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Abstract For every two vertices » and v in a graph G, a u-v
geodesic is a shortest path between u and v. Let I(u,v) denote
the set of all vertices lying on a u-v geodesic. For a vertex
subset S, let I¢(S) denote the union of all Ig(u,v) for u,v €
S. The geodetic number g(G) of a graph G is the minimum
cardinality of a set S with Ig(S) = V(G). For a digraph D,
there is analogous terminology for the geodetic number g(D).
The geodetic spectrum of a graph G, denote by S(G), is the set
of geodetic numbers over all orientations of graph G. The lower
geodetic number is g~ (G) = minS(G) and the upper geodetic
number is g*(G) = maxS(G). The main purpose of this paper
is to investigate lower and upper geodetic numbers of graphs.
Our main results in this paper are:

(i) For every spanning tree T of a connected graph G, g~ (G) <
¢(T), where 4(T) is the number of leaves of T'.

(i) The conjecture g*(G) > g(G) is true for chordal graphs,
triangle-free graphs and 4-colorable graphs.
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1 Introduction

Let G = (V(G), E(G)) be a simple graph. If 2y € E(G), we say that y is
a neighbor of z, and denote by N(z) the set of neighbors of z. deg(z) =
|N(z)| is called the degree of z. Let S C V(G). Denote by G — S the graph
obtained from G by deleting all the vertices of S together with all the edges
with at least one end in S. When S = {z}, we simplify this notation to
G —z. A set S of vertices of G is called a cut set of G if G — S has more
components than G; if S consists of a single vertex, we simply call it a
cut-vertex. A subgraph H of G is said to be induced by S if V(H) = S
and every edge of G contained in S belongs to E(H)zy € E(H); we also
use G[S] to denote the graph induced by S. If every two vertices of S are
adjacent, we say G[S] is a clique. S is an independent set if no two vertices
of S are adjacent in G. A subgraph H is called a spanning subgraph of G if
V(H) = V(G) and zy € E(H) implies zy € E(G). A tree T is a connected
graph with no cycle. A vertex z is called a leaf of tree T if the degree of
z is one. T is a spanning tree of a connected graph G if T is a spanning
subgraph of G and T is tree. The readers are referred to [15] for other basic
definitions.

For every two vertices u and v in a graph G (digraph D, respectively), a
u~v geodesic of graph G (digraph D, respectively) is a shortest path between
u and v (from u to v, respectively). Let Ig(u,v) (Ip(u,v), respectively)
denote the set of all vertices lying on a u-v geodesic. For a vertex subset S of
a graph G(digraph D, respectively), let I¢(S) (Ip(S), respectively) denote
the union of all Ig(u,v) (Ip(u,v), respectively) for u,v € S. A geodetic
set of G (D, respectively) is a set S with Ig(S) = V(G) (Ip(S) = V(D),
respectively). The geodetic number g(G) (g(D), respectively) of a graph G
(digraph D, respectively) is the minimum cardinality of a geodetic set of
G (D, respectively), and we call such geodetic set minimum geodetic set.

An orientation of a graph G, denoted by 5, is a digraph obtained from

G by assigning to each edge of G a direction. The geodetic spectrum of G
is the set - o

S(G) = {9(G): G is an orientation of G}. (1)

The lower geodetic number of G is g~ (G) = minS(G), and the upper

geodetic number is g7 (G) = maxS(G). The orientation G is called a mini-

mum spectrum orientation when g(G) = ¢~ (G) and a mazimum spectrum

orientation when g(a) = g*(G) . The concepts of the geodetic number and
geodetic spectrum of a graph are introduced in [2] and [3] and investigated
further in ([3]; [4]; [6]-[8]).

The main purpose of this paper is to investigate lower and upper geode-
tic numbers of graphs.
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2 Lower geodetic number of graphs

First we give a useful result on geodetic sets of graphs.

