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Abstract

In this paper, we consider cycle-pertition problems which deal
with the case when both vertices and edges are specified and we
require that they should belong to different cycles. Minimum degree
and degree sum conditions are given, which are best possible.
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1 Introduction

In this paper, we consider only finite undirected graphs without loops or
multiple edges. For a vertex z of a graph G, the neighborhood of z is
denoted by Ng(z), and dg(z) = |Ng(z)| is the degree of z in G . For a
subgraph H of G and a vertex z € V(G) — V(H), we also denote Ny(z) =
Ng(z)NV(H) and dy(z) = |Nu(z)|. For a subset S of V(G), we write (S)
for the subgraph induced by S. For a subgraph H of G and a subset S of
V(G), du(S) = Y zesdu(x), Nu(S) = UzesNu(z) and define G - H =
(V(G) — V(H)) and G — S = (V(G) — S). For a graph G, |G| = |V(G)| is
the order of G, §(G) is the minimum degree of G, and

02(G) = min{dg(z) + d(y)|zy ¢ E(G),z,y € V(G),z # y}
1 This work was partially supported by the JSPS Research Fellowships for Young
Scientists.
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is the minimum degree sum of nonadjacent vertices. (When G is complete,
we define 02(G) = .)

For a graph G, mG is the union of m copies of G. For graphs G; and
G, G1 UGy is the union of G; and G, and G + G2 is the join of G; and
G2. Moreover, for graphs Gi,G> and Gs3, G1 + Ga+G3 = (Gl UG:;) + Go.
K, is a complete graph of order n.

In this paper, ‘disjoint’ means ‘vertex-disjoint’ since we only deal with
partitions of the vertex set, and n always denotes the order of a graph G.
Suppose C}, ..., Cx are disjoint cycles of a graph G. Then {Cj,...,Ck} is
called a k-cycle-packing of G. Moreover, if V(G) = UE_, V(C), {Cy, .. .,
Ck} is called a k-cycle-partition of G.

The following result is the first step of the research on a k-cycle-partition.

Theorem 1 ([1])) Suppose n > 4k and 02(G) > n. Then G has a k-cycle-
partition.

Egawa et al. considered the cycle-partition with specified vertices.
When k vertices z,,...,z; are specified, a cycle C is called admissible
if [V(C) N {z1,...,zx}| = 1, and {C},...,Ck} is admissible if each C; is
admissible. They proved the following theorem.

Theorem 2 ([2]) Suppose n > 6k — 2 and §(G) > n/2. Then G has an
admissible k-cycle-partition for any k distinct vertices.

When k independent edges e; = z)y1,...,ex = Ziyx are specified,
a cycle C is called admissible if |[E(C) N {ey,...,ex}| = 1 and |V(C) N
{z1,.. -, Zk, Y1, - - Yk} = 2, and {C},...,Cyk} is admissible if each C; is
admissible. In this case, the following result is obtained.

Theorem 3 ([3]) Suppose k > 2,n > 4k — 1 and 02(G) 2 n + 2k — 2.
Then G has an admissible k-cycle-partition for any k independent edges.

In this paper, we consider the case when both vertices and edges are
specified. Let S = {vy,...,vp} beasubset of V(G), F = {e1 = z1y1,...,¢q
= Zqye} be a subset of E(G), and V(F) = {z1,...,%¢,¥1,...,¥q}. If
|V(F)| = 2¢ (that is, F is independent) and SNV (F) = ¢, SU F is called
feasible. A cycle C of G is called admissible if one of the following holds:

(a) V(C)N(SUV(F))=¢,
(b) [V(C)N S| =1 and V(C)NV(F) = ¢,
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(¢) |E(C)N F| =1 and |V(C) N (SUV(F))| =2.

If Cy,...,C) are admissible disjoint cycles and S U V(F) is contained in
Uk, V(Cy), {C1,...,Ck} is called an admissible k-cycle-packing. An ad-
missible k-cycle-partition is defined similarly.

The main result is the following theorem.

Theorem 4 Supposen > 10k, k2 p+q,p 20, g > 1 and either

n+q n+p+29—3
2’ 2 ’

&(G) 2 max {

or
02(G) = max{n+q,n+2p+ 29— 2}.

Then for any feasible set SU F with |S| = p and |F| = q, G has an
admissible k-cycle-partition.

To prove Theorem 4, we first solve the packing problem.

Theorem 5 Supposen > 9%k, k>p+4q,p >0, ¢ > 1 and either §(G) >
(mn+p+2g—3)/2 or 02(G) > n+ 2p + 29 — 2. Then for any feasible set
SUF with |S| =p and |F| = q, G has an admissible k-cycle-packing.

