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Abstract

A double-loop network(DLN) G(N;r,s) is a digraph with the
vertex set V' = {0,1,...,N — 1} and the edge set E={v v+
( mod N) and v —» v+ s( mod N)jv € V }. Let D(N;r,s) be the
diameter of G(N;r, s) and let us define D(N) = min{D(N;r, s)|1 <
r<s<N and ged(N,r,s) =1}, D1(N) =min{D(N;1;s)|l < s <
N} and Ib(N) = [V3N ] —2. It is known that {b(N) is a sharp lower
bound for both D(N) and D,(N). A given DLN G(N;r, s) is called
k-tight if D(N;r,s) = Ib(N) + k(k > 0). A k-tight DLN G(N;r,s)
is called optimal if D(N) = Ib(N) + k(k > 0), and a k-tight DLN
G(N;1,s) is called restricted optimal if D,1(N) = Ib(N) + k(k > 0).
Coppersmith proved that there exists an infinite family of N for
which the minimum diameter D(N) > V3N + c(logN)*/*, where ¢
is a constant.

In this paper, we first propose some new approaches to construct
infinite families of k-tight double-loop networks (not necessarily re-
stricted optimal) starting from almost all k-tight restricted optimal
double-loop networks G(N; 1, s). Secondly we prove by Chinese Re-
mainder Theorem that infinite families containing no k-tight(0 <
k < m) optimal double-loop networks G(N;r, s) can be constructed
for any integer m > 0.
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1 Introduction

Double-loop digraphs G = G(N; 7, s), withl <r < s < N and ged(N,r, s) =
1, have the vertexset V = {0,1,..., N —1} and the adjacencies are defined

by v = v+7r( mod N) and v — v+ s( mod N) for v € V. These kinds of

digraphs have been widely studied as architecture for local area networks,

known as double-loop networks (DL.N). For surveys about these networks,

see(3,7].

From the metric point of view, the minimization of the diameter of
G corresponds to a faster transmission of messages in the network. The
diameter of G is denoted by D(N;r,s). As G is vertex symmetric, its
diameter can be computed from the expression max{d(0;%)|i € V'}, where
d(u;v) is the distance from u to v in G. For a fixed integer N > 0, the
optimal value of the diameter is denoted by

D(N) = min{D(N;r,s)|1 <r <s < N and ged(N,r,s) =1}.

Several works studied the minimization of the diameter (for a fixed N)
with » = 1. Let us denote

Dy (N) =min{D(N;1;s)|]l<s< N}.

Since the work of Wong and Coppersmith [10], a sharp lower bound is
known for Dy(N):

Dy(N) > [V3N ] -2 =Ib(N).

Fiol et al. in [8] proved that lb(N) is also a sharp lower bound for D(IV).
A given DLN G(N;r, s) is called k-tight if D(N; 7, 8) = Ib(N)+k(k > 0). A
k-tight DLN with N nodes is called optimal if D(N) = Ib(N) + k(k > 0),
where integer N is called k-tight optimal. A k-tight DLN G(N;1,s) is
called restricted optimal if Dy (N) = Ib(N) +k(k > 0). A k-tight restricted
optimal DLN G(N;1,s) is also optimal if D;j(N) = D(N). The 0-tight
DLN are known as tight ones and they are also optimal.

Although the identity D(N) = D;(N) holds for most values of N, there
are also another infinite set of integers with D(N) < D;(N). These other
integral values of N are called non-unit step integers or nus integers in [2].
Thus, for most restricted optimal k-tight DLN G(N; 1, s), it is also k-tight
optimal.

The metrical properties of G(NV;r,s) are fully contained in its related
L-shaped tile L(N;l, h,z,y) with N = lh — zy. In Figure 1, we illustrate
generic dimensions of an L-shaped tile.
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l
Figure 1: Generic dimensions of an L-shaped tile

Let D(L) = D(L(N;l,h,z,y)) = max{l + h—z —2,l+ h—y — 2}. For
obvious reasons, the value D(L) is called the diameter of the tile L. It is
known that an L-shaped tile L(N;!, h,z,y) can be assigned to a G(N;r, s)
without any confusion [2,8]. It is said that the tile L(N;l,h,z,y) can
be realized by G(N;r,s). However, we can not find double-loop network
G(N;r,s) from some L-shaped tiles. When an L-shaped tile L(N;!, k,z,y)
has diameter Ib(N) + k, we say it is k-tight.

