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ABSTRACT. A function f : V(G) — {—1,0,1} defined on the ver-
tices of a graph G is a minus total dominating function (MTDF)
if the sum of its function values over any open neighborhood is at
least one. That is, for every v € V, f(N(v)) > 1, where N(v) con-
sists of every vertex adjacent to ». The weight of a MTDF is the
sum of its function values over all vertices. A MTDF f is minimal
if there does not exist a MTDF g : V(G) — {-1,0,1},f # g,
for which g(v) < f(v) for every v € V. The upper minus total
domination number, denoted by I'; (G), of G is the maximum
weight of a minimal MTDF on G. A function f : V(G) — {-1,1}
defined on the vertices of a graph G is a signed total dominating
function (STDF) if the sum of its function values over any open
neighborhood is at least one. The signed total domination num-
ber, denoted by +(G), of G is the minimum weight of a STDF on
G. In this paper we establish an upper bound on I'; (G) of the 5-
regular graph and characterize the extremal graphs attaining the
upper bound. Also, we exhibit an infinite family of cubic graphs in
which the difference I'; (G) — vf(G) can be made arbitrary large.
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1 Introduction

All graphs under consideration are finite, undirected and simple. For stan-
dard graph theory terminology not given here we refer the reader to [2].
Specifically, let G = (V, E) be a graph with vertex set V and edge set E.
The order of G is denoted by n = |V(G)|. For a vertex v € V, the open
neighborhood of v, denoted by N(v), is defined as the set of vertices adja-
cent to v, i.e., N(v) = {u € V| wv € F}. The closed neighborhood of v is
N[v] = {v} U N(v). For a subset S C V, the open neighborhood of S is
N(S) = UyesN(v) and the closed neighborhood of S is N[S] = N(S)U S.
G|S] denotes the subgraph of G induced by S. For any vertex v € V, the
degree of v is denoted by d(v). A graph is said to be k-regular if its every
vertex is of degree k. For a subset S C V, the number of vertices in S that
are adjacent to v is denoted by ds(v). The number of edges between X
and Y is denoted by e(X,Y), where the subsets X and Y of vertices are
disjoint.

For a real-valued function f : V(G) — R, the weight of f is w(f) =

2 vev f(v), and for S C V' we define f(S) = ZUGS f), so w(f) = f(V).
For a vertex v € V, we denote f(N(v)) by f[v] for notational convenience.

Let f: V(G) — {-1,0,1} be a function which assigns to each vertex of
G an element of the set {—1,0,1}. The function f is defined in [1] to be
minus total dominating function (MTDF) of G if f[v] > 1 foreveryv € V.
A minus total dominating function f is said to be minimal if every minus
total dominating function g satisfying g(v) < f(v) for every v € V, is equal
to f. The minus total domination number, denoted by +, (G), of G is the
minimum weight of a MTDF on G. The upper minus total domination
number, denoted by I';’(G), of G is the maximum weight of a minimal
MTDF on G. A minimal minus total dominating function of weight I'; (G)
is called a I'; (G)-function on G. For a vertex v € V, if f[v] = 1, then v
is said to be a critical vertex under f. The parameters v, (G) and ['; (G)
were studied in [4] and [5] respectively.

If we only allow the weights —1 and 1, then this is well-known signed
total domination which was first introduced by Zelinka in [6]. Let f :
V(G) — {-1,1} be a function which assigns to each vertex of G an element
of the set {—1,1}. The function f is called a signed total dominating
function (STDF), if f[v] 2 1 for every v € V. The signed total domination
number, denoted by ¥/(G), of G is the minimum weight of a STDF on
G. The upper signed total domination number, denoted by I'}(G), of G is
the maximum weight of a minimal STDF on G. The two parameters were
studied by Henning in [3].
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Throughout this paper, if f is a I'; (G)-function on G, then we let P, Q
and M denote the sets of those vertices in G' which are assigned under f
the value 41,0 and —1, respectively. We also define

Pij ={’U €P I dQ(v) =‘L,dM('U) =.7}:

Qi; ={ve Q| dp(v) =1,du(v) = j},
Mi; = {ve M | dp(v) =i,dg(v) = j},

and let |P| = p,|Q| = g and |M| = m. Thus, n = p+ ¢+ m,w(f) =
|P| ~ M| =p—m.