Theorem 2.1 Let S be a vertex cut set of connected graph G and C be a
component of G — S. If G[S] is a clique, then

(i) for every geodetic set N of graph G, V(C)N N # ¢;

(i1) for every geodetic set N of an orientation G of graph G, if no arc of
G [S] is contained in o directed cycle, then V(C)N N # ¢.

Proof (i) Suppose there exists a component C of G — S with V(C) N
N = ¢. Then for every vertex v € V(C), there must exist two distinct
vertices v,,v; € N (note that vs,v; € V(C)) such that v € Ig(vs,v:). Since
S is a cut set, Ig(v,v5) NS # ¢ and Ig(v,v) N S # ¢. Assume that
vg € Ig(v,v,) N S and v € Ig(v,v:) N S. Obviously, va # v, otherwise,
v & Ig(vs, ve). Since the subgraph induced by S is a clique, vovp € E(G)
and the path vy — -+ —vg — vy — + -+ — ¥; is shorter than the shortest path
Ug =+ Ug = ++ —U—-+»—Vp — - — Vg, & contradiction.

(ii) Suppose there exists a component C of G — S with V(C)NN = ¢.
Then for every vertex v € V(C), there also exist two distinct vertices
vs, v € N (note that v,,v: € V(C)) withv € Ia(vs,vt) and Ia('v,,,v)ﬂs #
&, Ie(v,v:)NS # ¢. Assume that v, € Ia('ua,v)ﬂS and v, € Ia(v,v,)r‘lS.

Obviously, va # v. Since no arc of G [S] is contained in a directed cycle,

Va¥p € E(a). Similarly, we can find a shorter directed path from v to v,
passing through the edge v,vp. This is a contradiction. g

A vertex v is a simplicial vertex of G if the subgraph induced by its
neighbors is a clique. In [6], Chartrand, Harary and Zhang have shown
that every geodetic set of a graph contains its simplicial vertices. From
Theorem 2.1, we immediately obtain:

Corollary 2.1.1 Every simplicial vertez is in every geodetic set of G. Bv-
ery simplicial vertez of a graph G is also in every geodetic set of all orien-
tation of G without directed cycles.

Another result gained from Theorem 2.1 is

Corollary 2.1.2 (i) Any minimum geodetic set of a connected graph G
does not contain any cut-vertex;

(i¢) If G-v has at least three components, then v is not contained in
any minimum geodetic set of any minimum spectrum orientations of G.

Proof (i) Let G; and G5 be two components of G — v. Assume that S
is a minimum geodetic set of G and v € §. According to Theorem 2.1,
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SNV(Gy) # ¢ and SNV (G2) # ¢. Assume that v, € SN V(G,) and
v, € SNV(Gy). Obviously, Ig(v,,v) C Ig(vs,ve) and Ig(v,v:) C Ig(vs,v:).
Hence Ig(S — v) = Ig(S) = V(G), a contradiction to the minimality of S.

(ii) Let a be a minimum spectrum orientation of G and S is a minimum
geodetic set of G. Suppose v € S and Gy,---,Gg(k = 3) is connected
components of G — v. According to Theorem 2.1, S N V(G;) # ¢ for
1 <i < k. We first claim that, for each component G; (1 < ¢ < k), there
exists some vertex v; € SNV(G;) such that there is directed path connected
v; with v. If not, there exists some j € {1,2,---,k} such that there does
not exist any directed path connecting v with any vertices in § N V(Gj).
Hence, I-G-(S NV(Gj)) = V(Gj). Let = be a vertex in Ng(v) N V(G;).
Obviously = ¢ S and z lies on 2 shortest directed path between some two
vertices in SN V(G;). No matter what the direction of the edge zv is,
there must exist a directed path connecting v and one of the vertices in
SNV(Gj).

