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Abstract

A connected graph G is said to be odd path extendable if for any
odd path P of G, the graph G — V(P) contains a perfect matching.
In this paper, we at first time introduce the concept of odd path
extendable graphs. Some simple necessary and sufficient conditions
for a graph to be odd path extendable are given. In particular we
show that if a graph is odd path extendable, it is hamiltonian.
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1 Introduction

All graphs considered in this paper are simple connected graphs. Let
G be a graph with vertex set V(G) and edge set E(G). For S C V(G), G[S]
denotes the subgraph of G induced by S. For a path P in G, we denote by
V(P) the set of vertices of P. The number of edges of a path is its length,
a path is even (odd) if its length is even (odd). A graph G is bicritical
if the deletion of any two distinct vertices of G results in a graph with a
perfect matching. Let G be a graph with perfect matchings. An edge of
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G is said to be allowed if it lies in a perfect matching of G. A graph G is
said to be elementary if its allowed edges form a connected subgraph of G.
An elementary graph G is said to be 1-extendable (or matching covered) if
all of its edges are allowed. Other terminologies and notations not defined
here can be found in {1} and [2].

1-extendable graphs play an important role in matching theory. Lovdsz
and Plummer [2, Chapter 5] showed that in a certain sense any elementary
graphs could be constructed using only 1-extendable bipartite graphs and
bicritical graphs as “building blocks”. It turns out that 1-extendable bipar-
tite graphs have so-called “ear constructions”: A graph G is 1-extendable
bipartite if and only if it can be represented as G = z + P + ... + P,
where z is an edge and each P; (the so-called “ear”) is a path of odd length
joining two vertices in different color classes of z + P; + ... + Pi—; and
having no other vertex in common with z + P, + ...+ P;_; [2, Chapter 4].
By this fact and the definition of 1-extendable graph G, we know that for
a l-extendable bipartite graph G, it always contains an odd path P (the
length of P might be one) such that G — V(P) has a perfect matching.
This observation motives us to introduce a new class of graphs called odd
path extendable graphs.

Definition. Let G be a connected graph. If for any odd path P of G, the
graph G — V(P) contains a perfect matching, then G is said to be odd path
extendable.

It is obvious that every odd path extendable graph must have an even
number of vertices. We can also easily see that the complete graphs Kz,
complete bipartite graphs K, » and cycles Ca, (where n > 2) are odd path
extendable.

The relations between odd path extendability and some existing no-
tions of matching extendability is as following. Clearly, if a graph is odd
path extendable then it is 1-extendable, but the reverse does not hold.
For example, the graph K., — e (here n > 3, e is an edge in Ky,») is
1-extendable, but K, » — e is not odd path extendable. Recall that a con-
nected graph G is said to be n-extendable if G has n independent edges and
any n independent edges are contained in a perfect matching of G, where
1<n< L‘ﬂ%).l:E The concept of n-extendable graphs was introduced
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by Plummer [3] in 1980. Since then, there has been extensive research
on this topic. For detailed results on n-extendable graphs, see two sur-
veys [4, 5]. Obviously, if a graph G is n-extendable for all n, then it is
odd path extendable. Thus the odd path extendability of graphs can be
thought of as a variant of n-extendability. An induced matching M in a
graph G is a matching where no two edges of M are joined by an edge of
G. A connected graph G is called an induced-matching extendable (simply
IM-extendable) graph if any induced matching M is included in a perfect
matching of G. This concept was first proposed by Yuan [8]. Many results
on IM-extendability can be found in [6-8]. An odd path extendable graph
may not be an IM-extendable graph, for example, a cycle Ca, is odd path
extendable, but Cs,, is not IM-extendable. Conversely, an IM-extendable
graph may not be an odd path extendable graph, for example, the cube
C; x K, is IM-extendable, but it is easily checked that C4 x K3 is not odd
path extendable.

In this paper, we introduce the notion of odd path extendable graphs
and give some simple necessary and sufficient conditions for a graph to be
odd path extendable. In particular, we show that if a graph is odd path
extendable, it is hamiltonian.

2 Characterization and some structural prop-
erties of odd path extendable graphs
In this section, we will give a simple characterization of odd path

extendable graphs based on Tutte’s 1-factor Theorem and study some struc-
tural properties of such graphs.

Theorem A (Tutte’s 1-factor Theorem). A graph G has a perfect
matching if and only if ¢,(G — 5) < |S]| for all § C V(G).

Theorem 1. A graph G is odd path extendable if and only if
c(G-9) |8 - (k+1)

for every S C V(G) such that G[S] contains an odd path of length k.
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Proof. The necessity is trivial by Theorem A.

