{\mu} = H^{\infty}_{\mu}(\mathbb{B})$ consists of all $f \in H(\mathbb{B})$ such that

$$||f||_{H^{\infty}_{\mu}}:=\sup_{z\in\mathbb{B}}\mu(z)|f(z)|<\infty,$$

where μ is normal. For $\mu(z) = (1 - |z|^2)^{\beta}$, $\beta > 0$ we obtain the weighted space $H_{\beta}^{\infty} = H_{\beta}^{\infty}(\mathbb{B})$ (for the weighted Bolch space see, e.g., [35] and [36]).

The little weighted space $H^{\infty}_{\mu,0}=H^{\infty}_{\mu,0}(\mathbb{B})$ is a subspace of H^{∞}_{μ} consisting of all $f\in H(\mathbb{B})$ such that $\lim_{|z|\to 1}\mu(z)|f(z)|=0$.

Let $u \in H(\mathbb{B})$ and φ be a holomorphic self-map of \mathbb{B} . For $f \in H(\mathbb{B})$ the weighted composition operator is defined by

$$(uC_{\varphi}f)(z) = u(z)f(\varphi(z)).$$

It is of interest to provide function theoretic characterizations when u and φ induce bounded or compact weighted composition operators on spaces of holomorphic functions. For some classical results in the topic, see [6]. For some recent results see, e.g., [5], [10]-[22], [24], [29], [32], [34], [35], [37]-[39], [41]-[43] and the references therein.

In [32], among others, we give some necessary and sufficient conditions for the operator $uC_{\varphi}: A^p_{\alpha}(\mathbb{B}) \to H^{\infty}_{\beta}(\mathbb{B})$ to be bounded or compact. Motivated by [32] and [34], in [35], among other results, we calculated the operator norm of $uC_{\varphi}: A^p_{\alpha}(\mathbb{B}) \to H^{\infty}_{\mu}(\mathbb{B})$. More precisely, we have proved the following result:

Theorem A. Assume p > 0, $\alpha \ge -1$, $u \in H(\mathbb{B})$, μ is normal, φ is a holomorphic self-map of \mathbb{B} and $uC_{\varphi}: A^p_{\alpha} \to H^{\infty}_{\mu}$ is bounded. Then

$$\|uC_\varphi\|_{A^p_\alpha\to H^\infty_\mu}=\sup_{z\in \mathbb{B}}\frac{\mu(z)|u(z)|}{\left(1-|\varphi(z)|^2\right)^{\frac{n+1+\alpha}{p}}}=:M.$$

Moreover, $uC_{\varphi}: A^p_{\alpha} \to H^{\infty}_{\mu}$ is bounded if and only if M is finite.

In this note we estimate the essential norm of the operator $uC_{\varphi}: A_{\alpha}^{p}(\mathbb{B}) \to H_{\mu}^{\infty}(\mathbb{B})$, when p > 1. For the completeness, we also give a necessary and sufficient condition for the operator $uC_{\varphi}: A_{\alpha}^{p}(\mathbb{B}) \to H_{\mu}^{\infty}(\mathbb{B})$ to be compact, and for the operator $uC_{\varphi}: A_{\alpha}^{p}(\mathbb{B}) \to H_{\mu,0}^{\infty}(\mathbb{B})$ to be bounded or compact, when p > 0 (these results are modifications of some in [32], see also [24, 37, 41]).

Throughout the paper C will denote a positive constant not necessarily the same at each occurrence. The notation $A \times B$ means that there is a positive constant C such that $A/C \leq B \leq CA$.

We need the following auxiliary results in the proofs of the main results.

Lemma 1. ([4, Corollary 3.5]) Suppose $p \in (0, \infty)$ and $\alpha \geq -1$. Then for all $f \in A_{\alpha}^{p}(\mathbb{B})$ and $z \in \mathbb{B}$, the following inequality holds

$$|f(z)| \le \frac{\|f\|_{A_p^{\alpha}}}{(1-|z|^2)^{\frac{n+1+\alpha}{p}}}. (1)$$

The following criterion for the compactness follows by standard arguments (see, e.g., [6, 9, 28, 29, 30]). Hence, we omit its proof.