In [5), the authors showed that, for every cubic graph G, I'; (G) < 5n/7,
and for every 4-regular graph G, I'; (G) < 7n/10. Meanwhile, the authors
characterized the regular graphs attaining these upper bounds. Further-
more, some open problems were also posed as follows:

1. Find the upper bounds on I'; (G) for a k-regular graph G, k > 5.

2. For any positive integer k, does there exist a family of graphs satis-
fying I; (G) - %(G) > k7

In this paper, we establish an upper bound on I'; (G) for the 5-regular
graph and characterize the graphs achieving this upper bound. Also, we
exhibit an infinite family of graphs in which the difference I'; (G) — ¥{(G)
can be made arbitrarily large.

2 5-regular graphs

In this section we establish an upper bound on the upper minus total dom-
ination number of a 5-regular graph in terms of its order and characterize
classes of the 5-regular graphs attaining this bound.

To complete our characterization, we first construct a family F =
{Gk1 | k = 3,1 > 4} of 5-regular graphs. The two integers k > 3 and ! > 4
satisfy 5] — 3k = 4h, where h is positive integer. Let Gk, be a 5-regular
graph with vertex set US_, A; with |A;| = a;,i=1,2,---,5 where all a;s are
integers satisfying a; = k, a = |, ag = 3k, a4 = (5 - 3k)/2, as = 6k +5l,
and A and Az are two independent sets. The edge set of G is constructed
as follows:

Add k edges joining vertices of Ay so that A; induces a 2-regular graph.
Add (5! — 3k)/4 edges joining vertices of A4 so that A4 induces a 1-regular
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graph. Add 12k 4 10! edges joining vertices of Az so that Ag induces a
4-regular graph. Add 3k edges between A; and Az so that each vertex in
A, is adjacent to precisely three vertices of A3 and each vertex in Az is
adjacent to exactly one vertex of A;. Add 6k + 5! edges between As and
Az U A4 so that each vertex in Ag is adjacent to precisely one vertex of
A3z U Ay, and each vertex in Az is adjacent to exactly three vertices of As
while each vertex in A, is adjacent to precisely two vertices of As. Add
50 edges between Az and Az U A, in such a way that each vertex in Ay
is adjacent to precisely five vertices of Az U A4, and each vertex in Aj is
adjacent to exactly a vertex of As while each vertex in A4 is adjacent to
precisely two vertices of As.

By the definition of minimal minus total dominating function, the fol-
lowing observation is straightforward and therefore its proof is omitted.

Observation 1 A MTDF on a graph G = (V, E) is minimal if and only

if for every vertez v € V with f(v) > 0, there exist a vertex u € N(v) with
fll=1.

We next present an upper bound on the upper minus total domination
number of a 5-regular graph in terms of its order.

Theorem 2 IfG is a 5-regular graph of order n , then

_ 13
7 (G) < 7"

with equality if and only if G € F.

Proof. Let f be a T'; (G)-function on G. Then T} (G) = |P|—-|M| = p-m.
By definition, for any vertex v € V,dp(v) < 2,dg(v) < 4 — 2dm(v) and
dp(v) > dm(v) +1 > 1 for otherwise f[v] < 1. Therefore P,Q and M can
be partitioned into the following sets, respectively.

Py = {veP|dgv)=1idm(v)=jwhere0<j<2 0<i<4-25},

Qy = {veQldp(v) =i,du(v) = j,where 0 < j <2, +1<1

My = f{veM)|dp(v)=i,dg(v) =j, where 0 < j < 4, [5%‘7_]+15i
$5—j},

and let |P;;| = pyj, |Qij] = 5, and | M| = my;. Then

P = poo+po1-+po2+Pio+ P11+ P2 + p21 + Pp3o + Pao,
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g = qio+ g2 + g21 + 30 + g31 + g32 + a0 + g41 + G50,
m = Mg+ maz + mo3 + map + M3y + m3g + myo + Mqy + Mmsp.