Note that the assumption n > 9k is not sharp, but it cannot be dropped.
The degree conditions in Theorem 5 are sharp in the following sense.

Ezample 1. Let G = K + Kpi24-2 + Km With an edge e, which joins the
two K,s. Take p distinct vertices vy,...,v, and g — 1 independent edges
€2,...,€q in Kpyo0_2 such that {vy,...,vp,e1,..., eq} is feasible. Then
there is not an admissible k-cycle-packing, while 6(G) = (n+p+29—4)/2.

Ezample 2. Let G = Kppq + Kopi2g-1 + K. Take p distinct vertices
v1,...,Vp in Kp4q and ¢ independent edges ey, ..., e, between Kp.q and
Kapyag—1 such that {vy,...,vp,€1,...,€5} is feasible. Then G does not
contain an admissible k-cycle-packing, while 02(G) =n + 2p +2¢9 — 3.

Next, we extend a packing to a partition.

Theorem 6 Let SUF be a feasible set with |S| = p and |F| = q. Suppose
n>10k, k>1,k>p+q,p20,920,8G)2p+q+1,02(G)2n+g,
and G has an admissible k-cycle-packing. Then G has an admissible k-
cycle-partition.
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The assumption n > 10k is not sharp, but it cannot be dropped. The
degree conditions in Theorem 6 are sharp in the following sense.

Ezample 3. Let G = Ky + Kpiq + Km. Take p distinct vertices in K,
and ¢ independent edges between Ky.q and Km such that these p vertices
and q edges form a feasible set. Then G has an admissible k-cycle-packing
but has no admissible k-cycle-partition, while 6(G) =p + gq.

Ezample 4. Let G = Kpmiq + (m + 1)K,. Take p distinct vertices and ¢
independent edges in K44 such that these p vertices and q edges form a
feasible set. Then G has an admissible k-cycle-packing but does not contain
an admissible k-cycle-partition, while 62(G) =n+4g—1.

By Theorem 5 and Theorem 6, we get Theorem 4 as a corollary.
If we put p = 0 and q = k in Theorem 4, we get the following.

Corollary 7 Suppose n > 10k, k > 2, and either
dz(G) >n+2k-2

or

n+2k—3

2
Then G has an admissible k-cycle-partition for any k independent edges.

§G) 2

This corollary shows that the minimum degree condition in Theorem 3
is not sharp when = is odd.

Let P = ujuy---u; be a path. Then we say that P connects u; and uy,
and P is a uj—y path. We will use the notation Plu;,u;], 1 <1< j <,
for a subpath of P from u; to u;.

We will also use Clu, v} to denote the segment of the cycle C from u to v
(including u and v) under some orientation of C, and Cfu,v) = C[u, v]—{v}
and C(u,v) = Clu,v] — {u,v}. Given a cycle C with an orientation, we let
vt (resp. v~) denote the successor (resp. the predecessor) of v along C
according to this orientation.

2 Proof of Theorem 5

To prove Theorem 5, we first prove the following two theorems.

36



Theorem 8 Supposen >9p+8¢—2,p>0,g>1andd(G) 2 (n+p+
2q — 3)/2. Then for any feasible set SU F with |S| = p and |F| = q, G has
an admissible (p + q)-cycle-packing such that all p + g cycles are of length
at most 5.

Theorem 9 Supposen >4p+4q—1,p>0,q>1 and 03(G) > n+2p+
2q —2. Then for any feasible set SU F with |S| = p and |F| = q, G has an
admissible (p + q)-cycle-packing such that all p + q cycles are of length at
most 4.

The sharpness of the assumptions in Theorems 8 and 9 is already shown
in Section 1.
In this section, we will use the following results to prove above theorems.

Theorem 10 ([3])) Supposek > 1, n > 4k —1 and 02(G) 2 n+ 2k — 2.
Then for any k independent edges, G has an admissible k-cycle-packing
such that each cycle is length at most 4.

Theorem 11 ([4], [5]) Supposek > 1, n > 3k and 02(G) > 4k —1. Then
G has a k-cycle-packing.

Let SU F be a feasible set with § = {v;...,v,} C V(G) and F =
{e1,...,eq} C E(G). If Cy,...,Cp, are admissible disjoint cycles and SU
V(F)—{v;} for some v; € S or SUV(F)—V/(e;) for some e; € F is contained
in Uf‘___l V(Ci), {Ci,...,Chr} is called a semi-admissible h-cycle-packing.