Coppersmith in a private communication to D.F.Hsu (quoted in [3,5,7])
proved that there exists an infinite number of N for which the minimum
diameter D(N) > V3N + c(logN)*/4, where c is a constant. Xu and Liu
[11] gave an infinite family of 4-tight optimal double-loop networks. It is
known that finding infinite families of k-tight optimal DLN is a difficult
task as the value k increases.

The remaining of this paper will be organized as follows. Some lemmas,
which will be used throughout this paper, are introduced in Section 2. In
section 3, we propose some new approaches to construct infinite families
of k-tight double-loop networks (not necessarily optimal) starting from al-
most all k-tight optimal double-loop networks G(V; 1, s}. In section 4, we
prove by Chinese Remainder Theorem that infinite families containing no
k-tight(0 < k < m) optimal double-loop networks G(N;r,s) can be con-
structed for any integer m > 0, and infinite families of k-tight(k > m)
restricted optimal double-loop networks G(N; 1, s) can be constructed for
any integer m > 0. Finally, section 5 presents an example to illustrate our
main approaches.
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2 Preliminary

The following Lemma 1, 2, 3 and 4 can be found in [6 or 8 or 9].

Lemma 16 9. Let ¢ be a nonnegative integer. We define I () = [3t2 +
1,3t242t), Io(¢) = [3t2+2t+1, 3t2+4t+1] and I3(t) = [3t2+4¢+2,3(t+1)2).

Then we have [4,372% + 6T + 3] = U U I;(t), where T > 1, and Ib(N) =
t=1i=1
3t+i—2if N e L(t) fori =1,2,3.

Lemma 26 9. Let L(N;l,h,z,y) be an L-shaped tile, N = lh — zy.
Then,

(a) There exists a G(N; 1, s) realizing the L-shaped tile iff { > y and
h>zorl>yandh >z and ged(h,y) = 1, where s = ol — (I — z)(
mod N) for some integral values o and 3 satisfying oy + f(h — y) = 1.

(b) There exists a G(N;r, s) realizing the L-shaped tile iff I > y and
h>zorl>yandh >z, and ged(l,h,z,y) = 1, where r = ah + By(
mod N), s = az+ Bl mod N) for some integral values o and g satisfying
ged(N,r,s) = 1.

Lemma 3. Let L(N;l,k,z,y) be an L-shaped tile, N = lh — zy. Then
(a) If L(N;1, h,z,y) is realizable, then |y — z| < VN;
(b) If z > 0 and |y — z| < VN, then

D(L(N;1,h,2,y)) 2 1/3N = (y = 2)? + 3y — =/ -

(c) Let f(z) = /3N - %22 + %z . Then f(z) is strictly increasing when
0<z<+VN.

Lemma 4. Let N(t) = 3t2 + At + B € Ii(t) and L be the L-shaped
tile L(N(t);!, h,z,y), where A and B are integral values; | = 2t + a,
h=2t+b, z =y — z|, a,b,z,y are all integral polynomials of variable
t,and j =i+ k(k > 0). Then L is k-tight iff the following identity holds
(a+b—ja+b—-j+2)—ab+(A+2-25)t+B=0. (1)

The following Lemma 5 is the generalization of Theorem 2 in [11], and
can be found in [12].
Lemma 512, Let H(z, j) = (2j — 2)2—3[j(j — z) + (A+ 2 — 2j)t+ B], and
the identity (1) be an equation of a and b. A necessary condition for the
equation (1) to have integral solution is that 4H(z, j) = s2 + 3m2, where s
and m are integers.
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It is easy to show that the following Lemma 6 is equivalent to Theorem
1 in [11}. Lemma 6 can be found in [12].
Lemma 6121, Let n, s and m be integers, n = s? + 3m2. If n has a prime
factor p, here p = 2( mod 3), then there exists an even integer g, such that
n is divisible by p?, but not divisible by p?+1.