Lemma 2. Suppose $0 , <math>\alpha \ge -1$, $u \in H(\mathbb{B})$, μ is normal and φ is a holomorphic self-map of \mathbb{B} . Then the operator $uC_{\varphi}: A_{\alpha}^{p} \to H_{\mu}^{\infty}$ is compact if and only if $uC_{\varphi}: A_{\alpha}^{p} \to H_{\mu}^{\infty}$ is bounded and for any bounded sequence $(f_{k})_{k \in \mathbb{N}}$ in A_{α}^{p} converging to zero uniformly on compacts of \mathbb{B} , we have $\|uC_{\varphi}f_{k}\|_{H_{\mu}^{\infty}} \to 0$ as $k \to \infty$.

The following result can be found in [23]. For closely related results see also [1, 2, 3, 7, 26, 27, 31, 33, 40] and the references therein.

Lemma 3. Suppose $0 , <math>\alpha > -1$, then

$$||f||_{A_{\alpha}^{p}}^{p} \approx |f(0)|^{p} + \int_{\mathbb{R}} |\nabla f(z)|^{p} (1 - |z|^{2})^{p+\alpha} dV(z),$$

for every $f \in A^p_{\alpha}$.

The next lemma can be proved similar to Lemma 1 in [19] (see also [20]).

Lemma 4. Suppose μ is normal. A closed set K in $H^{\infty}_{\mu,0}$ is compact if and only if it is bounded and

$$\lim_{|z|\to 1}\sup_{f\in K}\mu(z)|f(z)|=0.$$

2. The boundedness of the operator $uC_{arphi}:A^p_{lpha} o H^\infty_{\mu,0}$

Here we characterize the boundedness of the operator $uC_{\varphi}: A^p_{\alpha} \to H^{\infty}_{\mu,0}$.

Theorem 1. Assume p > 0, $\alpha \ge -1$, $u \in H(\mathbb{B})$, μ is normal and φ is a holomorphic self-map of \mathbb{B} . Then $uC_{\varphi}: A_{\alpha}^{p} \to H_{\mu,0}^{\infty}$ is bounded if and only if $uC_{\varphi}: A_{\alpha}^{p} \to H_{\mu}^{\infty}$ is bounded and $u \in H_{\mu,0}^{\infty}$.

Proof. Assume that $uC_{\varphi}: A^p_{\alpha} \to H^{\infty}_{\mu,0}$ is bounded. Then clearly $uC_{\varphi}: A^p_{\alpha} \to H^{\infty}_{\mu}$ is bounded. Taking the test function $f(z) = 1 \in A^p_{\alpha}$ we obtain $u \in H^{\infty}_{\mu,0}$.

Conversely, assume $uC_{\varphi}: A^p_{\alpha} \to H^{\infty}_{\mu}$ is bounded and $u \in H^{\infty}_{\mu,0}$. Then, for each polynomial p, we have

$$|\mu(z)|uC_{\varphi}p(z)| \le |\mu(z)|u(z)p(\varphi(z))| \le |\mu(z)|u(z)| \, ||p||_{\infty} \to 0, \quad \text{as } |z| \to 1$$

from which it follows that $uC_{\varphi}p \in H^{\infty}_{\mu,0}$. Since the set of all polynomials is dense in A^p_{α} (see, for example, [40]), we have that for every $f \in A^p_{\alpha}$ there is a sequence of polynomials $(p_k)_{k \in \mathbb{N}}$ such that $||f - p_k||_{A^p_{\alpha}} \to 0$, as $k \to \infty$. From this and since the operator $uC_{\varphi}: A^p_{\alpha} \to H^{\infty}_{\mu}$ is bounded, it follows that

$$\|uC_\varphi f - uC_\varphi p_k\|_{H^\infty_\mu} \leq \|uC_\varphi\|_{A^p_\alpha \to H^\infty_\mu} \|f - p_k\|_{A^p_\alpha} \to 0, \quad \text{as} \quad k \to \infty.$$

Hence $uC_{\varphi}(A_{\alpha}^{p}) \subset H_{\mu,0}^{\infty}$. Since $H_{\mu,0}^{\infty}$ is a closed subset of H_{μ}^{∞} the boundedness of $uC_{\varphi}: A_{\alpha}^{p} \to H_{\mu,0}^{\infty}$ follows. \square

3. Compactness of the operator $uC_{\varphi}:A^p_{\alpha} \to H^\infty_{\mu}$

This section is devoted to studying of the compactness of the operator $uC_{\varphi}:A_{\alpha}^{p}\to H_{\mu}^{\infty}$. We prove the following result.