Since k > 3, by reversing the direction of all the e(iges of some compo-
nents (if needed), we can obtain another orientation G’ for which the fol-
lowing hold: for every v; € SNV(G;) (1 £ ¢ < k), if there exists a directed

path from v; to v in G’ (from v to v; in G', respectively), there exist j # 4
and u; € SN V(Gj;) such that there is a directed path from v to u; in G
(from u; to v in ¢ , respectively). Therefore, I 5‘,(3 —-v) = IE(S) =V(G).
This contradicts the fact that G is a minimum spectrum orientation. Hence

vegS. 0

Remark 1 If G—v has two components, the results in Corollary 2.1.2 may
be false. See Figure 1, the cut-vertex v belongs to any minimum geodetic

set of a, where G is @ minimum spectrum orientation of G.

Figure 1: a minimum spectrum orientation of G.



Let f be a mapping from V(G) to the set N of positive integers. An

orientation G of G is compatible with f if the following hold:

(i) if uv is an edge and f(u) — f(v) = 1, then the edge is oriented from
v to u.

(ii) if uv is an edge and f(u) — f(v) > 2, then the edge is oriented from
© to v.

(iii) if uv is an edge and f(u) = f(v), then the orientation of the edge
is arbitrary.

Theorem 2.2 Let ¢(T) denote the number of leaves in o tree T. For every
nontrivial connected graph,

9 (G) <min{¢(T):T is a spanning tree of G}.

Proof Let T be a spanning tree of a connected graph G and suppose that
u is a leaf of T. For i > 0, let V; be the set of vertices at distance ¢ from
u in tree T'. Obviously, u is the unique vertex in V. First we define the
mapping f on V(G) by f(v) =i+ 1if v € V;. As above, a compatible
orientation G of G with f can be obtained. For any leaf v € V(T), the

unique path between u and v in T is a directed path from u to v in G
and the values of f on the vertices of this path are continuously increased
by one from u to v. Suppose that P : u = v; - vg — -+ = vp = v
is this directed path. If P is not a u-v geodesic in Z‘,‘, we assume that
P:iu=u —up—--- —»ut=vwitht<kisau-vgeodesicofa. By
the definition of f, we know f(u;) < f(ui-1) + 1 for 2 < ¢ < ¢t. Hence,
f(v) £ f(u) +t—1. Since f(v) = f(u) + k — 1, it follows that k < ¢,
producing a contradiction. Therefore, P is a u-v geodesic of a‘ Since T
is a spanning tree of G and g(T') = ¢(T") (see [6]), so g(a) < ¢(T). Hence,
97 (G 2UT). o

From Theorem 2.2, we can directly obtain the following result in [9].

Corollary 2.2.1 ([9]) If G with order n > 2 contains a Hamiltonian path,
then g=(G) = 2.

3 On the conjecture g*(G) > g(G)

It was conjectured in [13] that g*(G) > g(G) for every graph G. Results in
([3],[6],[9]) establish this conjecture for several classes of graphs including
complete graphs, complete multipartite graphs, cycles and trees. It was
shown in [13] that the conjecture is also true for all graphs G with g(G) < 4
and for all those connected graphs G of order n with diam(G) > 23. In
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this section, we will show that this conjecture is true for triangle-free graphs,
4-colorable graphs and chordal graphs.

Theorem 3.1 If G is a triangle-free graph, then g*(G) > g(G).

Proof Let Vi be a maximum independent set in G and let V2 be a maxi-
mum independent set in G — V;. We claim that V; UV; is a geodetic set of
G. For each v € V; with ¢ # 1,2, v must be adjacent to some vertex (say
v;) in V] since V; is a maximum independent set of G. Similarly, v must be
adjacent to some vertex (say vz) in V5 since V; is a maximum independent
set of G — V3. Since G has no 3-cycle, v; is not adjacent to v5. So, the
distance between v; and v2 in G is 2. Hence v lies on a v;-v; geodesic.
Therefore, V} UV, is a geodetic set of G.
Now we orient E(G) as follows. Let uv € E(G).
(i) If u € Vi, then the direction of v is from u to v;
(ii) If u € V3, then the direction of uv is from v to v;
(iii) For the cases not covered in (i) and (ii), oriented uv arbitrarily.
Obviously, all vertices in V] are sources and all vertices in V5 are sinks.