Lemma 7112, Let N = N(t) = 3t2 + At + B € I;(t) and L-shaped tile
L(N;l,h,z,y) be k-tight(k > 0) and realizable. Let z = |y — z|. Then the
following hold

Case 1. f A=0o0r A=2(if i = 2) or A =4(if i = 3), and
3N — 2(2k +3)% > (3t + 451)%, then 0 < z < 2k + 2.

Case2. If A=1lor A=3o0or A=5, and
3N -3(2k+2)2> (3t + 4;1)%, then 0< 2 < 2k + 1.

Case3. If A=2(if i=1) or A=4(if i =2) or A=6, and
3N - 2(2k+1)2 > (3t + 451)2, then 0 < 2 < 2k.

Lemma 8. There exists an infinite number of prime p, where p # 2 and
p =2( mod 3).
Proof. We prove it by contradiction.

Suppose there are only primes: pi,p2,...,Pm, such that p; # 2 and
pi=2( mod3)for1<i<m.

Let p = 3p1p2 -+ pm + 2. It is easy to know that p has a prime fac-
tor g, such that ¢ ¢ {2,p1,p2,...,Pm} and ¢ = 2( mod 3), which is a
contradiction.

We have this lemma. (|

3 Infinite families of k-tight double-loop net-
works

Here we must note that the conditions of Lemma 7 are satisfied by almost
all k-tight optimal and realizable L-shaped tile L(N(¢);{,h,z,y). If an L-
shaped tile L(N(t);1, h, z,y) does not satisfy the condition in Case 3. That
is,

3N(t) — 3(2k + 1) < (3t + 451)?
Hence,

3(t+B) < §(2k+1)2 + (451)%
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We may let A; = A—1 and B; = B +t. Then this is Case 2, and if
the following holds,

3(t + B1) > 3(2k + 2) + (4471)2
This is equivalent to the condition in Case 2.

Otherwise, we may let A, = Aj—1=A—-2and B, =B, +t= B +2t.
Then this is Case 1, and if the following holds,

3(t+ Ba) > 3(2k + 3)% + (4571)%.

This is equivalent to the condition in Case 1, to which there is no counter
example up to now.

Theorem 1 has the same idea of procreation given in [1].

Theorem 1. Let N(t) = 3t2+ At+ B € I;(t), where 1 <7 < 3. If L-shaped
tile L(N (to); lo, ho, Zo, Yo) satisfies the conditions of Lemma 7 and can be
realized by a double-loop network G(N(to); 1, so), where lo = 2to+ao, ho =
2to +bo,zo =to+apo+bo—j,z=y0—To 2 0(oryo =to+ao+bo—j,z=
To —yo = 0), =i+ k, ap and by are integers, then an infinite family of
k-tight double-loop networks G(IV; 1, 8) (not necessarily restricted optimal)
can be constructed starting from L(N (to); lo, ho, Zo, ¥0)-

Proof. From Lemma 7, 2j — A— z > 0. Let ¢ = hg — 2yo. We only prove

the case of ¢ > 0 and yp — g > 0. The others are similar.
Case 1. 2j — A — z = 0. The equation (1) is equivalent to the following,
(a+b—j)a+b—j+2z)—ab+B=0.
Let t = qf +to,! = 29f +lo, h = 2¢f +ho,z = q¢f + %0,y = gf +yo,h' =
h—y,l'! =1 — z, where f is a nonnegative integer.

From Lemma 2(a), ged(yo, ko — yo) = 1, that is ged(yo, ho — 2y0) = 1,
thus,

ged(y, h) = ged(y, b — 2y) = ged(gf + yo, ho — 2y0) = ged(¥o,9) = 1.