Theorem 2. Assume p > 0, $\alpha \ge -1$, $u \in H(\mathbb{B})$, μ is normal, φ is a holomorphic self-map of \mathbb{B} and the operator $uC_{\varphi}: A^p_{\alpha} \to H^{\infty}_{\mu}$ is bounded. Then the operator $uC_{\varphi}: A^p_{\alpha} \to H^{\infty}_{\mu}$ is compact if and only if

$$\lim_{|\varphi(z)| \to 1} \frac{\mu(z)|u(z)|}{(1 - |\varphi(z)|^2)^{\frac{n+1+\alpha}{p}}} = 0.$$
 (2)

Proof. First assume that the operator $uC_{\varphi}: A_{\alpha}^{p} \to H_{\mu}^{\infty}$ is compact. If $\|\varphi\|_{\infty} < 1$ then condition (2) is vacuously satisfied. Hence, assume that $\|\varphi\|_{\infty} = 1$ and assume to the contrary that (2) does not hold. Then there is a sequence $(z_{k})_{k \in \mathbb{N}}$ satisfying the condition $|\varphi(z_{k})| \to 1$ as $k \to \infty$ and $\delta > 0$ such that

$$\frac{\mu(z_k)|u(z_k)|}{(1-|\varphi(z_k)|^2)^{\frac{n+1+\alpha}{p}}} \ge \delta, \quad k \in \mathbb{N}.$$
(3)

For $w \in \mathbb{B}$ fixed, set

$$f_w(z) = \frac{(1-|w|^2)^{\frac{n+1+\alpha}{p}}}{(1-\langle z,w\rangle)^{\frac{2(n+1+\alpha)}{p}}}, \quad z \in \mathbb{B}.$$
 (4)

It is known that $||f_w||_{A^p_\alpha} = 1$, for each $w \in \mathbb{B}$. Let $g_k(z) = f_{\varphi(z_k)}(z)$, $k \in \mathbb{N}$. Then $||g_k||_{A^p_\alpha} = 1$, $k \in \mathbb{N}$ and it is easy to see that $g_k \to 0$ uniformly on compacts of \mathbb{B} as $k \to \infty$. Hence, by Lemma 2, it follows that $\lim_{k \to \infty} ||uC_{\varphi}g_k||_{H^\infty_\alpha} = 0$.

On the other hand, we have

$$||uC_{\varphi}g_{k}||_{H^{\infty}_{\mu}} = \sup_{z \in \mathbb{B}} \mu(z)|u(z)||g_{k}(\varphi(z))| \geq \frac{\mu(z_{k})|u(z_{k})|}{(1 - |\varphi(z_{k})|^{2})^{\frac{n+1+\alpha}{p}}} \geq \delta > 0,$$

for every $k \in \mathbb{N}$, which is a contradiction.

Now assume that (2) holds. Then for every $\varepsilon > 0$ there is an $r \in (0,1)$ such that when $r < |\varphi(z)| < 1$

$$\frac{\mu(z)|u(z)|}{(1-|\varphi(z)|^2)^{\frac{n+1+\alpha}{p}}} < \varepsilon. \tag{5}$$

On the other hand, since the operator $uC_{\varphi}: A_{\alpha}^{p} \to H_{\mu}^{\infty}$ is bounded, for $f(z) = 1 \in A_{\alpha}^{p}$, we obtain $||u||_{H_{\alpha}^{\infty}} < \infty$.