2.1 Proof of Theorem 8

Let G be an edge-maximal counterexample to Theorem 8, SUF be a feasible
set with S = {vy,...,v} C V(G) and F = {ep41,...,€prq} C E(G), and
e; = x;y; for p+1 <17 < p+ q. In the rest of the proof, a cycle is called
short if its length is at most 5. Since if G is a complete graph, G contains
an admissible (p + g)-cycle-packing, G is not complete. Let z and y be
nonadjacent vertices of G and define G’ = G + zy, the graph obtained
from G by adding the edge zy. Then G’ is not a counterexample by the
maximality of G, and so G’ contains an admissible (p + g)-cycle-packing
{C1,...,Cp4q}. Since zy € E(C;) for some i, 1 < i < p+q, G has a semi-
admissible (p + ¢ — 1)-cycle-packing. We take these p+ g — 1 cycles so that
admissible cycles which contain specified edges are as many as possible.
Subject to this, we take these cycles so that the sum of the length of cycles
is as small as possible.
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We consider the following two cases.
Case 1 Some specified edge is not contained in the admissible cycles.

We may assume that G contains a semi-admissible (p + g — 1)-cycle-
packing {Ci,...,Cpiq-1} such that v; € V(C;) for 1 < i < p, e; € E(C;)
forp+1 <i<p+g-1and|C)| <5forl <i<p+qg-1. Let
L= (U V(C:), M =G — L and D = M — {Zprq, Ypta}-

Claim 2.1.1 For any 2 € V(D), dc,(2) <3 for 1<i<p+q-1.

(Proof.) If d¢,(2) 2 4, (V(C;) U {z}) contains a cycle passing through v;
or e; which is shorter than C;. (]

Claim 2.1.2 dp(zp+q) = 2 end dp(yp+q) 2 2.

(Proof.) Suppose dp(Zp+q) < 1. Then

2¢-3
PERETS <do(@pr) S I +2S5(p g 1) +2
Hence we get
n<9+8q-3.
This is a contradiction. o

Take any zi, 22 € Np(2p+q) and 21,25 € Np(yp+q) and let S = {zp,4,
Yp+qr 21,22, 21, 25}. Since M has no short cycle passing through e,.q,
ds(y) <3 for any y € V(M) — S. Then,

dm(S) < 3(1M| - 6) + 14 = 3|M| -
Therefore,

dr(S)

v

66(G) — (3|M| - 4)
3n+3p+6g—9-—3|M|+4
3|L|+3p+6q 5

Pra-1

> Z(3|C|+3)+ > @ICi +86).

i=] i=p+1

Hence d¢,(S) > 3|C;| + 4 for some i, 1 < i < p, or d¢;(S) 2 3|C;| + 7 for
somei, p+1<i<p+qg-1.

Case 1.1 d¢,(S) > 3|Ci| +4 forsome i, 1 < i < p.
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Suppose dc; ({a, b}) = |Ci|+2 for a € {Zp4q, 21,22} and b € {yp4q, 2}, 25}
Then we can find some ¢ € N¢,(a) N N¢,(b) — {v;} and this makes an ad-
missible short cycle passing through e,..,. Hence d¢,({a,b}) < |Ci|+1 and
dc,(S) < 3|C;| + 3. This is a contradiction.

Case 1.2 d¢;(S) 2 3|Ci|+ 7 forsome i,p+1<i<p+q-—1.

Since dc, ({z1, %, 22, 4}) < 12, do,({ZptarUpq}) 2 10if [Ci| = § and
de;({Zpiq Uptq}) 2 7 if |C;| = 4. These mean that there is an admissible
triangle passing through ep4.

If |Ci| = 3, dc,(S) > 16. Suppose dg;(zp+q) = de;(¥p+q) = 3. Then
dc,(a) = 3 for some a € {z1,2},22,25}, but this means that there are
two admissible triangles passing through e; and ep,. Otherwise, since
do,({z1, 21,22, z3}) = 11, we may assume that dg;(21) = d¢,(21) = dg, (z2)
= 3. Then there are two admissible cycles passing through e; and ep4q.
This completes the proof of Case 1.

Case 2 Some specified vertex is not contained in the admissbile cycles.

We may assume that G has a semi-admissible (p + g — 1)-cycle-packing
{Cs,...,Cpyq} such that v; e V(C;) for 2< i< p,e; € B(C;) forp+1 <
i <p+qgand |Ci| <5for2 <i<p+gq Let L = {{JFFV(Ci)) and
M=G-L.

Claim 2.2.1 d¢,(z) < 3 for x € V(M) and 2 < i < p. Moreover, if
z # v, do(z) <3 forp+1<i<p+g.

