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Abstract

Though the well-known Vizing’s conjecture is not true for directed
graphs in general, we show that it is true when the digraph and its
reversal contain an efficient dominating set. In this paper we inves-
tigate the existence of such sets in directed tori and infinite grids.
We give a complete characterization of efficient dominating sets in 3-
dimensional case and show the nonexistence of efficient d-dominating
sets in directed tori for any d > 1 and any dimension n > 1.
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1 Introduction.

All graphs in this paper are directed without multiple arcs. Let G = (V, E)
be a directed graph. A set D of vertices is d-dominating, d > 1, if each
vertex in V — D can be reached by a directed path of length at most d from
some vertex in D. A set D of vertices is d-independent if no vertex in D
is d-dominated by some other vertex in D. A d-dominating set is perfect
if each vertex in V — D is d-dominated by exactly one vertex from D. A
d-dominating-set is efficient if it is both perfect and d-independent. We
omit the prefix "d-" if d=1. The definition of efficient dominating sets was
introduced in [5] and it was proved there, that the problem of the existence
of an efficient dominating set in a general digraph is NP-complete. In [4]
it was shown that every undirected graph has an orientation with efficient
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dominating set. Efficient dominating sets were used in [11] for finding
bounds of bondage numbers of vertex-transitive graphs and digraphs.

There are many results for efficient dominance in undirected graphs. Ef-
ficient d-dominating sets are often referred as perfect d-correcting codes ([6],
[13]) or perfect distance-d placements [1]. Graphs with regular structure
such as Cayley graphs or Cartesian products of graphs, allow constructions
of symmetric dominating sets that are efficient ([14], [15], 7]).

Several results have been reached concerning the existence of efficient
dominating sets in undirected tori ({1], [3], [15]). Relaxing the condition of
the unique domination, one can define quasi-perfect distance-d placements.
Existence and properties of these placements are discussed in [2].

The conjecture of Vizing ([16]) is one of basic problems on the domi-
nation of Cartesian products of undirected graphs. The conjecture is still
open (see [10}; [9] for references). In the present paper, we first show in
Section 3, that, though the Vizing’s conjecture is generally not true for
directed graphs, the subclass of directed graphs where the conjecture is
true includes directed Cayley graphs possessing an efficient dominating set.
This gives us motivation to investigate the existence of efficient dominating
sets in such Cayley graphs as directed tori and infinite directed grids.

In Section 4 we provide a complete characterization of efficient domi-
nating sets for 3-dimensional tori and 3-dimensional grid. In Section 5 we
prove the non-existence of efficient d-dominating sets for d > 1 and any
dimension n > 2 thus showing, that the conjecture of Golomb and Welch
([8]) for undirected graphs (stated originally in terms of d-correcting codes),
is true in the directed case.

2 Preliminaries

We will consider only directed graphs without multiple arcs. For the ter-
minology and notation not given here, the reader is referred to [10]. Let G
be a directed graph.- We will denote the set of vertices and the set of edges
of G as V(G) and E(G), respectively. A vertex y is a successor of a vertex
z and z is a predecessor of y if Ty € E. The vertices z and y are adjacent
ifzy € E or y2 € E. For a vertex u € V let Nf(u) = {v € V|ud € E},
N5 (u) = {v € V|vi € E} and N§[u] = NZ (u)u{u},Ng[u] = Ng (v)U{u}.
The reverse digraph of G is defined as a digraph G~! with the vertex set
V(G~1) = V(G) and the arc set E(G~!) = {ud|vd € E(G)}. The distance
of a vertex y from a vertex z, denoted as 6(z,y), is the length of the short-
est directed path from z to y, if such path exists, and it is co otherwise.
Let d > 1. A vertex y is d-dominated by z if d(z,y) < d. Thus y is
1-dominated by z iff y € NZ[z]. A set D of vertices is d-dominating if each
vertex in V — D is d-dominated by a vertex from D. The minimum car-
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dinality over all 1-dominating sets in G is called domination number, and
denoted by ¥(G). A set D of vertices is d-independent if there do not exist
vertices £ # y in D such that = is d-dominated by y. A d-dominating set
D is perfect if each vertex in V — D is d-dominated by exactly one vertex
from D. A d-domination set is efficient if it is d-independent and perfect.
We will say that two efficient d-dominating sets D, D’ in G are equivalent,
if there is an automorphism of G mapping D on D',

The Cartesian product of two directed graphs G, Go is the directed
graph G100G> with the vertex set V(G1) x V(G2) and a vertex (y1,y2) is a
successor of a vertex (z1,z2) if z1 = y1 and Z,y2 € E(G2) or T2 = y2 and
7191 € E(G)). The Cartesian product of n > 3 directed graphs is defined
in a similar way, hence a vertex differs from its successor in exactly one
coordinate.