Assume that $(h_k)_{k\in\mathbb{N}}$ is a bounded sequence in A^p_{α} , say by L, converging to zero uniformly on compacts of \mathbb{B} as $k\to\infty$. Then by Lemma 1 and (5), for $r<|\varphi(z)|<1$, we obtain

$$\mu(z)|u(z)||h_k(\varphi(z))| \le \sup_{k \in \mathbb{N}} \|h_k\|_{A^p_\alpha} \frac{\mu(z)|u(z)|}{(1 - |\varphi(z)|^2)^{\frac{n+1+\alpha}{p}}} < L\varepsilon. \tag{6}$$

If $|\varphi(z)| \leq r$, we have

$$\mu(z)|u(z)||h_k(\varphi(z))| \le ||u||_{H^{\infty}_{\mu}} \sup_{|w| \le r} |h_k(w)| \to 0, \text{ as } k \to \infty.$$
 (7)

From (6) and (7) it follows that $\|uC_{\varphi}h_k\|_{H^{\infty}_{\mu}} \to 0$ as $k \to \infty$, from which the compactness of the operator $uC_{\varphi}: A^p_{\alpha} \to H^{\infty}_{\mu}$ follows. \square

3. Compactness of the operator $uC_{\varphi}:A^p_{\alpha} \to H^\infty_{u.0}$

Here we study of the compactness of the operator $uC_{\varphi}:A^p_{\alpha}\to H^\infty_{\mu,0}.$

Theorem 3. Assume p > 0, $\alpha \ge -1$, $u \in H(\mathbb{B})$, μ is normal, φ is a holomorphic self-map of \mathbb{B} and the operator $uC_{\varphi}: A_{\alpha}^{p} \to H_{\mu,0}^{\infty}$ is bounded. Then the operator $uC_{\varphi}: A_{\alpha}^{p} \to H_{\mu,0}^{\infty}$ is compact if and only if

$$\lim_{|z| \to 1} \frac{\mu(z)|u(z)|}{(1 - |\varphi(z)|^2)^{\frac{n+1+\alpha}{p}}} = 0.$$
 (8)

Proof. Assume $uC_{\varphi}: A^{p}_{\alpha} \to H^{\infty}_{\mu,0}$ is compact. Then $uC_{\varphi}(1) = u \in H^{\infty}_{\mu,0}$ (see the proof of Theorem 1).

Hence if $\|\varphi\|_{\infty} < 1$, then

$$\lim_{|z|\to 1} \frac{\mu(z)|u(z)|}{(1-|\varphi(z)|^2)^{\frac{n+1+\alpha}{p}}} \le \lim_{|z|\to 1} \frac{\mu(z)|u(z)|}{(1-|\varphi||_{\infty}^2)^{\frac{n+1+\alpha}{p}}} = 0,$$

from which the result follows in this case.

Now assume $\|\varphi\|_{\infty} = 1$. By using the test functions $g_k(z) = f_{\varphi(z_k)}(z)$, $k \in \mathbb{N}$ (where f_w is defined in (4)), as in Theorem 2 we obtain that condition (2) holds, which implies that for every $\varepsilon > 0$, there is an $r \in (0,1)$ such that for $r < |\varphi(z)| < 1$ condition (5) holds.

Since $u \in H_{u,0}^{\infty}$, there is $\sigma \in (0,1)$ such that for $\sigma < |z| < 1$

$$\mu(z)|u(z)| < \varepsilon(1-r^2)^{\frac{n+1+\alpha}{p}}.$$
 (9)

Hence, if $|\varphi(z)| \le r$ and $\sigma < |z| < 1$, we have

$$\frac{\mu(z)|u(z)|}{(1-|\varphi(z)|^2)^{\frac{n+1+\alpha}{p}}} \le \frac{\mu(z)|u(z)|}{(1-r^2)^{\frac{n+1+\alpha}{p}}} < \varepsilon. \tag{10}$$

From (5) and (10) condition (8) follows.