(Proof.) If z # v, the proof is similar to that of Claim 2.1.1. Suppose
dei(v1) = 4 for 2 < i < p. Then, (V(C;) U {v1} — {v:}) contains a cycle
passing through v; and shorter than C;. m]

Claim 2.2.2 dp(v1) > 3.

(Proof.) Suppose dps(v1) < 2. Then,

BP0 cdo(w) <3(p-1)+5g+2=3p+5g -1

by Claim 2.2.1. Hence we get
n<5p+8q¢+1.

This is a contradiction. D
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Take 21, 2,23 € Ny (v1) and let S = {vy, 21, 29,23}. Since M has no
short cycle passing through v, ds(y) < 1 for any y € V(M) — S. Then

dm(S) < (IM|—4)+6=|M|+2.
Hence

dr(S)

v

44(G) - (IM] +2)
2n+2p+49—-6—|M| -2
2|L|+2p—-2+49+|M| -6
2L +2p — 2 +4q+4(p — 1)
2|L| + 6p — 6 +4q

pte

P
do@cil+6)+ Y (2ACi+4) (1)

i=2 i=p+1

\'

]

since

[M|-6 > n-5p—-5¢+5—-62>9+8—-2—-5p—5¢g—1

= 4p+3¢—-3>4(p-1).
Claim 2.2.3 dg,(S) < 2|Ci|+4 forp+1<i<p+g.

(Proof.) Suppose d¢,(S) > 2|C;| + 5 for some i, p+1 <i<p+q.

If |Ci| = 5, d¢,(S) = 15. But this contradicts Claim 2.2.1.

If |Ci| = 4, d¢,(S) > 13. Then, dc,(v1) = 4 and dg;(21) = dg,(22) =
dg,(z3) = 3. This means that there are two admissible short cycles passing
through v; and e;.

If |C;| = 3, dc;(S) = 11. In this case, we may assume that d¢,(21) =
dc,(2z2) = 3. Then, d¢;(z3) < 1. But this is a contradiction. m]

By (1) and Claim 2.2.3, we may assume that dc,(S) > 2|C;| + 7 for
some i, 2 < i < p. Clearly, this contradicts Claim 2.2.1. This completes
the proof of Theorem 8.

2.2 Proof of Theorem 9

Let SU F be a feasible set with § = {v,...,vp} C V(G) and F =
{ep+1,- .. epsq} © E(G). Since 02(G) 2 n+2p+ 29 — 2, §(G) = 2p + 24
Then we can take p independent edges e,...,ep such that v; € V(e;) for
1 <i<pand {ey,...,epsq} is also a set of independent edges. Therefore,
we can apply Theorem 10 and obtain a required (p + g)-cycle-packing. O
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2.3 Proof of Theorem 5

Let S U F be a feasible set with |S| = p and |F| = ¢q. By Theorem 8 and
Theorem 9, G has an admissible (p + g)-cycle-packing {C1, ..., Cp44} such
that |C;| < 5 for 1 <i < p+gq. If k = p+ q, this is a required k-cycle-
packing. Hence we may assume that & > p + q. Then we take these cycles
so that || J2¥7 V(C;)| is as small as possible. Let L = (JPX{V(C;)) and
H = G - L. Note that d¢,(z) <3 foranyz € V(H)and 1 < i < p+gq.
Then [H|>n—-5(p+4q) > 3(k—p—q) and

o2(H)>2n+2p+29-3-6(p+q)24k—-p—q)—1.

Therefore, we can apply Theorem 11 and we get a (k — p — g)-cycle-packing
of H. Hence we get an admissible k-cycle-packing of G. This completes the
proof of Theorem 5.

3 Proof of Theorem 6

3.1 Preliminary Lemmas

Before proving the theorem, we prepare several definitions and lemmas.

Let D be a cycle (resp. a path) of G and z € V(G — D). We say z can
be inserted into D if (V (D) U {z}) has a cycle (resp. a path) D’ such that
V(D') = V(D)U{z}. Moreover, if D contains a specified edge e, D’ has to
contain e, and if D is a uw-v path, then D’ also has to be a u-v path.

Lemma 1 Let C be ¢ cycle of G and z € V(G — C). Suppose C does not
contain a specified edge and do(z) > (|C| + 1)/2. Then x can be inserted
into C.

(Proof.) Since do(z) > (|C|+1)/2, Nc(x) contains two consecutive vertices
of C. Hence z can be inserted into C. (]

Lemma 2 Let P = ujuy---u be a path of G and = € V(G — P). Suppose
P does not contain a specified edge and dp(z) > |P|/2+ 1. Then x can be
inserted into P.