Furthermore, we write
P'= Poa U Py UPy,Q =Q10U Q21U Qs2, M = M4 U M2y U M3o.

Clearly, each vertex » € P’ UQ’U M’ is a critical vertex of G under f,
i.e., flv] = 1, while for every vertex v € V — (PPUQ U M’), flv] > 2.
By counting the edge number e(P, Q), e(Q, M), and e(P, M), we obtain the
following equalities at once.

Pi0 + P11+ 2pao + 2p21 + 3pso + 4pao = e(P, Q)
= 5q — (4q10 + 3q20 + 3921 + 2930 + 2¢31 + 2932 + qa0 + g41), (1)

g1 + g31+2g32 +gq = e(Q, M)
= 4myg + 2mgp + 3moz + ma1 + 2maz + my (2)

and

por + 2po2 +pu+pn =e(P,M)
= 5m — (mgg + 2m3o + M3y + Map + g21 + g31 + 2¢32 + g41). (3)

By Observation 1, for every vertex v € P — P’ = Poo U Pp)y UPg U Pj; U
Py U Py, there exists a vertex u € N(v) such that f[u) = 1. It follows that
for every vertex v € P — P’, there must exist a neighbor of v that belongs
to PUQ’U M'. Hence we have

poo + Po1+Ppio+p1+p+p<eP-P,PUQUM)
= e(P-P,P)+eP-P,QuUM)
= e(P-— P',P02)+6(P - P, Pm) + C(P - P', P4o)
+e(P - P',Q'UM’). (4)

Furthermore, we note that for every vertex v € Py, there must exist a
neighbor u of v satisfying f[u] = 1, that is, u € P’UM’. If u € P/, then
v is adjacent to at most two vertices of P — P’, while if © € M”’, then v is
adjacent to at most three vertices of P — P’. Hence we can write Po2 as the
disjoint union of two sets Py, and Py, where Py, = {v € Poz| dp—p:(v) = 3}
and Pgy = Poz — Fy. Let |Fgy| = pog, and so |Pgz| = pga = po2 — pos- Since
each vertex v € Py, is adjacent to at least one vertex of M’, it follows that
Po2 < €(Pgp, M'). So we get

B(P - P,, P02)

e(P — P', Pa U Py5)

3P0z + 2(po2 — Poa)

2po2 + Pog

2po2 + e(Pgp, M'). (5)

oA

IN
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Similarly, it follows that for every vertex v € Py, there must exist a neigh-
bor u of v that belongs to PPUQ'UM’. If u € P', then v is adjacent to at
most a vertex of P — P’ while if w € Q' UM’, then v is adjacent to at most
two vertices of P — P’. Therefore we can partition Py into two subsets
Pjy = {v € Pn| dp_p/(v) = 2} and P3j = Py — P;;. Let [Py = p3y,
and so |Py}| = py; = p21 — ph,. Because each vertex v € Py, is adjacent to
at least one vertex of Q' U M’, we have p5, < e(Py,,Q' U M’). Hence we
obtain

e(P — P', le) e(P - P', P2,1 U P2"l

2p71 + (p21 — py)
P21+ Py
pa +e(P, Q' UM'). (6)

IA

IN

By the minimality of f, for each vertex v € Py, there must exist a critical
neighbor » of v. If u € P’, then v is adjacent to no vertex of P — P/,
while if u € Q’, then v is adjacent to at most one vertex of P — P’. So, we
can write Py as the disjoint union of two sets Pj, and P, where Py, =
{'v € P4o| dp_pr('v) = 1} and P‘{f) = Pyo — Péo. Let |P,{0| = pao, and so
|Pio| = pio = pao — Pjo. Since each vertex v € Py, is adjacent to at least
one vertex of @', it follows that

e(P—P',Pp) = e(P—P,PuyUPg
e(P — P', P})
Pao
S C(Péo, Ql) (7)
Thus, by (4),(5),(6) and (7), we get