Now assume that condition (8) holds. Then the quantity M in Theorem A is finite. From this and the following inequality

$$|\mu(z)|u(z)f(\varphi(z))| \le ||f||_{A^p_{\alpha}} \frac{|\mu(z)|u(z)|}{(1-|\varphi(z)|^2)^{\frac{n+1+\alpha}{p}}},$$

it follows that the set $uC_{\varphi}(\{f:\|f\|_{A^p_{\alpha}}\leq 1\})$ is bounded in H^{∞}_{μ} , and moreover in $H^{\infty}_{\mu,0}$. Taking the supremum in the last inequality over the unit ball in A^p_{α} , then letting $|z|\to 1$, using condition (8) and employing Lemma 4, we obtain the compactness of the operator $uC_{\varphi}:A^p_{\alpha}\to H^{\infty}_{\mu,0}$, as desired. \square

4. Essential norm of
$$uC_{\varphi}:A^p_{\alpha}\to H^{\infty}_{\mu}$$

Let X and Y be Banach spaces, and $L: X \to Y$ be a bounded linear operator. The essential norm of the operator $L: X \to Y$, denoted by $||L||_{e,X\to Y}$, is defined as follows

$$\|L\|_{e,X\to Y}=\inf\{\|L+K\|_{X\to Y}\ :\ K\ \text{is compact from}\ X\ \text{to}\ Y\},$$

where $\|\cdot\|_{X\to Y}$ denote the operator norm.

From this definition and since the set of all compact operators is a closed subset of the set of bounded operators it follows that operator L is compact if and only if $||L||_{e,X\to Y}=0$.

In this section, we prove the main result in this paper, namely we find some lower and upper bounds for the essential norm of the operator $uC_{\varphi}: A^{p}_{\alpha} \to H^{\infty}_{\mu}$, when p > 1.

Theorem 4. Assume $p \in (1, \infty)$, $\alpha \geq -1$, $u \in H(\mathbb{B})$, μ is normal, φ is a holomorphic self-map of \mathbb{B} and $uC_{\varphi}: A^p_{\alpha} \to H^{\infty}_{\mu}$ is bounded. Then the following inequalities hold

$$\limsup_{|\varphi(z)| \to 1} \frac{\mu(z)|u(z)|}{(1 - |\varphi(z)|^2)^{\frac{n+1+\alpha}{p}}} \le ||uC_{\varphi}||_{e,A_{\alpha}^{p} \to H_{\mu}^{\infty}} \le 2 \limsup_{|\varphi(z)| \to 1} \frac{\mu(z)|u(z)|}{(1 - |\varphi(z)|^2)^{\frac{n+1+\alpha}{p}}}.$$
 (11)

Proof. Assume that $(\varphi(z_k))_{k\in\mathbb{N}}$ is a sequence in \mathbb{B} such that $|\varphi(z_k)| \to 1$ as $k \to \infty$. Note that the sequence $(f_{\varphi(z_k)})_{k\in\mathbb{N}}$ (where f_w is defined in (4)) is such that $\|f_{\varphi(z_k)}\|_{A^p_\alpha} = 1$, for each $k \in \mathbb{N}$ and it converges to zero uniformly on compacts of \mathbb{B} . By Theorems 2.12 and 4.50 in [40] it follows that $f_{\varphi(z_k)}$ converges weakly to zero as $k \to \infty$ (here we use condition p > 1). Hence for every compact operator $K: A^p_\alpha \to H^p_\mu$ we have that $\|Kf_{\varphi(z_k)}\|_{H^p_\mu} \to 0$ as $k \to \infty$. Hence, for every such sequence and for every compact operator $K: A^p_\alpha \to H^p_\mu$ we have

$$\|uC_{\varphi} + K\|_{A_{\alpha}^{p} \to H_{\mu}^{\infty}} \geq \limsup_{k \to \infty} \frac{\|uC_{\varphi}f_{\varphi(z_{k})}\|_{H_{\mu}^{\infty}} - \|Kf_{\varphi(z_{k})}\|_{H_{\mu}^{\infty}}}{\|f_{\varphi(z_{k})}\|_{A_{\alpha}^{p}}}$$

$$= \limsup_{k \to \infty} \|uC_{\varphi}f_{\varphi(z_{k})}\|_{H_{\mu}^{\infty}}$$

$$\geq \limsup_{k \to \infty} \mu(z_{k})|u(z_{k})f_{\varphi(z_{k})}(\varphi(z_{k}))|$$

$$= \limsup_{n \to \infty} \frac{\mu(z_{k})|u(z_{k})|}{(1 - |\varphi(z_{k})|^{2})^{\frac{n+1+\alpha}{p}}}.$$
(12)