(Proof.) Since dp(z) > |P|/2+ 1, Np(z) contains two consecutive vertices
of P. Hence z can be inserted into P. a
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Lemma 3 Let C be a cycle of G and = € V(G — C). Suppose e € E(C) s
a specified edge and dc(z) 2 |C|/2+ 1. Then z can be inserted into C.

(Proof.) Let e = aa™. Since do(z) > |C|/2+1, No(z)NC[a™,a™] contains
two consecutive vertices of C. Then z can be inserted into C. m}

Lemma 4 Let P = ujus---u; be a path of G and z € V(G — P). Suppose
e € BE(P) be a specified edge and dp(z) > (|P| + 3)/2. Then z can be
inserted into P.

(Proof.) Let e = wui41, 1 < ¢ < 1 —1. Since dp(z) = (|P| + 3)/2,
Ng(z) N Pluy,us) or Ne(z) N Pluiy1, ] contains two consecutive vertices
of P. Hence z can be inserted into P. O

Let Cy,...,Ck be disjoint subgraphs such that C}, is a u-v path for some
h,1 < h < p+ g, the rest are all cycles, and v; € V(C;) for 1 < i< p
and e; € BE(Ci) for p+1 <i < p+gq. Letalso L =(J°,V(C)) and
M CV(G-L), M # ¢. Then wesay M can be inserted into L if (V(L)UM)
contains disjoint subgraphs C1, ..., C}, such that C} is a u-v path, the rest
are all cycles, v; € V(C;) for 1 <i < pande; € E(C;) forp+1<i<p+gq,
and U5, V(C) = V(L)U M.

Lemma 5 Let L be a subgraph of G defined in the above definition, M C
V(G -L) and M # ¢. Suppose No(M) C V(LYUM and

do(z) 2 X

3
+ (M| -1)+ 3
Jor any x € V(M). Then M can be inserted into L.

(Proof.) Take any z € V(M). Then

|L{+ q 3 |L|4+q 3
> - - — - = -
di@) 2 (M- 1)+ 5 - (M- =2 s
P ptq k
_ |Ci |Ci| +1 ICi| | 3
- L5, 5 LG
i=1 i=p+1 t=p+q+1

Hence one of the following holds.
(a) 1< h<pandde,(z) 21! +1.

(b) p+ 1< h<p+ganddg,(z) > 12183,
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(¢) do,(z) > 1St for some i# h, 1 <i<porp+g+1<i<k.
(d) dcg(l‘)Zl%L+l forsomei#h,p+1<i<p+gq.

Then, by Lemmas 1, 2, 3, and 4, z can be inserted into Cj, or C;.
Let L' = (V(L)U {z}) and M’ = M — {z}, and suppose M’ # ¢. Then
Ne(M') CV(L')U M’ and for any y € V(M'),

3
dotw) > XL a4 3
-1 3
= Hi-1+g > +"+(|M'|+1—1)+§
[L|+Q

= ZT9 L M -1)+2.

Again, y can be inserted into L’. By repeating this operation, M can be
inserted into L. a

3.2 Proof of Theorem 6

Suppose ¢ = {C},...,Cx} and C' = {C},. Ck} are two admissible k-
cycle-packing. We say C is larger than C' if | U,_ V(C)| > |U,_ (ehHl.

In the rest of this section, N(z) and N(H) will be used instead of Ng(x)
and Ng(H) for z € V(G) and a subgraph H of G.

Let SU F be a feasible set with § = {v,...,,} C V(G) and F =
{ep+1,...€prq} C E(G), and e; = ziy; for p+1 < i < p+q. Since
G contains an admissible k-cycle-packing, we take an admissible k-cycle-
packing {C},...,Ck} such that | Uf=l V(C;)| is as large as possible. We may
assume that v; € V(C;) for1 <i<pande; € E(C;) forp+1<i<p+gq.
Let L = (U'.‘___1 V(C:)) and H = G- L. If H = ¢, we have nothing to prove.
Hence we may assume that H # ¢.

By Lemmas 1 and 3, the next claim holds.

Claim 3.1 Forz € V(H), dc,(z) < |Gil/2 for1 <i<pandp+q+1<
i1 <k, and dc,(z) < (|Ci| +1)/2 forp+1<i<p+gq.

Claim 3.2 H is connected.

(Proof.) Let Hp be a connected component of H, x € V(Hp) and y €
V(H - Hp). Then,

n+q < dg(z)+de(y)
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x k
\Hol =1+ _ de.(x) + |[H — Hol -1+ ) _ de,(v)

<
i=1 i=1
k
< |H|-2+) |Gl+g=n+q-2
i=1
by Claim 3.1. But this is a contradiction. 0

Claim 3.3 Suppose by, ba € N(H)NV(C;), by # b, and v; ¢ V(C;(by, b2))
if1 <i<pande; & BE(Cifby,b2)) if p+1 < i < p+q. ThenV(Ci(by,b2)) #
0.