Thus, g(G) 2 |Vi] +[Val. Hence, g*(G) > 9(G) > [Vil+|Va| 2 9(G). O

A graph G is k-colorable if there exists an assignment of k colors 1, 2, ...k
to V{G) such that no two distinct adjacent vertices have the same color.
The chromatic number x(G) of graph G is the minimum & for which G is

k—colorable. The distance from u to v in an orientation 5, denoted by
d&' (u,v), is the length of u-v geodesic. If there are no directed path from
u to v, we define da(u, v) = 0o. Let (@) = max{da(u, v) < 00:Vu,v e
V(G)}.

Lemma 3.1.1 Let 5 be an orientation of a graph G. Then g(G) < g*(G)

if one of the following statements holds:
(i) For all u,v € V(G), Ia(u,v) U Ia(v,u) C Ig(u,v);

(it) The orientation G has no directed cycle and d(a') <2

Proof (i) Suppose S is a minimum geodetic set of G. Since IE'; (u,v) U
Ia(v,u) C I¢(u,v) for any u,v € S, I¢(S) = V(G), i.e., S is also a geodetic
set of G. Hence, g(G) < |S| = g(a) < g*(G).

(ii) Since G has no directed cycles, da (u,v) < oo implies that da (v,u) =
oo for any u,v € V(G). If da(u,v) = da(v, u) = oo, then Ia(u, v) U
Ia('u,u) = {u,v} C Ig(x,v); If da(u,v) = 1, then I-a(u,'u) U Ia(v,u) =
{u,v} C Ig(u,v) = {u,v} and if da(u,v) = 2, then Ia(u, v)U Ia(v,u) =
IE (u,v) C Ig(u,v). Hence, g(G) <g*(G). O



Theorem 3.2 If G is a 4-colorable graph, then g(G) < g*(G).

Proof Let V; be the set of vertices colored by i (i = 1,2,:--,k when
k < 4). Every V; is an independent set. Now we orient E(G) as follows:
For any edge uv € E(G), where u € V; and v € V}, the direction of uv is
from « to » if and only if ¢ < j.

Observe that a, oriented as above, has no directed cycles. If G is 3-

colorable, then d(a) < 2. By Lemma 3.1.1, we know ¢(G@) < g*(G). Now
we assume that x(G) = 4. We will show that IE:' (u,v) UIa(v, u) C Ig(u,v)
for any u,v € V(G). Hence, g(G) < g*(G) by Lemma 3.1.1.

For any u,v € V(G), if da(u, v) = da('u, u) = 0o or da(u, v) < 2, we
know Ia(u,v) U IE (v,u) = Ia(u,v) C Ig(u,v). For the case da(u,v) =3,
we haveu € V; and v € V. Obviously, dg(u,v) < 3. Note that dg(u,v) =i
implies that da(u, v) = 1 for 1 = 1,2. Hence, the distance between u and

v in G must be 3, i.e., dg(u,v) = 3. So, a u-v geodesic of G is also a u-v
geodesic of G. Hence, Ia(u, v) U Ia(v, u) = Ia(u, v) C Ig(u,v). O

A graph G is chordal if it is simple and no chordless cycle. A simplicial
elimination ordering is an ordering vi,vs,...,v, of V(G) for deletion of
vertices so that each vertex v; is a simplicial vertex of the subgraph induced
by {vi,...,vn}. A graph has a simplicial elimination ordering if and only
if it is a chordal graph(see {15]).

Theorem 3.3 For every chordal graph G, g(G) < g*(G) .

