A NOTE ON EDGE-COVER COLORING OF NEARLY BIPARTITE GRAPHS

Changqing Xu* Yanbin Jia

Department of Applied Mathematics, Hebei University of Technology,
Tianjin 300401, P.R. China

ABSTRACT. Let G be a graph with vertex set V(G). An edge coloring C of G is called an edge-cover coloring, if for each color, the edges assigned with it forms an edge cover of G. The maximum positive integer k such that G has a k-edge-cover coloring is called the edge cover chromatic index of G and is denoted by $\chi'_{G}(G)$. It is well known that $\min\{d(v)-\mu(v):v\in V\}\leq \chi'_{G}(G)\leq \delta(G)$, where $\mu(v)$ is the multiplicity of v and $\delta(G)$ is the minimum degree of G. If $\chi'_{G}(G)=\delta(G)$, G is called a graph of CI class, otherwise G is called a graph of CII class. In this paper, we give a new sufficient condition for a nearly bipartite graph to be of CI class.

Keywords: nearly bipartite graph, edge coloring, edge-cover coloring

MSC: 05C15

1. Introduction

Throughout this paper, a graph G(V,E) allows multiple edges but no loops and has a finite vertex set V and a finite nonempty edge set E. G is a simple graph if it has no multiple edges. Given two vertices $u,v\in V(G)$, the multiplicity $\mu(uv)$ is the number of edges joining u and v in G. The multiplicity of v is $\mu(v) = \max\{\mu(uv): u\in V\}$. Set $\mu = \max\{\mu(v): v\in V\}$. When G has no multiple edges (that is $\mu=1$), G is a simple graph. Let $\delta(G)$ denote the minimum degree of G. For the sake of simplicity, we write $\delta(G)$ by δ . Let $N_G(v)$ denote the neighborhood of v.

A graph G is called *nearly bipartite*, if there exists a vertex $u \in V(G)$ such that G - u is a bipartite graph. If G - u is with bipartition (X, Y), then G is denoted by G(X, Y; u).

This research was supported by ${\rm HENSF}({\rm A2007000002})$ and ${\rm NNSF}(10871058)$ of China.

^{*} Corresponding author. Email: chqxu@hebut.edu.cn.

An edge coloring of G is an assignment of colors to the edges of G. Associate positive integers $1,2,\ldots$ with colors, and we call C a k-edge coloring of G if $C: E \to \{1,2,\ldots,k\}$. Let $i_C(v)$ denote the number of edges of G incident with vertex v receiving color i in the coloring C. For simplification, we write $i(v)=i_C(v)$ if there is no obscurity. C is called an edge-cover coloring of G, if for each vertex $v\in V$, $i_C(v)\geq 1$ for $i=1,2,\ldots,k$. That is, the edges assigned with the same color forms an edge cover of G. Let $\chi'_c(G)$ denote the maximum positive integer k for which an edge-cover coloring with k colors of G exists, which is called the edge-cover chromatic index of G. The edge-cover coloring was studied in [1,3,5,6,7] and etc. In [1] and [5], the authors proved that

Theorem 1. ([1]) For any graph G, $\min\{d(v)-\mu(v):v\in V\}\leq \chi_c'(G)\leq \delta$.

We say that a graph G is of CI class if $\chi'_{c}(G) = \delta$, otherwise G is of CII class.

Wang and Liu [6] gave some sufficient conditions for a nearly bipartite simple graph to be of CI class.

Theorem 2. ([6]) Let G(X,Y;u) be a nearly bipartite simple graph with minimum degree $\delta \geq 3$. If $d(u) \geq 2\delta - 1$, then G(X,Y;u) is of CI class.

Theorem 3. ([6]) Let G(X,Y;u) be a nearly bipartite simple graph with minimum degree $\delta \geq 3$. If $N_G(u)$ contains at most one minimum degree vertex, then G(X,Y;u) is of CI class.

Theorem 4. ([6]) Let G(X,Y;u) be a nearly bipartite simple graph with minimum degree $\delta \geq 3$ and $S = \{v \in N_G(u) | d(v) = \delta\}$. If $S \subseteq X$ (or Y) and $d(u) \geq \delta + |S| - 1$, then G(X,Y;u) is of CI class.

From the proof in [6], it is easy to see that Theorem 2, Theorem 3 and Theorem 4 are also true for graphs with mutiple edges.

In [6], the authors gave a graph $K_{n,n} \vee \{u\}$ to show that the condition $d(u) \geq 2\delta - 1$ in Theorem 2 can't be replaced by $d(u) \geq 2\delta - 2$. In this sense Theorem 2 is best possible. But when $d(u) \leq 2\delta - 2$, does there exist a sufficient condition for a nearly bipartite graph to be of CI class? In this note, we give such a result.