Taking the infimum in (12) over the set of all compact operators $K:A^p_{\alpha}\to H^\infty_{\mu}$ we obtain

$$\|uC_{\varphi}\|_{e,A^p_{\alpha}\to H^\infty_{\mu}}\geq \limsup_{n\to\infty}\frac{\mu(z_k)|u(z_k)|}{(1-|\varphi(z_k)|^2)^{\frac{n+1+\alpha}{p}}},$$

from which the first inequality in (11) follows.

Now we prove the second inequality in (11). Assume that $(r_l)_{l \in \mathbb{N}}$ is a sequence which increasingly converges to 1. Consider the operators defined by

$$(uC_{r_l\varphi}f)(z) = u(z)f(r_l\varphi(z)), \quad l \in \mathbb{N}.$$

We prove that these operators are compact. Indeed, since $|r_l\varphi(z)| \leq r_l < 1$, it follows that condition (2) in Theorem 2 is vacuously satisfied, from which the claim follows.

Recall that $u\in H^\infty_\mu$. Let $\rho\in(0,1)$ be fixed for a moment. Employing Lemma 1, and using the fact

$$||f - f_{r_l}||_{A^p_\alpha} \le 2||f||_{A^p_\alpha}, \quad l \in \mathbb{N},$$

which follows by using the triangle inequality for the norm, the monotonicity of the integral means

 $M_p^p(f,r) = \int_{S} |f(r\zeta)|^p d\sigma(\zeta)$

and the polar coordinates, it follows that

$$\|uC_{\varphi} - uC_{r_{l}\varphi}\|_{A_{\alpha}^{p} \to H_{\mu}^{\infty}} = \sup_{\|f\|_{A_{\alpha}^{p}} \le 1} \sup_{z \in \mathbb{B}} \sup_{z \in \mathbb{B}} \mu(z)|u(z)||f(\varphi(z)) - f(r_{l}\varphi(z))|$$

$$\leq \sup_{\|f\|_{A_{\alpha}^{p}} \le 1} \sup_{|\varphi(z)| \le \rho} \mu(z)|u(z)||f(\varphi(z)) - f(r_{l}\varphi(z))|$$

$$+ \sup_{\|f\|_{A_{\alpha}^{p}} \le 1} \sup_{\|\varphi(z)| > \rho} \mu(z)|u(z)||f(\varphi(z)) - f(r_{l}\varphi(z))|$$

$$\leq \|u\|_{H_{\mu}^{\infty}} \sup_{\|f\|_{A_{\alpha}^{p}} \le 1} \sup_{\|\varphi(z)| \le \rho} |f(\varphi(z)) - f(r_{l}\varphi(z))| \quad (13)$$

$$+2 \sup_{|\varphi(z)| > \rho} \frac{\mu(z)|u(z)|}{(1 - |\varphi(z)|^{2})^{\frac{n+1+\alpha}{p}}}. \quad (14)$$

Now we estimate the quantity in (13). Let

$$I_l := \sup_{\|f\|_{A^p_\rho} \le 1} \sup_{|\varphi(z)| \le \rho} |f(\varphi(z)) - f(r_l \varphi(z))|.$$

By using the mean value theorem, the subharmonicity of the partial derivatives of f and Lemma 3, when $\alpha > -1$ we obtain

$$I_{l} \leq \sup_{\|f\|_{A_{\delta}^{p}} \leq 1} \sup_{|\varphi(z)| \leq \rho} (1 - r_{l}) |\varphi(z)| \sup_{|w| \leq \rho} |\nabla f(w)|$$

$$\leq C_{\rho} (1 - r_{l}) \sup_{\|f\|_{A_{\delta}^{p}} \leq 1} \left(\int_{|w| \leq \frac{1+\rho}{2}} |\nabla f(w)|^{p} (1 - |w|^{2})^{p+\alpha} dV(w) \right)^{1/p}$$