Proof Suppose G is a chordal graph and v,...,v, is a simplicial elimina-
tion ordering of V(G). Let S = {v;,,vi,, -, v, } be a maximum indepen-
dent set of G with1 < 4; < i3 < -+ < ix < mand ¢y +ig+- - -+ maximum.
Forv e V(G) - 8, N(v) N S # 0 since S is a maximum independent set.
Let

U={veV(G)-S:|Nv)nS| =2}

and
Qi) = {v € V(G) ~ 5 : Nw) N § = {0, }} U {vy,}

for v;; € S. Note that the subgraph induced by Q(v;;) is clique for 1 <
Jj < k. If not, there exists some j such that = € Q(v;;) and y € Q(v;;) with
zy ¢ E(G). Obviously, (S — {v;;})U{z,y} is also an independent set of G.
This is a contradiction to the maximum of S. For any v; € Q(v;,), we have
i; > t. If not, let $' = (§ — {v;;}) U {v:}. The set &’ is also a maximum
independent set of G since N(v;) N S = {v;,}. It is a contradiction that
i1 +43+ -+ - +ix is maximum. Now we claim that uv ¢ E(G) for u € Q(v;;)
and v € Q(v;,) if j # I. Without loss of generality, we assume v = v,
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and u = vy, with ¢t > m. If uv € E(G), then vv;; € E(G) since i; > m
and t > m. Then, |[N(v) N S| > 2 and hence v € U, a contradiction to
v € Q(v;,).

Let W = V(G)—(SUU). We direct the edges of E(G) as follows: Every
edge between S and V(G) — S is directed from S to V(G) — S, every edge
between U and W is directed from U to W, and every edge v;v; in G[U]
or G[W], is directed from v; to v; if and only if ¢ < j.

Let M = SUU*UW™* be a minimum geodetic set of the orientation 5,
where U* C U and W* C W. In what follows, we will show that M is also
a geodetic set of the underlying graph G, and hence g*(G) > g(a) > 9(G).

For every vertex v € U — U*, since |[N(v) N S| > 2, we know v € Ig(S).
If W — W* =0, then the proof is completed. So we assume W — W* 3 0.
For a vertex v € W — W*, since the subgraph induced by Q(v;;) is a clique
for v;; € S and there does not exist any edge between Q(v;;) and Q(v;,)

for j # I, v does not lie on any z-y geodesic of a withz € W* and y € W*.
Note that the direction of any edge between SUU and W is from SUU

to W. Hence, v must lie on some z-y geodesic of G with z € SUU* and
y € W*. Assume that v € Q(v;,) for some 1 < ¢t < k. Note that there does
not exist any edge between Q(v;;) and Q(v;) for j # I. We know that y

also belongs to Q(v;,). Hence, if v lies on some z-y geodesic of a, then vy
is the last arc on z-y geodesic. Let P=2 — --- =2 u— :-- = v — y be

an z-y geodesic of a, where z € SUU*, {v,y} C Q(v;,) and u is the last
vertex on V(P)NU. u € U implies that [N(u) N S| > 2. Let 2’ # v;, be a
vertex on N(u)N S. We know that P =2’ »u—..- v —oyisalsoa

geodesic of Z;’ passing through v. Note that all vertices on P’ after u must
be in Q(v;,) and the direction v;u; € G[W] is from v; to v; when ¢ < j.
Hence, we know the length of P’ is 3, and hence P/ =2’ — u = v — y,
wherez’ € S,ue U,v e (W -W*)NQ(v;,) and y € W*NQ(v;,). Now we
show that £’ — u — v — y is also an z/-y geodesic in the underlying graph
G. Note that z' is not adjacent to y in G. If the distance between =’ and y
in G is 2, let 2’ —w—y be an z’-y geodesic in G, we know that w ¢ W since
z’ ¢ Q(v;,) and y € Q(v;,). So, w € U. This implies that 2’ — w — y is
also an z'-y geodesic in a, a contradiction to ' — u — v — y is an z'-y
geodesic of G. Hence, the distance between z’ and y in underlying graph

G is at least 3. This implies that the z’-y geodesic 2’ wu —wv -y in G
is also an z'-y geodesic of underlying graph G.

iFrom the above discussion, if M is a minimum geodetic set of a, we
know v € Ig(M) for any v € V(G) — M. Hence, M is also a geodetic set
of the underlying graph G. This completes the proof. m]
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