]

poo + Po1+ P10+ P11+ P20 + P30 < 2po2 + pa1 + e(Pop, M)

e(Py, QUM+ e(Ps, Q) +e(P-P, QUM

2po2 + p21 +e(P, Q' U M')

2poz + p21 + (10 + 2921 + 3g32) + (Mg + 2ma2 + 3m30). (8)

A +

Next, we start to establish the upper bound on I'; (G). First, we obtain

n

(g+m)+p

(g + m) + (poo + po1 + P10 + P11 + P20 + p30) + (Po2 + P21 + Pao)
(g+ m) + (poz + p21 + pao) + 2po2 + p21 + (10 + 2921 + 3¢32)
+(m1q + 2ma + 3mao)  (by (8))

11(g+m)—a (by (1),(3) ),

IA
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where a = (2po; + po2 + 2p10 + 4p11 + 4p20 + 4p21 + 6p30 + Tpao + mao +
2ma1 + 2mao + Tqro + 6920 + 6g21 + 4930 + 6431 + 5g32 + 2940 + 4941 — M14).
Hence, it follows that

+ >1 +ia
grm=tTa*

So
10 1
p=n-— (q+m)_ 11 ﬁa (9)
On the other hand, we have

(poo + po1 + P10 + P11 + P20 + P30) + (Po2 + P21 + Pao)
(po2 + P21 + pao) + 2po2 + P21 + (g10 + 2g21 + 3g32)
+(m14 + 2ma2 + 3mag) ( by (8) )

34 34
ﬁ(pm + 2po2 + p11 +Pn) — 5.;(1’01 + 2po2 + P11 + p21) + (po2 +

P21 +Pao) + 2po2 + p21 + (q10 + 2921 + 3g32) + (Mm14 + 2maz + 3mao)
170 34

7T
where b = (po1 + P11+ g31 + ga1 +ma1 +mao) — 37(13poz + 20p21 + 27pao +

27q10 + 20g21 + 13gs2 + 27m )4 + 20ma2 + 13map). The last equality comes
from (3). So, we obtain

4

In

> 2 3
™= 170" T 170

Combining (2), (9) and (10), we immediately get
I'y(G) = p—m

b. (10)

143 4
L =P

170 170
< B L sayaam)
= 7" 170 @

13
< l§n
—-— 17 'y

where ¢ = (60po; + 26p10 + 86p11 + 52p20 + 32p21 + 78p3o + 64pao + 64g10 +
78¢20 + 484921 + 52g30 + 102431 + 32g32 + 26940 + 76941 + 30mo3 + 70m3; +
20m3g + 60mgo + 10m41).

For a 5-regular graph G of order n, we next show that if T'; (G) =
13n/17, then G € F. Suppose that I'; (G) = 13n/17, then equalities hold
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for the above inequalities. By ¢ = 0, we immediately have

PO1 = Pilo=pP11 =P =P =p30 =pgo =0
qQ10 = G20=G21 =q30 =¢31 =¢q32 =qg0 =qq1 <0
Me3 = M3 = M3z =My =my4 =0

and by the equalities (1) and (2), it follows that ¢ = 0 and mgy = my4 = 0.
Consequently, we obtain V(G) = Pyo U Poa U M3g U Msg. Applying the
equality (3) and the equality from (8), we get

2pg2 = 3mgp + Smso (11)
and
Poo = 2po2 + e(Pg2, M30) = 2po2 + 3mao (12)
Furthermore, according to the equality from (5), we have
e(Poo, Po2) = 3pg2 + 2pg2 = 2po2 + Po2 = 2po2 + e( Py, Mao) (13)
Combining the equalities (11),(12) and (13), it follows that

po2 = e(Po2, Mag) = 3mgo;
Po2 = Po2 —Poy = (5mso — 3ms30)/2;
poo = e(Poo, Poz) = 3pgs + 2pgo-