$$\leq C_{\rho} (1 - r_{l}) \sup_{\|f\|_{A_{\delta}^{p}} \leq 1} \left(\int_{\mathbf{B}} |f(w)|^{p} (1 - |w|^{2})^{\alpha} dV(w) \right)^{1/p} .$$

$$\leq C_{\rho} (1 - r_{l}) \to 0 \quad \text{as } l \to \infty.$$

$$(16)$$

If $\alpha = -1$, then applying in (15), the well known fact that for each compact $K \subset \mathbb{B}$ there is a positive constant C depending on K, p and n such that

$$\sup_{w \in K} |\nabla f(w)| \le C ||f||_p,$$

(see, for example, [40]) we obtain that (16) also holds in this case.

Letting $l \to \infty$ in (13) and (14), using (16), and then letting $\rho \to 1$, the second inequality in (11) follows, finishing the proof of the theorem. \square

REFERENCES

 K. Avetisyan, Continuous inclusions and Bergman type operators in n-harmonic mixed norm spaces on the polydisc, J. Math. Anal. Appl. 291 (2) (2004), 727-740.

- [2] K. Avetisyan and S. Stević, Equivalent conditions for Bergman space and Littlewood-Paley type inequalities, J. Comput. Anal. Appl. 9 (1) (2007), 15-28.
- [3] K. Avetisyan and S. Stević, Holomorphic functions on the mixed norm spaces on the polydisc II, J. Comput. Anal. Appl. (2009) (to appear).
- [4] F. Beatrous and J. Burbea, Holomorphic Sobolev spaces on the unit ball, Dissertationes Math. (Rozprawy Mathematicae) 276 (1989), 1-57.
- [5] D. Clahane and S. Stević, Norm equivalence and composition operators between Bloch/Lipschitz spaces of the unit ball, J. Inequal. Appl. Vol. 2006, Article ID 61018, (2006), 11 pages.
- [6] C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, FL, 1995.
- [7] Z. Hu, Estimates for the integral mean of harmonic functions on bounded domains in Rⁿ, Sci. China Ser. A 38 (1) (1995), 36-46.
- [8] Z. Hu, Extended Cesàro operators on mixed norm spaces, Proc. Amer. Math. Soc. 131 (7) (2003), 2171-2179.
- [9] S. Li and S. Stević, Riemann-Stieltjies type integral operators on the unit ball in Cⁿ, Complex Variables Elliptic Functions 52 (6) (2007), 495-517.
- [10] S. Li and S. Stević, Composition followed by differentiation between Bloch type spaces, J. Comput. Anal. Appl. 9 (2) (2007), 195-206.
- [11] S. Li and S. Stević, Weighted composition operators from Bergman-type spaces into Bloch spaces, Proc. Indian Acad. Sci. Math. Sci. 117 (3) (2007), 371-385.
- [12] S. Li and S. Stević, Weighted composition operators from α-Bloch space to H[∞] on the polydisk, Numer. Funct. Anal. Optimization 28 (7) (2007), 911-925.
- [13] S. Li and S. Stević, Weighted composition operators from H[∞] to the Bloch space on the polydisc, Abstr. Appl. Anal. Vol. 2007, Article ID 48478, (2007), 12 pages.
- [14] S. Li and S. Stević, Generalized composition operators on Zygmund spaces, J. Math. Anal. Appl. 338 (2008), 1282-1295.
- [15] S. Li and S. Stević, Products of Volterra type operator and composition operator from H[∞] and Bloch spaces to the Zygmund space, J. Math. Anal. Appl. 345 (2008), 40-52.
- [16] S. Li and S. Stević, Composition followed by differentiation from mixed norm spaces to α-Bloch spaces, Mat. Sb. (to appear).
- [17] S. Li and S. Stević, Weighted composition operators between H^{∞} and α -Bloch spaces in the unit ball, *Taiwan*. J. Math. (to appear).
- [18] B. D. MacCluer and R. Zhao, Essential norms of weighted composition operators between Bloch-type spaces, Rocky Mountain J. Math. 33 (4) (2003), 1437-1458.
- [19] K. Madigan and A. Matheson, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc. 347 (7) (1995), 2679-2687.
- [20] A. Montes-Rodriguez, Weighted composition operators on weighted banach spaces of analytic functions, J. London Math. Soc. 61 (2) (2000), 872-884.
- [21] S. Ohno, Weighted composition operators between H^{∞} and the Bloch space, Taiwanese J. Math. 5 (2001), 555-563.
- [22] S. Ohno, K. Stroethoff and R. Zhao, Weighted composition operators between Bloch-type spaces, Rocky Mountain J. Math. 33 (2003), 191-215.
- [23] J. H. Shi, Inequalities for the integral means of holomorphic functions and their derivatives in the unit ball of Cⁿ, Trans. Amer. Math. Soc. 328 (2) (1991), 619-637.
- [24] A. K. Sharma and S. D. Sharma, Weighted composition operators between Bergman-type spaces, Commum. Korean Math. Soc. 21 (3) (2006), 465-474