Suppose agyo+ Bo(ho —2yo) = 1, then ag(y— f(h' —¥))+Bo(h —y) =1,
that is (o f + a0 — Bo)y + (—aof + Bo)h’ =1

Let s(f) = (aof + a0 — Bo)l + (a0 f — Bo)l/( mod N (2)).

Let ¢; = qf. Then,

lh—zy— N(to) (2t1 + lu)(2t1 + ho) - (tl + xo)(tl + yo) - N(to)

3t2 + t1(2lo + 2ho — o — o)
3t2 + t1(6to + 25 — 2)
3t2 4+ t1(6to + A)
N(¢t) — N(to)
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Thus, lh — zy = N(t), and L-shaped tile L(N(t);!, h,z,y) can be real-
ized by G(N(£); 1, 5(f).

From Lemma 4, L-shaped tile L(N(t);!, h,z,y) is k-tight, but not nec-
essarily optimal.

Case2. 2§ —A—-2>0.

Letr =2j—A—2z,a = rqf+ay, b = —2rqf+by, where f is a nonnegative
integer. By equation (1), we have t = 3rg? f2 4 ¢ f (~3bo + 2 — 2) + to.

Letl=2t+a,h=2t+bz=t+a+b—jy=t+a+db-—j+2z,h =
h—yl'! =1l—-2z, Note that

y=t+a+b—j+2=3rg’f2+qf(-3bo+2j -z —7) +y0 =3rg*f2 +
af(—3bo + A) + yo,

and from Lemma 2, we have,

ged(y, h) = ged(y, h—2y) = ged(3rq® 2 +9f(—3bo+ A) +yo, ho— 2y0) =
ged(yo,q) = 1.

Suppose agyo + Bo(ho — 2y0) = 1, and note that

y = 3rg®f2 + qf (~3bo + A) + 30 = f(h' — y)(3rqf — 3bo + A) + 30,
thus,

ooy — f(R' — y)(3rqf — 3bo + A)) + Bo(h' —y) =1,

That is

(o0 f(3rqf — 3bo+ A) + a0 — o)y + (—aof(3rqf — 3bo + A) + Go)h’ = 1.

Let s(f) = (a0 f(3rqf —3bo+A)+ao—Po)l+(ao f(3rqf —3bo+A)—Bo)l'(
mod N(t)).

Let ¢; = 3r¢?f2 + qf(—3bo +2j — z). Then,

lh — zy — N(to)

(2t1 +rqf + lo)(2t1 — 2rqf + ho) — (t1 — 7af + x0)(t1 — rqf + yo) — N(to)
312 + t1(2lo + 2ho = o — yo) — 3(rqf)? + rqf(ho — 2lo + o + yo)

3t& + 21 (6to + 27 — 2) — 3(rqf)? + rqf(3bo ~ 2j + 2)

3t + t1(6to + A) + 7t1 — 3(rqf)? + raf(3bo — 27 + z)

N(t) — N(to) + 3(rqf)? + rqf(~3bo + 2j — z) — 3(rqf)? + rqf(3bo — 25 + z)
N(t) — N(to)

ngnunnn

Thus, lh — zy = N(t), and L-shaped tile L(N(t);!, h,z,y) can be real-
ized by G(N(¢); 1, s(f)).

From Lemma 4, L-shaped tile L(N(t);l, h, z,y) is k-tight, but not nec-
essarily optimal.

We have this theorem. m}
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4 Infinite families containing no k-tight
(0 < k < m) optimal double-loop networks
G(N;r,s) for any integer m >0

Theorem 2 is our main result, which will be used to prove Theorem 3.
Theorem 2. Given N(t) = 3t2+ At+ B € I;(t),1 < i < 3, infinite families
of {N(t);t = de + c},where d, ¢ are integers, e > 0 is an integral variable,
can be constructed for any integer m > 0, so that there does not exist any
k-tight(0 < k < m) optimal double-loop network G(N; 7, s) with N(de+c)
nodes.