So, each vertex in Py is adjacent to precisely one vertex of Poz = P, U P{5,
and each vertex in Pg, is adjacent to exactly three vertices of Poo while
each vertex in Py, is adjacent to exactly two vertices of Pyp. Obviously,
G|[Poo) and G[Msg] are 4-regular and 2-regular graphs , respectively. By
the definition of Py, we get e(Mso, Pgy) = 2pp,. Hence, G[Pgh] is a 1-
regular graph. Since each vertex in P{, is adjacent to no vertex of Py, it
follows that Py, is an independent set. Moreover, it is obvious that Mjy is
also an independent set. Let m3g =k > 3, mgo = ! > 4 and k and ! be
integers satisfying 5 — 3k = 4k, where A is positive integer. Hence, we get
p62 = 3k, pgz = (5l - 3k)/2, poo = 6k 4+ 51. Thus, G = Gk,t with vertex
set U?=1A,-, where A; = Mag, Ay = Mso, Az = Py, Ag = Pé'z, As = Pgo.
Therefore, G € F.

Conversely, suppose that G € F. Let G = Gy, for two integers k > 3
and ! > 4 that satisfy 5! — 3k = 4h, where k is positive integer. Let f be a
function on G, which assigns to every vertex of A; U Ay and A3U A4U Ag
the value —1 and +1, respectively. Then the set A;UA3U A, is critical set of
G, under f, which implies that for every vertex v € V, there exists a vertex
u € N(v) such that f{u] = 1. So, f is a minimal minus total dominating
function with weight w(f) = Zf___3 a; — (a) + a2) = 13(k +1)/2 = 13n/17.
Consequently, I'; (G) = 13n/17.
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3 The difference I'; (G) — v/ (G)

In this section, we exhibit an infinite family of graphs in which the difference
I'; (G) — ¥¥(G) can be made arbitrarily large. To do it, we will use the
following result due to [5].

Theorem 3 ([5]) Let G be a cubic graph of order n. Then the following
statements are equivalent.

(1) T}(G) = Fn;
(2) T7(G) = §n;
B)GeT.

The construction of the family 7 of cubic graphs in Theorem 3 is not given
here, we refer the reader to [5].

Next, for any positive integer k, we construct an infinite family H =
{Gx | k > 1} of cubic graphs with I'; (Gx) — v§(Gx) 2 2k as follows.

Let G be a cubic graph with vertex set U?=1A,~ with |A;] = a4, for 1 <
i < 5 where all a;s are integers satisfying a; = 2k, as =2k, az = 6k, a4 =
4k, ag = 14k, and A; and A, are two independent sets. Furthermore, we
write A; = {u; | i =1,2,---,2k}, Az ={v; |1 =1,2,.--,6k}. The edge
set of Gy is constructed as follows.

The set of edges between A; and As is defined as E3 = {u;v3i—2, %iv3i—1,
uvg| i = 1,2,---,2k}. Add 3k edges joining vertices of A3 in such a way
that vvi+ € BE(Gy), i = 1,3,---,6k — 1. So Gi[As] is a 1-regular graph.
Add k edges joining vertices of Az so that Aj also induces a 1-regular graph.
Add 14k edges between A3 U A4 and As in such a way that each vertex of
As is adjacent to precisely one vertex of Az U A4, and each vertex in As
is adjacent to exactly one vertex of As while each vertex of A4 is adjacent
to exactly two vertices of As. Add 4k edges between A and A4 so that
each vertex in As is adjacent to precisely two vertices of A4 while each
vertex of A4 is adjacent to exactly one vertex of As. At last, add 14k edges
joining vertices of As so that As induces a 2-regular graph. According to
our construction, G, is a cubic graph of order » = 28k. Obviously, H C 7.

Let G = Gy, we define two functions f and g on Gy as follows

) -1 ifve AUA,
flv) = { +1 otherwise
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and

= { 71 V€ AU funali= 1,2, K}Ufoml i = 1,21, 2k}
W/ =11 41 otherwise

Then it is easy to check that the defined f is a minimal minus total dominat-
ing function on G with weight f(V(G)) = 20k = 5n/7, and g is a signed to-
tal dominating on G with weight g(V(G)) = 18k. By Theorem 3, we obtain
I'; (G) = f(V(G)) = 20k. Thus, we have I'; (G) —¥/(G) > 20k — 18k = 2k.
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