Let Z denote the set of all integers. A directed cycle Cy, k > 2, is a
graph with vertices that are elements of the cyclic group (Z,+), and, for
all z € Z;, the only successor of z is £ + 1. The n-dimensional directed
torus T'(k1, ko, ..., kn), ki 2 2, for 1 <% < n, is the Cartesian product of n
directed cycles C,,Ck,,..-,Ck,. An infinite directed path P is a digraph
with the vertex set being the set of integers Z and, for all € Z, the only
successor of z is  + 1. The Cartesian product of n > 2 directed paths is
the infinite n-dimensional grid G,,.

When investigating the existence of efficient d-dominating sets, we will
assume that no vertex dominates itself by a positive distance, i.e., each
directed cycle under consideration is of length greater than d. Throughout
the paper, except in Section 5, "domination” means " 1-domination”.

Let us start, however, with an observation being valid for any d > 1. A
d-domination set in a n-dimensional torus can be easily extended to some
larger torus or to an n-dimensional grid.

Proposition 1 Let D be a d-dominating set in o torus T'(ki, ke, ...,kn),
d > 1. Let y41 > 1, very Pn > 1. IfH = T(plkl,pzkz,...,pnkn) or H= Gﬂ
then Exty (D) = {(u1,u2, ..., un) € H|(u1 mod ky, up mod kg, ..., u, mod k)
€ D} is a d-dominating set in H. Moreover, Exty(D) is perfect (d-
independent) if and only if D is perfect (d-independent).

It is not difficult to see that the number o(n, d) of vertices d-dominated
by one vertex in a n-dimensional torus or grid satisfies the recurrence rela-
tion o(n,d) = o(n,d—1)+o(n-1,d),forn >2,d > 2 and o(n,1) = n+1,
o(l,d) =d+1, forn > 1,d > 1. Therefore o(n,d) = (""';d). If an efficient
d-dominating set in a n-dimensional torus exists, then the vertex set of the
torus can be partitioned into sets of the equal size ("}'d) and, consequently,

the size of the vertex set must be divisible by (*}%). It is known, that an
efficient 1-dominating set exists in the n-dimensional torus T, being the
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product of n copies of the cycle Cpy1, n > 2. The construction in the
following Proposition 2 is given in [11]. Proposition 1 then provides the
way to extend this result to the grid G,,.

Proposition 2 Let 0 < k < n. Then the set

D} = {(01,0.0m) € Tal Yo ite = kmod(a+ 1)} (1)

i=1
s an efficient 1-dominating set in the torus T,.

Corollary 3 Letn > 2. Ifk; > 2, for 1 < i < n, and ged(ky, k2,...,kn)
i a multiple of n + 1 then the torus T(ky, ks, ..., kn) contains an efficient
1-dominating set and ¥(T(k1,ko,...,kn)) = kr1k2---kn/(n +1). The grid
G, contains an efficient dominating set.

Remark 4 The doininating sets D} from Proposition 2 are mutually equiv-
alent, since D} = {(a;1 + k,az,...,a,)|(a1,02,...,8,) € D§}.

The characterization of efficient dominating sets in 2-dimensional case
was given in [11], as well, and can be summarized as follows.

Theorem 5 The torus T'(p,q), p,q = 2, contains an efficient dominating
set if and only if both numbers p,q are multiples of 8. The only three
efficient dominating sets in G are the sets Extg,(D?), 0 < i < 2 from
Proposition 1, where D? is as in Proposition 2.

In Section 4 we give a complete characterization of efficient dominating
sets in 3-dimensional tori and in the 3-dimensional infinite grid.