Theorem 5. Let G(X,Y;u) be a nearly bipartite graph. If there exits a vertex $y \in N_G(u)$, such that $d(u) + d(y) \ge 3\delta - 1$, then G(X,Y;u) is of CI class.

Clearly, Theorem 5 includes Theorem 2.

2. OUR MAIN RESULT

Before proving our main result, we need some more terminologies and results.

Let C be a k-edge coloring of G. If $i(v) \geq 1$, we also say that color i appears at v. Let $\Phi(v)$ denote the set of colors appearing at v in C and $\sigma(v) = |\Phi(v)|$; $\sigma(C) = \sum_{v \in V} \sigma(v)$. If $\sigma(v) = k$ for each $v \in V(G)$, then C is a k-edge-cover coloring of G. We call a k-edge coloring C' an improvement on C if $\sigma(C') > \sigma(C)$. For a k-edge coloring C_0 of G, if $\sigma(C_0) = \max\{\sigma(C) : C \text{ is a } k\text{-edge coloring of } G\}$, C_0 is called an optimal k-edge coloring.

Let E(i) be the set of edges receiving color i in an edge coloring C of G. The edge induced subgraph $E(i) \cup E(j)$ is denoted by G(i,j). For $v \in V$, let G(v;i,j) be the component of G(i,j) containing v. We call a subgraph H of G an obstruction (about C), if H = G(x;i,j) is an odd cycle and $i_C(x) = 2$, $j_C(x) = 0$, $i_C(v) = j_C(v) = 1$ for each $v \in V(H) \setminus \{x\}$.

Let G be edge colored and let α and β be two of the used colors. An (α, β) -exchange chain K of G is a sequence $(v_0, e_1, v_1, e_2, \ldots, v_{r-1}, e_r, v_r)$ of vertices and edges of G in which

- (i) for $1 \le i \le r$, the vertices v_{i-1} and v_i are distinct and are both incident with the edge e_i ,
 - (ii) the edges are all distinct and are colored alternately by α and β ,
- (iii) e_1 is colored by α and $\alpha_C(v_0) > \beta_C(v_0)$. Similarly, let γ denote the color of e_r and $\overline{\gamma}$ denote the other color of $\{\alpha, \beta\}$. When $v_0 \neq v_r$, $\gamma_C(v_r) > \overline{\gamma}_C(v_r)$ or $\gamma_C(v_r) > 1$; when $v_0 = v_r$, then $\gamma = \alpha$ and $\alpha_C(v_0) > \beta_C(v_0) + 1$.

An (α, β) -exchange chain K is called minimal if there exists no other (α, β) -exchange chain K' which is starting at the same vertex as K and $K' \subset K$. If $\alpha_C(v_0) > \beta_C(v_0)$, the existence of an (α, β) -exchange chain starting at v_0 is proved in [4].

Lemma 1. ([2]) Let G(V, E) be a connected graph. Then G has a 2-edge coloring C such that:

- (a) If G is Eulerian and |E| is odd, then for an arbitrarily selected $x \in V$, we have |1(x) 2(x)| = 2 and 1(v) 2(v) = 0 for all $v \in V \setminus \{x\}$.
 - (b) If G is Eulerian and |E| is even, then 1(v) 2(v) = 0 for all $v \in V$.
 - (c) If G is not Eulerian, then $|1(v) 2(v)| \le 1$ for all $v \in V$.

Remark 1. Let C be an optimal δ -edge coloring of G. If G is not of CI class. Then there exists $v \in V(G)$, $i,j \in \{1,2,\cdots,\delta\}$, such that $i(v) \geq 2$, j(v) = 0. If G(v;i,j) is not an obstruction, by Lemma 1, we can get an improved coloring. Which contradicts to the fact that C is optimal. So H = G(v;i,j) is an obstruction. Since G(X,Y;u) is nearly bipartite, so $u \in V(H)$. By Lemma 1, we can recolor G(v;i,j) such that i(u) = 2, j(u) = 0 and i(v) = j(v) = 1 for all $v \in V(H) \setminus \{u\}$. By iterating this process, we can get an optimal δ -edge coloring C' of G such that $i(u) \leq 2$, and $i(v) \geq 1$ for any $v \in V(G) \setminus \{u\}$ and $i \in \{1,2,\cdots,\delta\}$. Such a coloring is called a standard optimal δ -edge coloring.

Lemma 2. ([7]) Let C be an edge coloring of G and G(v; i, j) be an obstruction, where e = vy is with color i. We can get an improved coloring if one of the following is satisfied.

- (a) $\alpha(v) > 2$ for some color α of C;
- (b) $\alpha(y) > 2$ for some color α of C;
- (c) $\alpha(v) = 2$ and $\alpha(y) = 2$ for some color α of C.