Proof. Let N(t) =3t>+ At+ B € I;(t),i = 43,1 <1 < 3, where t > #,
to is a constant, A =1 or A = 3 or A = 5. In fact, we can get the same
resultsinthecasei=1+-’§-a.ndA=00rA=2orA=4.

When t; is large enough, we may guarantee that B > ;11-(2m +1)2 4+
(4)2/3 and N(t) = 3t + At + B € L(t). Then,

3B - 3(2m+1)% > (4)2 That is, 3N(t) — 3(2m +1)2 > (3t + 4)2.

For any k(0 < k < m)), 3N(t) — 3(2k + 1) > (3t + 4)%. From
Lemma 7, we know that there does not exist any k-tight L-shaped tile
L(N(t);l,h,z,y) for z > (2k+ 1). For 0 < z < 2k,j = i+ k, if we can
guarantee that 4H(z,j) has a prime factor p with an odd power, where
p = 2( mod 3), then by Lemma 6, 5, and 4, we know that there does not
exist any k-tight L-shaped tile.

Now our only task is to prove that 4H(z, ) has a prime factor p with
an odd power, where p =2( mod 3),0<2<2k,j=i+k0<k<m.
Since H(z,7) = (27 — 2)2 = 3[i(G —2) + (A+2—-2j)t + B],A+2z—2j <
2 — 1+ 2k — 2(i + k) = —1, hence 4H(z, j) are all polynomials of order 1.
Let us denote these polynomials by: a;t+b;,1 < i < d, whered = (m+1)2.

From Lemma 8, let us denote all primes by: pi,p2,...,9:,..., Where
i =2( mod 3) for i > 1.

Without loss of generality, we assume that ged(a;,p;) =1for1 <i < d.
Suppose o;a; + Bip? = 1, then we have ola; + Bip? = p; — b;, that is,
ala; + b; = —Bip? + pi. Thus there exists c;, such that a;t + b; = pi(
mod p?) for any ¢t = pZe + c;,e > 0.

Since p? mutually prime to each other, by Chinese Remainder Theorem,
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we know that there exists a solution to the following congruences.

=¢;( mod p?)
t =co( mod p3)

t=cqg( mod p?)

Suppose the solution is ¢ = p?p%---pie + c,e > 0 and ¢ > &p. If
0<2<2kj=1+k,0< k< m,t=p?p}-- ple+c, then 4H(z,j) has a
prime factor p with an odd power, where p = 2( mod 3).

Therefore, there does not exist any k-tight(0 < k < m) optimal double-
loop network G(N(t);r, s), where t = pp3 - - - pZe + c(e > 0).

We have this theorem. ]

Based on Theorem 1 and Theorem 2, it is easy to prove the following
Theorem 3.

Theorem 3. For any integer m > 0, there exists integer k(k > m),

such that infinite families of k-tight restricted optimal double-loop networks
G(N;1,s) can be constructed.

Proof. From Theorem 2, we have N(t) = 3t2 + At + B € L(t),i =
4811 < i < 3, where t = plp}---ple+cle > 0),A=1or A=3or
A = 5, there does not exist any k-tight(0 < k < m) double-loop network
G(N(t);r, ).

Suppose that there exists a (m+k; )-tight restricted optimal double-loop
network G(N(t1);1,s1) ;

There exists a (m + kg)-tight restricted optimal double-loop network
G(N(tz); 1,82) and ky < k;

There exists a (m + ks)-tight restricted optimal double-loop network
G(N(ts);1,s3) and k3 < ko;

......

Since k; > 1, this sequence is finite. Hence we may assume that there
does not exist any k-tight(0 < k& < m + n) restricted optimal double-loop
network with N(t) nodes, where t = p?p2 - - - pe +to(e > 0) and n > 0, but
there does exist a (m + n + 1)-tight restricted optimal double-loop network
G(N(to);1,5(t0)) , and 3N(t) — 3(2(m + n + 1) +2)® > (3t + 45L)? for
e>0.
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From Theorem 1, an infinite family of (m+n+1)-tight restricted optimal
double-loop networks can be constructed starting from (m + n + 1)-tight
restricted optimal double-loop network G(N (to); 1, s(t0)), which has an L-
shaped tile L(N(2o); lo, ko, o, Yo)-

In the case of ¢ = ho — 2yo > 0, and yo —z¢ = 0,2j — A - 2z > 0.
The others are similar. Let N(t) = 3i%2 + At + B,t = 3r¢®f2 + qf (—=3bo +
2j — z) +to, f = p3p3 - - - pie(e > 0). Then there exists a (m + n + 1)-tight
restricted optimal double-loop network G(N(t); 1, s).