3 On the directed case of the Vizing’s con-
jecture

One of the most studied problem in domination is the Vizing’s conjecture.
The conjecture can be formulated as follows. Let G and H be finite graphs.
Then v(GOH) > v(G)v(H). When we replace "graph” by "digraph” the
above inequality is generally not valid any more. It is enough to consider the
Cartesian product C30C3: v(C3) = 2 and y(C30C3) = 3. The following
relationship between dominating sets in directed graphs G and G~! will
help us to find a subclass of directed graphs where the conjecture is true.

Lemma 6 Let D be an efficient dominating set in digraph G then v(G™1) >
|D|.
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Proof. Let u be a vertex in D and D’ any dominating set in G~!. As
Né[u] = NZ_,[u] and the vertex u is dominated by at least one vertex
in D', hence [N}[u] N D'| > 1. Because N}[u] N Nf[v) = @ for any
u,v € D, u # v the statement follows. m

A digraph G can have efficient dominating sets of different cardinalities,
but when for both G and G~! there exists an efficient dominating set, then
from Lemma 6 it follows that y(G) = ¥(G™!), and all efficient dominating
sets in G and G~! have the same cardinalities.

We will prove a weaker form of Vizing’s conjecture using a similar pro-
cedure as in [12].

Lemma 7 Let G and H be digraphs and let H~! has an efficient dominat-
ing set F. Then v(GOH) > 4(G).|F].

Proof. Let h be a vertex of digraph H and D a dominating set in GOH.
Each vertex in V(G) x {h} can be dominated only by a vertex in D from the
set (V(G) x N (h]). It is therefore clear that [(V(G) x Ny [h])ND)| = v(G).
As F is an efficient dominating set in H~!, {V(G) x Nj;_,[h]}rer is a
partition of V(G) x V(H). So |D| = |Uper((V(G) x Nf_,[h]) N D)| =
Ser ((V(G) x N i [R)ND] = Ty [(V(G)) x N5 [R) N D] 2 1(G).IFI.
»

Lemma 7 directly implies

Theorem 8 Let G and H be finite digraphs such that both H and H™!
have efficient dominating sets then v(GOH) > v(G).y(H).

If a digraph H .is a Cayley digraph then it is isomorphic to H~! and
H has an efficient dominating set iff H~! has. In the rest of the paper we
shall investigate efficient dominating sets in directed tori and infinite grids,
being special classes of directed Cayley graphs.

4 Thecased=1n=3

In this section we investigate the existence of efficient dominating sets in
tori and infinite grids for n = 3. First we find a characterization of all
efficient dominating sets in Gg3.

The vertices of G5 are ordered triples of integers (z, y, z). We will denote
as the k-th layer of G5 the subgraph induced by the set of all vertices with
z =k, k € Z. Within one layer z, the i-th row, i-th column, i-th diagonal,
for i € Z, consists of all vertices (z,y,2) withz =i,y =i, z+y = i,
respectively. We will use the following coloring of vertices of a subgraph H
of G3 induced by an efficient dominating set D in H.

1. A vertex from D has red color.
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ry C1
Figure 1: The basic patterns

9. A vertex dominated by a vertex from the same layer has blue color.
3. A vertex dominated by a vertex from a different layer has green color.

We will consider patterns in Gs. A pattern in the grid Gs is an induced
subgraph H of G3 together with a coloring of its vertices by the red (r), blue
(b) and green (g) color. We distinguish six basic patterns, each being a part
of a single layer in G3: the patterns rg, r; consist of three neighbor rows,
the patterns cg, c;consist of three neighbor columns and the patterns dg,
d; consist of three neighbor diagonals. The vertices in these basic patterns
are colored in a regular way, as depicted in Figure 1.

An entire layer may be colored in the way, where, for each even k, the
rows k, k+1, k+2 form the pattern rp or r; and the (bi-infinite) sequence,
in which the patterns ro,r; appear, can be chosen arbitrarily. We will call
this colorings of a layer r-colorings. We define c-colorings and d-colorings
as those containing cg and c; in some sequence of columns, and dg and d,
in some sequence of diagonals, respectively. It is not difficult to see, that
each such coloring of one layer may be uniquely extended to the whole grid
G3 to become a coloring induced by some efficient dominating set D. The
colorings of the remaining layers are of the same type (r, c, d) and they
are described by the same bi-infinite sequence of patterns as the one in the
starting layer, they are just shifted by one row, column or diagonal. We will
prove now, that these are the only possible colorings induced by efficient
dominating sets in G3.