- [25] A. L. Shields and D. L. Williams, Bounded projections, duality, and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287-302.
- [26] S. Stević, Weighted integrals of holomorphic functions on the polydisk, Z. Anal. Anwendungen 23 (3) (2004), 577-587.
- [27] S. Stević, Weighted integrals of holomorphic functions on the unit polydisk II, Z. Anal. Anwendungen 23 (4) (2004), 775-782.
- [28] S. Stević, Boundedness and compactness of an integral operator on a weighted space on the polydisc, Indian J. Pure Appl. Math. 37 (6) (2006), 343-355.
- [29] S. Stević, Composition operators between H^{∞} and the α -Bloch spaces on the polydisc, Z. Anal. Anwendungen 25 (4) (2006), 457-466.
- [30] S. Stević, Boundedness and compactness of an integral operator on mixed norm spaces on the polydisc, Sibirsk. Mat. Zh. 48 (3) (2007), 694-706.
- [31] S. Stević, On Ren-Kähler's paper "Hardy Littlewood inequalities and Q_p-spaces Z. Anal. Anwendungen 24 (2005), 375-388", Z. Anal. Anwendungen 26 (4) (2007), 473-480.
- [32] S. Stević, Weighted composition operators between mixed norm spaces and H_{α}^{∞} spaces in the unit ball, J. Inequal. Appl. Vol. 2007, Article ID 28629, (2007), 9 pages.
- [33] S. Stević, Holomorphic functions on the mixed norm spaces on the polydisc, J. Korean Math. Soc. 45 (1) (2008), 63-78.
- [34] S. Stević, Norm of weighted composition operators from Bloch space to H^{∞}_{μ} on the unit ball, Ars. Combin. 88 (2008), 125-127.
- [35] S. Stević, Norms of some operators from Bergman spaces to weighted and Bloch-type space, Util. Math. 76 (2008), 59-64.
- [36] X. Tang, Extended Cesàro operators between Bloch-type spaces in the unit ball of Cⁿ, J. Math. Anal. Appl. 326 (2) (2007), 1199-1211.
- [37] X. Tang, Weighted composition operators between Bers-type spaces and Bergman spaces, Appl. Math. J. Chinese Univ. Ser. B 22 (1) (2007), 61-68.
- [38] S. I. Ueki and L. Luo, Compact weighted composition operators and multiplication operators between Hardy spaces, Abstr. Appl. Anal. Vol. 2008, Article ID 196498, (2008), 11 pages.
- [39] S. Ye, Weighted composition operators between the little α-Bloch space and the logarithmic Bloch, J. Comput. Anal. Appl. 10 (2) (2008), 243-252.
- [40] K. Zhu, Spaces of holomorphic functions in the unit ball, Graduate Texts in Mathematics, Springer (2005).
- [41] X. Zhu, Weighted composition operators between H[∞] and Bergman type spaces, Commun. Korean Math. Soc. 21 (4) (2006), 719-727
- [42] X. Zhu, Generalized weighted composition operators from Bloch-type spaces to weighted Bergman spaces, Indian J. Math. 49 (2) (2007), 139-149.
- [43] X. Zhu, Products of differentiation, composition and multiplication from Bergman type spaces to Bers spaces, *Integral Transform. Spec. Funct.* 18 (3) (2007), 223-231.