We have this theorem. O

5 An example

To illustrate the above theorems, we present an example.

Example 1. Let N(t) = 3t2 + 3t + 17 € I(t),m = 2. Now we derive an
infinite family of 3-tight optimal double-loop networks G(N(t); 1, s).

Since B = 17 > 1(2m +1)2 + (4)?/3 = 1(2-2 + 1)? + ()?/3, from
Theorem 2, we now only need to consider H(z,j) = (2j —2)? —-3[j(j — z) +
B+2z-25)t+17,for0<2<2k,j=2+k0<k<2

It is easy to show that, :

H(0,2) = 3t — 47, when t = 3( mod 4), has a factor 2 with power 1;
H(2,3) =3t — 44, when t = 3( mod 25), has a factor 5 with power 1;
H(1,3) =6t — 44, when t = 3( mod 4), has a factor 2 with power 1;
H(0,3) =9t — 42, when t = 3( mod 25), has a factor 5 with power 1;
H(4,4) = 3t — 35, when t = 3( mod 4), has a factor 2 with power 1;
H(3,4) =6t — 38, when t = 3( mod 25), has a factor 5 with power 1;
H(2,4) =9t — 39, when t = 19( mod 121), has a factor 11 with power

H(1,4) = 12t — 38, when ¢t = 3( mod 4), has a factor 2 with power 1;
H(0,4) = 15t — 35, when ¢ = 3( mod 25), has a factor 5 with power 1.

Thus we focus on the following congruences,

t=3( mod 4)
t=3( mod 25)
t=19( mod 121)

There is a solution, ¢ = 100 - 121 - e + 503, where e > 0 is an integer.
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From Theorem 2, {N(t) = 3t + 3t + 17;t = 100- 121 - e + 503,e > 0} is
an infinite family, in which there does not exist any k-tight(0 < k < 2)
optimal double-loop network G(N (t);, ).

For t = 503, N(t) = 3t2 + 3t + 17 = 760553, D(760553;1, 156540) =
Ib(N) +3, and it is checked by computer that D(760553) = Ib(N) + 3, thus
G(760553; 1,156540) is a 3-tight optimal double-loop network.

From G(760553;1,156540), we get 3-tight L-shaped tile L(760553 :
993,996,475,481). Further, we know that, ag = —13,by = —10,j =2+3 =
5,2=6,g=ho—2y9g=34,2j—A—2=1%#0.

From Theorem 1, let @ = 34f — 13,b = —68f — 10,t = 3(34)%f2 +
341(34) +503. Since 7(481) — 99(34) = 1. Note that y = f(h' — y)(3rqf —
3bg + A) + yo, thus,

7{y — f(h' — y)[3(34) f + 33]} —99(h' - y) = 1.
That is,
{77[3(34)f + 33) + 106}y + {—7f[3(34) f + 33] — 99}K’ = 1.

Let, s(f) = {7£[3(34)f + 33] + 106}(2t +a) + {7£[3(34) f+ 33] + 99} (¢ —
b+ j)( mod N(t)).

From Theorem 1, {G(3t? + 3t + 17;1,s(f))|t = 3(34)%f% + 34£(34) +
503, f = 50-121-e, e > 0} is an infinite family of 3-tight optimal double-loop
networks.

Let e = 0. Then f =0,t = 503, s(0) = 106 x 993 + 99 x 518 = 156540.
Thus, G(N(503); 1, 5(0)) is a 3-tight optimal double-loop network.
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