In the following, we assume some fixed efficient dominating set D in G3
and the coloring C induced by D. Our aim is to prove that every vertex in
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G3 is a part of some basic pattern.

Let us mention some elementary properties of the coloring C. If a vertex
v = (z,y, 2) has red color, then there are vertices in the layers z — 1, z and
z + 1 that cannot have red color. We say that the vertex v blocks these
vertices. Thus a vertex is blocked iff it is either blue or green. In the
layer 2, there are 6 vertices blocked by the vertex v. Two of them are the
predecessors of v, two are the blue vertices dominated by v and the last two
are their predecessors in layer z, distinct from ». In the layer z + 1, there
are three vertices blocked by v, one is the green vertex dominated by v and
the next two are the predecessors of the green vertex in layer z + 1. In the
layer z — 1, there are three blocked vertices that are the predecessors of the
vertex v and of the two vertices in layer z dominated by v. More properties
of C may be easily observed.

Proposition 9

P1. Each vertex is assigned ezactly one color.

P2. No two red vertices are adjacent. No two green vertices are adjacent.
P38. The vertices (z,y,z) and (z + 1,y — 1, 2) cannot be both green or both
red.

P4. If the vertices (z,y, 2), (x—1,¥, 2), (z,y—1, 2) are not red then (z,y, z)
is green and (z,y,z — 1) is red.

We will refer to properties P1-P4 without explicitly mentioning Propo-
sition 9.

Let us now consider a vertex v = (z,y, 2) from D (i.e., it is colored in
red).

Lemma 10 At least one of the vertices (z + 1,y +1,2), (z,y+2,2), (z +
Ly+2,z) isred.

Proof. Assume in contrary, that none of the three vertices is red. The
vertices (z,y + 1,2), (z + 1,y, 2) are blocked by v. P4 implies that both
(z+1,y+1,z) and (z + 1,y + 2, 2) are green, in contradiction to P2. m

We will distinguish three cases. The proving technique in each of the
cases is similar. We therefore provide the complete proof of the assertions
just in Case 1.

Case 1. (z+1,y+1,2) is red.
We will first investigate the situation in the layer 2.

Lemma 11 The vertices (z — 1,y + 2, 2),(z + 2,y — 1, 2) are blocked.
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Proof. Suppose that the vertex (z + 2,y — 1, 2) is colored by red color.
Then the vertex (z + 2,7y, z) is blue and the vertices (z +¢,y,z— 1), (z +
i, y+1,z—1),1i=0,1,2, are blocked, because their descendants in layer
z are red or blue. Neither of the adjacent vertices (z + 1,y + 1,z — 1),
(x+2,y+ 1,2 — 1) can be dominated by vertices from layer z —1, so they
should be green, what is a contradiction to P3. The case of the vertex
(x — 1,9 + 2, 2) can be proved in a similar way. ®

Now we can observe how the coloring of the neighbor layers can be
influenced.

Lemma 12 D contains the vertices (z+1,y—1,z+1), (:v+2 v,2+1),
(x-1,y+1,z241), (z,y+ 2,2+ 1).

Proof. The vertex (z + 1,¥,z + 1) is blocked, as it is the predecessor of a
green vertex in the same layer. Since (z + 1,y — 1,z 4+ 1) is the only non-
blocked predecessor of (z+1,y, 2+ 1), it must be red. Now all predecessors
of (x + 2,y,2 + 1) are blocked, so this vertex must be red, as well. A
similar argument can be used to prove that the vertices (z—1,y+1,2+1),
(z,y+2,z+1)arered. =

Lemma 13 D contains the vertices (z+ 1,y — 1,2 — 1), (z+2,y,2 - 1),
(z-1Ly+1,2-1), (z,y+2,2-1).