Conversely, let P be an arbitrary odd path in G. Assume that the
length of P is k. Define G' = G — V(P). To prove that G’ has a perfect
matching, it suffices to show that ¢,(G' — §’) < || for any S’ C V(G’) by
Theorem A. In fact, letting S = $'UV(P), note that G[S] contains an odd
path P of length k, we have ¢,(G’' — §') = co(G — S) < |S| - (k+1) = |F'|
by the hypothesis. Thus G is an odd path extendable graph. O

It is well known that a l-extendable graph is 2-connected [2]. As
mentioned above, an odd path extendable graph is 1-extendable, hence we
have the following.

Theorem 2. If a graph G is odd path extendable, then G is 2-connected.

The following is an obvious observation from the definition of the odd
path extendable graphs.

Lemma 3. Let G be an odd path extendable graph and let P be an odd
path of G. Then G — V(P) contains no odd component.

Based on this observation, we will obtain some structural properties
of odd path extendable graphs. Call a cycle is even (odd) if its length is
even (odd).

Theorem 4. Let G be an odd path extendable non-bipartite graph and
C an odd cycle in G. Let A= V(G)\ V(C). Then G[A] is connected.

Proof. Let C = z,x3...7;21 be an arbitrarily odd cycle of G. Set A =
V(G)\ V(C). Clearly, A # 0.

Suppose that G[4] is disconnected. Let Dy, Ds,...,Dx be the compo-
nents of G — V(C), where k > 2. Since |V(G)| is even and |V(C)| is odd,
by parity, one of D, Ds,...,Dx must be an odd component. Without loss of
generality, we assume that D; is an odd component. Since G is connected,
there exists an edge from D to C. Denote such an edge by zz;, where
z € V(Dy), T; € {xl,mg, ...,xt}. But then P = TT;Tj41.--TtT1-..Tj—1 is an
odd path and G — V(P) contains the odd component D,. By Lemma 3,
we get a contradiction. O

Now we will show that if a graph is odd path extendable, it is hamil-
tonian.
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Theorem 5. Let G be an odd path extendable graph, then G has a
Hamilton cycle.

Proof. First we have the following claim.
Claim. G has a Hamilton path.
Suppose that G has no Hamilton path. We shall derive a contradiction.

Let P = vov;...vn, be a longest path in G of length m (m < |V(G)|-1).
Then G — V(P) contains some components.

For a component G’ of G — V(P), define the associated path Pg with
respect to G’ as follows: Pgr = v;v;41...v; is a subpath of P = vyv;...0m,
where ¢ is the minimal subscript for which v; € V(P) is adjacent (in G) to a
vertex of G, and j is the maximal subscript for which v; € V(P) is adjacent
(in G) to a vertex of G’. Since G is 2-connected, v; # v;. Furthermore, by
the maximality of P, v; # vp, v; # vm (see Fig. 1).

Fig. 1.

Case 1. m is even.

Since |V (G)| is even, by parity, G — V(P) would contain an odd com-
ponent, say G;. Let Pg, = v;vi41...v; be the associated path with respect
to G;.

It is clear that Pg, is an even path, otherwise Pg, is an odd path,
G — V(Pg,) contains an odd component G; and by Lemma 3 we have a
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contradiction. But then the subpath Pg , = Vi—1%;...v; of P is an odd path
" and G — V(Fg,) contains an odd component G, a contradiction.

Case 2. m is odd.

In this case, G — V(P) may contain even or odd components. We
consider two cases.

Case 2.1. G — V(P) contains an even component.

Let G2 be an even component of G — V(P) and let Pg, = vjvi41...v;
be the associated path with respect to G2. Suppose v; is adjacent to a
vertex z € V(Gs). If Pg, is an odd path, then Pg, = zv;vit1...05vj41 is
also an odd path. Clearly, G — V(P¢,) would contain an odd component,
a contradiction.

If Pg, is an even path, then Pg, = zv;vi11...v; is an odd path, and
G - V(Pg,) would contain an odd component, again a contradiction.

Case 2.2. G — V(P) contains an odd component.

Let G3 be an odd component of G — V(P) and let Pg, = v;vi41...v5
be the associated path with respect to Gj.

It is clear that Pg, is an even path, otherwise Pg, is an odd path,
G —V(Pg,) contains an odd component G3, a contradiction. But then the
subpath Pg, = v;—19;...v5 of P is an odd path and G — V(Fg,) contains
an odd component G3, a contradiction.

The claim thus holds.

Let P, = v1v2...v, be a Hamiltonian path in G, where n = |V(G)|.
Then v; is adjacent to vy, otherwise the subpath P} = v3...vn-1 of Py is
an odd path and G — V(P}) contains two isolated vertices v; and v,, a
contradiction. Now C = Py, + v1v,, is a Hamiltonian cycle in G. O

The class of odd path extendable graphs seems to be quite restricted.
We close the paper with the following problem.

« Determine all odd path extendable graphs.
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