(Proof.) Take a;, a2 € V(H) such that a1by,a2b2 € E(G) (possibly a; = a3)
and suppose by = b}. Then we can get an admissible cycle bya; PagbsC;(ba,
by )by which is longer than C;, where P is a path in H connecting a; and
az. This contradicts the maximality of L. D

Claim 8.4 [N(H)NV(C))| <1 for 1 <i < k.

(Proof.) Suppose [IN(H)NV(C;)| = 2 for some i, 1 € i < k. Choose
two vertices by,bs € V(C;) and vertices a1,a2 € V(H) (possibly a; = a)
such that a;b; € E(G) for j = 1,2, v; ¢ V(Ci(b,b2)) if 1 < i < p,
e & E(Cifby,ba)) if p+1 < i < p+qand N(H)NV(Ci(by, b2)) = 6. Take

z € V(H) and y € V(C;(by,b2)). Then,

n+q < de(z) +de(y)

p pta
1Cn| lCh|+1
< -3l §
h=1 h=p+1
k

|Chl _ 1Ci(b1, b2)|

+ > 5 102 4 3 +da(y)

h—p+q+l
|L| _ [Ci(b1,b2)|

Hence

|L| + q + |Ci(by, b2)] + 1
3 .

Let L' = (V(Cilbz, b1)) U (Ur=; V(Ch) = V(C3))). Then by (2),

|L} + g+ |Ci(b1, b2)| + 1
2

de(y) = di(y) 2 (2)

do(y) 2



|L'| 4+ |Ci (b1, b2)| + g+ |Ci(by, b2)| + 1
2

—5— +(ICi(b1,52)| - 1)+"

|L|+q

Hence by Lemma 5, V(Cg(bl,bz)) can be inserted into L’. By adding
byay Pagby where P is a path in H connecting e; and as, we get a larger
admissible k-cycle-packing. This is a contradiction. u |

Claim 8.5 [N(H)NV(C:)| = ¢ forp+q+1<i<k.

(Proof.) Suppose |[N(H)NV(C;)| # ¢ for some i, p+q+1 < i < k. Without
loss of generality, we may assume that i = k. Take y € N(H) N V(C).

Subclaim 8.5.1 |[N(H)NV(C;)| # ¢ and do,(y") + de.(y™) > 2|Ci| — 1
Jor somei,1<i<porp+qg+1<i<k-1.

(Proof.) Suppose the subclaim does not hold. Let r = |{h|N(H)NV(Cy) #
$1<h<pp+q+1<h<k}, v =[{hINH)NV(Ch) #¢p+1<h<
p+q}|. Then

k
dr(y*) +dr(y™) < Y 2|Chl - 2r = 2|L| - 2r.
h=1

Without loss of generality, we may assume that di(y*) = de(y*) <
|L} — r. Take any z € V(H), then

n+q < do(z)+de(y’) <|H|-1+r+7"+|L|-r

= n+r’ -1
Hence we get ¢ < r' — 1, but this is a contradiction. m|

We may assume that N(H) N V(C;) # ¢ and d¢,(y*) + dc,(y~) =
2|IC;| —1forsomei, 1 <i<porp+q+1<i<k—1 Takeze N(H)N
V(C;). By symmetry, we may assume that y*z—,y*2%,y" 2 € E(G). Let
yai,zaz € E(G), ai,ap € V(H) (possibly a; = a3). We replace C; to
C! = y*tz*tCi(z*,2z7)z"y" and, let P = yy~2, L' = ((U§=1 V(Cy) -
V(C;UCL))UV(CIUP)) and M = V(Cyi) - {y,yt,y"}. Forany z € M,
since dg(ay) < |H| —1 + k and za; ¢ E(G),

de(z) 2 n+q-(H|-1+4k)=|L|+qg—-k+1

= ||+ |M|+qg-Fk+1
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L 3(k—-1

SUIES IR (=5 N
L'+ k+qg+3

- ! ' g+ (M- —3—‘
%

> | l+"+(|M| 1)+§.

Then by Lemma 5, M can be inserted into L’. By adding za2P’a;y where
P’ is a path in H connecting a; and ap, we get a larger admissible k-cycle-
packing. o

Let N(H)NV(Cp) = {up} for1 <h<rjand p+1 < h <7y and
NH)NV(Ch) =¢forri+1 <h<pandra+1 < h < p+gq. Since 02(G) >
n +q, G is (¢ + 2)-connected. Hence r; > 2. Let also |[N(us) NV(H)| > 2
for1<h<s, |Nu)nNV(H)=1forsy+1<h<randr=ri+r—p.
Let Uy = {uy,...us, } and U = {uy,...,%r,, Up41,...,ur, }. If r2 does not
exist, let r =7y and U = {uy,...,un }.