Proof. From Lemma 11 it follows that both predecessors of the blocked
vertex (z,y+2, z) in layer z are blocked, so P8 implies that it is green and
(z,y+2,2—1) isred. The vertex (z+1,y+ 1,2 — 1) is blocked and so are
both its predecessors in layer z — 1, so this vertex must be green. By P2,
(z + 1,y,z — 1) cannot be green. The only predecessor of (z +1,y,2 — 1),
that is not blocked, is (x+ 1,y — 1,2 —1). So the latter vertex must be red.
By symmetry, (z — 1,y +1,z—1) and (z,y + 2,z — 1) are red, as well. =

Repeated application of Lemma 12 and 13 yields that red vertices in the
diagonals z+y and z+y+2 are (z+2i,y~2i, 2), (z+2i+1,y—2i+ 1, 2) for
all i € Z. This uniquely determines the coloring of the remaining vertices
in the diagonalsz +y, z+y+1landz+y+ 2.

Corollary 14 If in the coloring C the vertices (z,y,2) end (z+1,y+1,2)
are red then they are contained in e pattern d;.

Case 2. (x + 1,y + 2,2) is red and v is not contained in a pattern d;.
In this case v blocks two additional vertices: (z + 1,y + 1, 2) and (z —
l,y—-1,2).

Lemma 15 D contains the vertices (z + 2, y, z), (z — Ly + 2,2),(z -
2,y,2)and (z + 3,y +2,2).
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Corollary 16 If in the coloring C the vertices (z,y,2) and (z+1,y+2,2)
are red and (z,y, z) is not contained in a pattern d;, then they are contained
in a pattern cy.

By symmetry we obtain:

Corollary 17 If in the coloring C the vertices (z,y,z) and (z+2,y+1, 2)
are red and (z,y, z) is not contained in a pattern d,, then they are contained
in a patternr;.

Case 8. (z,y+2, z) is red and v is not contained in any of the patterns d;,
cporry .

In this case v blocks additional vertices, in particular (z — 1,y — 1, 2)
and (z 42,y 4+ 1,2).

Lemma 18 D contains the vertices (z + 2,y,2), (z + 2,y — 2,2), (z,y —
2,2), (z—-2,y+2,2), (z — 2,y,2) and one of the vertices (x — 2,y + 4, 2),
(z+2,y+2,2).

Corollary 19 If in the coloring C the vertices (z,y, z) and (z,y+2,2) are
red and (z,y,2) is not contained in any of the patterns d;, ¢; or ry then
(z,y, 2) is contained in a pattern dg, ro or cq.

The results obtained in the three cases are summarized in the following
corollary.

Corollary 20 In a coloring induced by an efficient dominating set in Gs,
every red vertez belongs to some basic pattern.

Since r; contains a red vertex in each column, ¢; in each row and d;
in each row and each column, the only different pattern, which can occur
in the same layer with r;, is ro. In a similar way, ¢; may occur just with
co and d; just with do. Moreover, any two of the patterns rg, cg, dg may
occur together; in this case all the three patterns occur. We will call this
coloring, which then occurs in all layers, regular coloring.

Theorem 21 In a coloring induced by an efficient dominating set in G3,
all layers are r-colored or all are c-colored or all are d-colored.

Let us now consider a 3-dimensional torus being a product involving
some cycle of an odd length. Any efficient dominating set in this torus,
when expanded to the grid Gs by Proposition 1 induces a coloring, where,
there is a pair of vertices, differing by the length of the odd cycle in the
corresponding coordinate, while having the remaining two coordinates iden-
tical. This contradicts to the following easy observation:
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Observation 22 In a r-coloring, c-coloring or d-coloring implied by an
efficient dominating set of G3, the distance of any two red vertices, differing
in one coordinate only, is even.

On the other hand, an efficient dominating set in G5 inducing the regular
coloring can be obtained, using Proposition 1 from an efficient dominating
set in the torus 7°(2,2,2). We arrived to the following characterization of
the 3-dimensional tori containing an efficient domination set.

Theorem 23 A torus T(p,q,r) contains an efficient dominating set if and
only if all the numbers p,q,r are even; in this case v(T'(p, q,7)) = pgr/4.

The efficient dominating set inducing the regular coloring of 7'(2, 2, 2),
when extended to T'(4,4,4), is not equivalent to the ones provided by
Lemma 2. In the regular coloring of T'(4,4,4) there are exactly three red
vertices in distance 2 from any red vertex. On the other hand in the color-
ing described in Lemma. 2 there are only two red vertices within distance 2
from any red vertex. So these efficient sets are not equivalent.