The Proof of Theorem 5 Since all bipartite graph is of CI class. So we can assume that G(X,Y;u) is connected.

For $\delta=1$, the assertion is trivial. For $\delta=2$, by Lemma 1, a connected graph is of CII class if and only if it is an odd cycle. While by the condition that there exits a vertex $y\in N_G(u)$ such that $d(u)+d(y)\geq 3\delta-1$. So G(X,Y;u) is not an odd cycle, which means G is of CI class.

Now suppose that $\delta \geq 3$. Let C be a standard optimal δ -edge coloring of G. Suppose, for the sake of contradiction, C is not an edge-cover coloring of G. Then there exists a color $\beta \in \{1, 2, \dots, \delta\}$ such that $\beta(u) = 0$. If there exists a color $i \neq \beta$ with i(u) > 2, by Lemma 2, we can get an improved coloring. Which contradicts to the chosen of C. So for any $i \in \{1, 2, \dots, \delta\} \setminus \{\beta\}, i(u) \leq 2$ and $\beta(u) = 0$. Thus if $d(u) \geq 2\delta - 1$, we get a contradiction. That is G is of CI class if $d(u) \geq 2\delta - 1$.

Now set $d(u) = \delta + p$, $0 \le p \le \delta - 2$. Thus there are at least p + 1colors, each of which appears twice at u. Set the set of such colors be M_u . Clearly, $\beta \notin M_u$. For $y \in N_G(u)$, suppose that one of the edge e = uyis colored α . Without loss of generality, we can suppose that $\alpha(u) = 2$. In fact, if $\alpha(u) = 1$, there is an other color γ such that $\gamma(u) = 2$ for $|M_u| \geq p+1$. Let K be a minimum (γ, α) -exchange chain starting at u. Since $\gamma(u) = 2$, $\alpha(u) = 1$ and K is minimal, so K doesn't contain the edge e and doesn't end at u. Exchanging the colors on K, we get an other standard optimal δ -edge coloring C' such that $\alpha(u) = 2$, and e is still with color α . From the above discussion, we can assume that $\alpha(u) = 2$ in coloring C. Since C is optimal, $H = G(u; \alpha, \beta)$ is an obstruction. From $d(u)+d(y) \geq 3\delta-1$, we get $d(y) \geq 2\delta-1-p$. Since C is a standard optimal coloring and by Lemma 2, we have $1 \le i(y) \le 2$ for any $i \in \{1, 2, \dots, \delta\}$. That is, there are $\delta - 1 - p$ colors each of which appears twice at y. Set the set of such colors be M_y . From the above discussion, $|M_u| + |M_y| \ge \delta$ and $M_u \cup M_y \subseteq \{1, 2, \cdots, \delta\}$.

Noting that $H = G(u; \alpha, \beta)$ is an obstruction, so $\alpha(y) = \beta(y) = 1$. While $\beta(u) = 0$. That is, $\beta \notin M_u \cup M_y$. So $|M_u \cup M_y| \le \delta - 1$. While $|M_u| + |M_y| \ge \delta$, so there exists a color $\gamma \in M_u \cap M_y$. That is $\gamma(u) = \gamma(y) = 2$, by Lemma 2, we get an improved coloring. Which contradicts to the chosen of C.

From the above discussion, we get that C is an edge-cover coloring of G. That is, G is of CI class. \Box

The example $K_{n,n} \vee \{u\}$ also shows that the bound in Theorem 5 is sharp.

REFERENCES

- [1] R.P. Gupta, On decompositions of a multigraph into spanning subgraphs. Bull. Amer. Math. Soc., 80(1974), 500-502.
- [2] S. L. Hakimi, O. Kariv, A generalization of edge-coloring in graphs, J. Graph Theory, 10(1986), 139-154.
- [3] L. Miao, G. Liu, An edge cover coloring and fractional edge cover coloring, J. Systems Science and Complexing, 15(2)(2002), 187-193.
- [4] S. Nakano, T. Nishizeki, and N. Saito, On the f-coloring of multigraphs, IEEE Trans. Circuit and Syst., 35(3) 345-353 (1988).
- [5] H. Song, G. Liu, On f-edge cover-coloring in multigraphs, Acta Mathematica Sinica (Chinese version), 48(5)(2005), 419-428.
- [6] J. Wang, G. Liu, Edge covering coloring of nearly bipartite graphs, J. Appl. Math. Comput., 22(1-2)(2006), 435-440.
- [7] C. Xu, G. Liu, A note on edge cover chromatic index of multigraphs, Discrete Mathematics (2007), doi: 10. 1016/j.disc.2007.11.049.