Claim 3.6 u; # v; for u; € Us.

(Proof.) Suppose u; = v; for some 7 € U;. Without loss of generallty, we
may assume that i = 1. Let a;, a2 € N(v1)NV(H)and L' = (U‘_ V(C;)).
Since d(z) < |H| =1+ k and zv ¢ E(G) for any z € V(H) and v €
V(Ci) —{u}

dg(v) 2 n+q-(lH|-1+k)
Ll +q-k+1
= |L]+|Cl+g-k+1
L 3(k — 1
> | |2+q+ (2 )+3+(|Cl|—1)-k+2
_ |L|+q k 1
= ——+(C| - 1)+2+2+2
L'+ 3
> | ' Wta o -1+3

Since N(v) € V(L), V(C1)—{v1} can be inserted into L’ by Lemma 5. Let
C}i = v1a1Pagvy, where P is a path in H connecting a; and az. Then we
get a larger admissible k-cycle-packing. m]

Claim 3.7 Forve V(H), |[IN®)NL| > q+2.
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(Proof.) Take v € V(H) and y € V(C;) — {u;} for 1 < ¢ < r;. Then
vy ¢ E(G), and

INA

do(v) +de(y) < |H| -1+ |N@w)NL|+|L| -1
= n-2+|N(@)nL|

n+q

Therefore, IN(v) N L| > g+ 2. o
Claim 3.8 s; > 2.

(Proof.) Suppose s; £ 1. Then |H| £ r —(¢+1) £ r; — 1 by Claim 3.7.
Note that [H|(p+q+1—(|H|-1)) < |E(H, L)| < s1lH|+ (r1 — s1) +4q|H]|.
(This inequality will be used several times.) Then |H|(p+q+ 2 — |H|) <
si([H|=1)+r1+qlH| < |H[-1+p+q|H|and (p+9q)|H|+2|H| - [H|* <
|H| =1+ p+q|H|. Hence [H?—|H|-12p(|H|-1) 2 ri(|H| - 1) >
(IH| +1)(|H| - 1) = |H|? — 1. This is impossible. m]

Claim 3.9 |H| > r; - s;.

(Proof.) Suppose |H| <711 — 81 < p—s1. Then, |H|(p+q+2—-|H]) <
si(|H|-1)+r1+q|H| < (p—|H|)(|H|-1)+p+q|H|. Thisshows2|H| < |H]|,
but this is a contradiction. a

Claim 3.10 dg(y) =di(y) 2 |L|—s1+1 for eany y € V(L - U).
(Proof.) For any = € V(H), zy ¢ E(G). Since

Y do(z) < [H|(H| = 1) + s1|H| + 1 — 51+ qlH],

TzEV(H)
we get
TN — 8
do(y) > n+q-(HI-1)-s —«J——’I—HI—1
> |L| - 8
by Claim 3.9. Hence the claim holds. O

Claim 3.11 N(v;)N(Ur — {w1}) # ¢.
(Proof.) If N(vi)N(Uy—{u1}) = ¢, de(v1) < |L]-1~(s1—-1) = |L|—s;. On

the other hand, dg(v;) > |L|~ s1+1 by Claim 3.10. This is a contradiction.
m]
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Without loss of generality, we may assume that ug € N(v;)N (U ={u1}).
Give orientations to C; and C; such that C; (vy, 1) # ¢ and Ca(v2, u2) # ¢,
and take z = u] € C1(v1,u1) and y = v§ € Cz[uf,u;]. Here and in the
following, C;[v],u;) will be used as the abbreviation for V(Cjlvf 67 ).

Claim 3.12 There ezist no disjoint subgraphs C1,C3, ...,C} in L satisfy-
ing C} is a path connecting u; anduz, Cj, ..., C}, are cycles, v; € V(C;) for
1<i<p, e €E(C) forp+1<i<p+gq and WEHve)nU|2r-1.