5 Thecased>1

Let n > 2 and d > 2. Our aim is to prove that neither a n-dimensional
torus nor the n-dimensional infinite grid can contain an efficient d-domi-
nating set. For this section only, all terms referring to ”domination” will
mean ”d-domination”. Let us look at the infinite grid first. In the follow-
ing three lemmas we assume (in contrary), that G, contains an efficient
dominating set D containing the vertex v = (0,0,...,0).

Vertices ¢ = (z1,...,%,) and &’ = (z},...,z}) will be called (r,s)-
brothers (or, simply, brothers) if z; = z; for 1 < i < n,i ¢ {r,s} and
z, =z, — 1, =, = z, + 1. In the following we consider (r, s)-brothers z
and z’ dominated by vertices w,w’ from D, respectively and satisfying the
condition (v, z) = §(v,z’') = d+ 1 (which implies z; > 0 for 1 <i < n and
z, > 0).

Lemma 24 If, for some 1 <t <n, z; > 1, then wy = z;.

Proof. Clearly, w; < z; for 1 < i < n. If wy < z; than the vertex

(z1,--.,%t—1,2¢ — 1,Te41,. .- ,Zn) is dominated by both v and w, in con-
tradiction to the efficiency of D. =
Lemma 25 The vertices w end w' are distinct.

Proof. Since w' dominates #’, w. <z’ = z, — 1, while Lemma 24 implies
that w, = z,. ®
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Lemma 28 If, for somet # 1,8, z; =0 then w; =0 or w} = 0.

Proof. Clearly, wy < 0 and w} < 0. If both w; < 0 and w} < O then the
vertex (¥1,-..,Yn), With y; = z; for i #s,¢, andy, =z, + 1,y = -1, is
dominated by both w and w'. m

We are now ready to prove our main result of this section.

Theorem 27 Forn > 2, neither a n-dimensional torus T(ky, ko,. .., kn),
where k; > d for 1 < i < n, nor the infinite gride G, contains an efficient
d-dominating set, d > 2.

Proof. Proposition 2 implies, that it is enough to prove the non-existence
of an efficient d-dominating set in the grid G,. Assume, in contrary, the
existence of an efficient d-dominating set D in G,,. WLOG we may assume
that D contains the vertex v = (0,0,...,0). Let us first assume that
d > n > 2. Consider the (1,2)-brothers z = (d - n +2,1,1,...,1) and
z' = (d-n+1,2,1,...,1) dominated by the vertices w,w’ € D, respectively.
Lemma 24 implies w = z and w' = 2’ and the vertex (d—n+2,2,1,...,1)
is dominated by both w and w’, in contradiction to the perfectness of
D. Let now 2 < d < n. Consider the vertices z(P) = (zgp )z,
1SpSn,where,forl5i£n,ifi;épthena:§p)=1if15i$d
and z” =0ifd+1<i < m; if p < d then ) = 2, otherwise zi") = 1.
Let w® = (w{”),...,w&’ )) € D dominate z(P). Then, by Lemma 24,

w® =z fori < d. The vertices z(P) are pairwise brothers and Lemma 25
implies that the vertices w(P) are pairwise distinct. Assume that , for some
p1 # pa, wP) = £(m) and wP2) = 2(P2), Then the vertex (y; ..., yn), where
Yy = :z:?’ 1) for i # ps and Ypy = a:,(,';’), is dominated by both w(1) and w(P2),
Therefore at most one of the vertices w(® may be identical with z(* Each
of the remaining n—1 vertices w(P) is distinct from the corresponding vertex
z(P), Tt follows from Lemma 24, that the first d coordinates of z(P) and w(®
are always identical. Thus if w(® s z(® then w(® differs from =(® in at
least one of the coordinates, starting from d + 1. Lemma 24 implies, that
such coordinage is not the coordinate p. Hence in n — 1 of the vertices w(®
have at least one of the last n — d coordinates negative. By Lemma 26, no
two of the vertices w(P) may have the same of these coordinates negative.
As implied by the pigeonhole principle, this is not possible, since n — 1
>n—-d =
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