(Proof.) Let L' = (U, V(CY)) and M = V(L) -J5_, V(C!) - U. For any
z € M, dg(z) = di(z) and by Claim 3.10,

dr(z) 2 |Ll-si+12|Lj+q-k+1

> |L|+|M|+q~k+1
L' (k-1 2

> | I+"+(|M| 1)+-(—%— g k42
U+ k+qg+3

- | ' BV DR L
L

> | '+"+(|M|-1)+-

Then by Lemma 5, M can be inserted into L’. Choose any y € Ny (u,).
Then there exists ¥’ € Ny(ug) — {y}. By adding a path connecting y and
v’ in H, we get a larger admissible k-cycle-packing. This contradicts the
minimality of |[L|. (We may miss one vertex in U, but they contain two
vertices in H.) o

Claim 3.13 dg, (2) + dc, (y) + dc, (v2) < 2|Ch| +1.

(Proof.) N(y) N N(v2) N (V(Cy1) — {u1,v1}) = ¢ (otherwise, we get a
disjoint path P connecting u; and u» through v; and a cycle C; through
vz in (V(C1) U V(C3)), contradicting Claim 3.12). Then dg, (2) + de, (v) +
dc,(v2) < |Gl =1+ [Ci|+2<2|Ch| + 1. o

Claim 3.14 dc,(z) + dc,(y) + dc, (v2) < 2|Ca| +1.

(Proof.) We may assume that N (y)NC3(uz, v2) = ¢ and N (v2)N(Ca(y,v3 ) -
{u2}) = ¢, since otherwise we get a disjoint u,-uz path C] passing through
v1 and a cycle Cj passing through vz in (V(C;) U V(Cz)), contradict-
ing Claim 3.12. Therefore, Nc,(y) C Calv2,us] — {y} and Ng,(v2) C
{u2, y,v5 }. If Ng,(2) N Ca(uz, v2] # ¢ and Ng,(2) N Co(v2, ua) # @, we get
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a disjoint u;-u; path C] passing through v; and a cycle Cj passing through
va. Then Ng,(2) C {ug,v2} or Coluz, v2) or Ca(va,ug]. Hence

dc,(2) +de, (y) + dey(v2) £ [Co| =14 |Co|—1+3
= 2|Cq| +1.

Claim 3.15 dg,(2) + dc;(y) + do(v2) < 2|Ci| +2 for 3<i<p+g.

(Proof.) Suppose dg,(z)+dc,(y)+dc; (v2) > 2|C;|+2 for some ¢, 3 < i < p+
g. Thendc,(z) 2 3. Take wy, wp € N¢,(2) such that C;(w;, w2)NN(z) = ¢
and v; € Cijw;, w2) if 3 <i < pand e; € E(Ci[wy,wq]) if p+1<i<p+q.
Then N(v2) N N(y) N Ci{wz,w;) = ¢ and

dCi(z) + dc‘(y) + dCa(vZ) < ICi [w2' w1]| + |C,~(w2,w1)[ + lei [wh w2]|
2|C;l + 2.

This is a contradiction. m]
Claim 3.16 dc,(z) + dc,(y) + do;(v2) S 2|Ci| +1 forp+ g+ 1< i< k.

(Proof.) If dg,(z) < 1, the claim holds. Suppose dg,(z) =t > 2 and let
w1, wy,...,wy € Ng,(2) = W. If t > 3, only vy or y can have neighbors
on Ci(w;,wy) for 1 < j # 1 < t by Claim 3.12. Furthermore, Nw (v2) N
Nw(y) = ¢. Then,

dCe(z) + dC.(y) + dc‘(‘vz) < 2|Ct|

If t = 2, at least one of N(y) N Ci(w1,w;) and N(v2) N C;(wy, w2) is
empty, and also at least one of N(y) N Ci(we,w;) and N(v2) N Ci(we, w1)
is empty. Hence

dc‘.(z) + dc.(y) + dC.(v2) < ICtl +4< 2|Ci| +1.
Claim 3.17 L — U is not complete.

(Proof) z ¢ N(y) N N(va). o

Claim 3.18 |L| > (n+ q + 4)/2.
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(Proof.) By Claim 3.17, 2(|L} — 2) 2 02(G) =n+¢. Hence |[L}| > (n+ g+
4)/2. o

By Claim 3.10,

d(z) + da(y) + de(va) > 3|L| — 351 + 3. (3)
On the other hand, by Claims 3.13, 14, 15 and 186,
dc(z) + dg(y) + de(v2)
pt+q
< Z(2|c,| +1)+ ) (2] +2) + E (2IC:| +1)
i=3 i=p+q+l
= 2ILI+2+2(p+q-2)+(k-p )]
= 9Ll +k+p+g-2. )

By (3) and (4),
IL| < k+p+q+3s; —

By Claim 3.18,
(m+g+4)/2<k+p+q+3s; —
Then,
n < 2k+2p+q+6s—14
< 2k+8+qg-14
< 10k - 14.

But this is a contradiction. This completes the proof of Theorem 6.
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